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An Analytical Model for Sequential Investment Opportunities 

 

Abstract 

We provide an analytical solution for American perpetual compound options, that do not rely on 

a bivariate or multivariate distribution function.  This model is especially applicable for a real 

sequential investment opportunity, such as a series of drug development, tests and clinical trials, 

where the project can be cancelled at any time, and where the probability of failure declines over 

stages of completion.  The effect of changing input parameter values can clearly be seen in terms 

of resulting overall project process volatility, and the effective mark-up factor which justifies 

continuing with each investment stage.  In the base case, the effective markup factor increases as 

the stage nears completion if the project failure declines, although the absolute threshold of the 

project value less the remaining stage investment costs declines. This is consistent with the effect 

of decreases in project value volatility. Other results are not always intuitive, with different 

signed vegas and chi’s for different investment stages and degrees of moneyness.  This study 

appears to be a unique approach, which yields the threshold project value relative to investment 

costs that justifies investment at each stage, with no timing restrictions. 
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1  Introduction 

We extend the result of Tourinho (1979) for a single investment opportunity to the case of a 

project comprising a multiple sequential investment opportunity, while retaining the simplicity of 

a closed-form solution. Our solution depends on assuming a probability of catastrophic failure at 

each investment stage that declines in value as the project nears completion, which is a 

characteristic of many R&D, exploration and infrastructure projects 

 

We conceive a real sequential investment opportunity as a set of distinct, ordered investments 

that have to be made before the project can be completed. The project can then be interpreted as 

a collection of investment stages, such that no stage investment, except the first, can be started 

until the preceding stage has been completed. Success at each stage is not guaranteed because of 

the possibility of a catastrophic failure that reduces the option value to zero. The project value is 

realized when all the stages have been successfully completed. The following four-stage 

opportunity provides an illustration: (i) undertaking basic research. (ii) developing a marketable 

product, (iii) testing its viability and (iv) implementing the infrastructure for launch and delivery. 

Bearing in mind that a project can be composed of any number of distinct stages, multiple 

sequential investment opportunities are common amongst industries as diverse as oil exploration 

and mining, aircraft manufacture, pharmaceuticals and consumer electronics. 

 

Schwartz and Moon (2000) illustrate a new drug development process which consists of four 

distinct phases, each with a positive probability of failure, although not necessarily declining 

over time. Cortazar, Schwartz and Casassus (2003) describe four natural resource exploration 

stages of a project with technical success probability increasing over each phase, and then a 

production phase which is subject to commodity price uncertainty. Pennings and Sereno (2011) 

describe a typical development path of a new medicine over seven phases, with a probability of 

failure declining over time. 
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Making an investment at a stage depends on whether the prevailing project value is of sufficient 

magnitude to economically justify committing the investment cost, or whether it is more 

desirable to wait for more favorable conditions. In our formulation, these conditions are 

represented by the prevailing project value and investment cost, which are both treated as 

stochastic, and possibly correlated. After making the stage investment, there is no absolute 

guarantee that the stage will be successfully completed, because of the presence of irresolvable 

difficulties in converting intentions into reality owing to technological, technical or market 

impediments. This means that the stage investment opportunity is subject to a catastrophic failure 

that causes the option value to be entirely destroyed, and the project as an entity becomes 

irredeemably lost. Our aim is to analyze this sequential investment opportunity under the three 

sources of uncertainty, the stochastic project value and the investment cost, and the probability of 

a catastrophic failure, so to be able to produce a closed-form rule on the investment decision at 

each of the project stages. 

 

Although the single-stage investment opportunity model of Tourinho (1979), or McDonald and 

Siegel (1986) yields a closed-form solution, this degree of analytical elegance has not been 

achieved for the multi-stage sequential investment opportunity. Dixit and Pindyck (1994) 

identify the rule for a two-stage sequential investment but for fixed investment costs. Their 

solution, based on American perpetuity options, is identical to the one-stage model but with 

accumulated costs. Nevertheless, it is important to solve the sequential investment problem 

because amongst other things, the project value may vary between succeeding stages and the 

option value at each stage needs to be evaluated. Their resolution is an appeal to the time-to-

build model of Majd and Pindyck (1987). In this representation, firms can invest continuously, at 

a rate no greater than a specified maximum, until the project has been completed, but investment 

may be temporarily halted at any time and subsequently re-started, albeit at a zero cost. The 

solution, evaluated by using numerical methods, shows the importance of the project value 

volatility in deciding whether or not to suspend investment activities. Even though the 

investment levels can be managed, it is essentially a single stage representation. Schwartz and 

Moon (2000) extend the model by including the possibility of a catastrophic failure and the 

presence of multiple stages, but their solution again rests on numerical methods. 
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Other authors simplify the multiple investment stage problems for obtaining a meaningful 

solution. By assuming a fixed time between stages, Bar-Ilan and Strange (1998) formulate a two-

stage sequential investment model and obtain a solution by treating the option as European. 

Building on the valuation of sequential exchange opportunities by Carr (1988), Lee and Paxson 

(2001) use an element of European style compound options (and approximation of an American 

option phase) for formulating a two-stage sequential investment. Brach and Paxson (2001) 

examine a two-stage sequential investment opportunity similar to the formulation currently under 

study but they confine their attention more to valuation. Childs and Triantis (1999) formulate a 

multiple sequential investment model with interaction and obtain a solution through using a 

trinomial lattice. For all of these expositions, the solution is either not analytical or is restricted to 

only two stages. 

Agliardi and Agliardi (2003, 2005), Andergassen and Sereno (2012), Gukhal (2004), Huang and 

Pi (2009), Lee, Yeh and Chen (2008), Pendharkar (2010) and Pennings and Sereno (2012) and 

other authors study N phases for a sequential option, often with a geometric Brownian motion 

combined with downward jumps, but typically the options are European, so the optimal timing 

for the investment is not computed. Cassimon et al. (2004), Cassimon et al. (2011) and 

Cortelezzi and Villani (2009) study American-type investment options, but provide either a 

Monte Carlo solution or a solution based on the complex multivariate distribution available in 

some mathematical programmes.  

The aim of this paper is to revisit the sequential investment model originally specified by Dixit 

and Pindyck (1994). Combinations of three distinct sources of uncertainty associated with 

project value, investment cost and catastrophic failure are proposed as possible contenders for 

reaching a meaningful solution. Amongst these, we find that the uncertainty, at each stage, 

regarding the possibility of a catastrophic failure that causes the “sudden death” for the project is 

crucial. Although the uncertain project value is normally an essential ingredient of the real option 

model, it alone cannot yield a meaningful solution as established by Dixit and Pindyck (1994). 

However, a meaningful solution does arise when the sequential investment opportunity is 

considered in conjunction with the failure probability. The presence of an uncertain investment 

cost is not critical to obtaining a meaningful solution, but its inclusion does create a richer 

representation.  
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The major analytical findings for the sequential investment model are developed in Section 2. 

Based on the three sources of uncertainty, the model is presented first for a one-stage 

opportunity, and then incrementally developed for a two-, three- and finally (in Appendix C) for 

an N -stage sequential investment opportunity. We develop closed-form solutions for whether or 

not to commit investment at a particular stage and for the real option value at each stage. In 

Section 3, we obtain further insights into the model behavior through numerical illustrations. The 

last section summarizes some advantages and limitations of our model and suggests plausible 

extensions.  

 

2 Sequential Investment Model 

A firm, which can be treated as being a monopolist in its market, is considering an investment 

project made up of a discrete number of sequential stages, each involving an individual non-zero 

investment cost. The project as an entity is not fully implemented and the project value not 

realized until all of the sequential stages have been successfully completed. Each successive 

investment stage relies on the successful completion of the investment made at the preceding 

stage, but the stage timing is not specified.  We order each investment stage by the number J  of 

remaining stages, including the current one, until project completion. Although it may be more 

natural to label the initial stage of the project as 1, a reverse ordering is used since a 

backwardation process is used in deriving the solution. First, we examine the decision making 

position for the ultimate stage where 1J  , and then by replication for the preceding stages, 

incrementally. At the ultimate stage, the firm is considering the decision whether or not to make 

an investment in a real asset. This is decided by whether or not the option value at 1J   fully 

compensates the expected net present value of the cash flow stream rendered by the asset. At the 

penultimate stage 2J  , the firm is considering whether to make an expenditure to obtain the 

investment option at 1J  .  This decision rests on whether or not the option value at 2J   fully 

compensates the net option value at 1J  . This procedure is then replicated incrementally for 

stages greater than 2. If the completion of any stage J occurs at time JT , then 1J JT T   for all 

positive integers J  since the stages have to be completed consecutively.  
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A representation of the sequential investments process for a J N  stage project is illustrated in 

Figure 1. This figure reveals the ordered sequence of stage investments comprising the project. It 

also shows that after an investment, the possible outcomes are success and failure. If all the stage 

outcomes are successful, then the entire project is successfully completed and its value can be 

realized. However, there is a possibility of failure at each stage. Although the investment is 

committed, the stage may not be successfully completed owing to fundamental irresolvable 

technical or market impediments, in which case, the option value instantly falls to zero and the 

project is abandoned without any value. The probability of failure at stage J  is denoted by J  

where 0 1J J   . Situations do arise when an investment can produce an innovative 

breakthrough and generate an unanticipated increase in the project value, but we have ignored 

this possibility. Also, other forms of optionality, such as terminating a project before completion 

for its abandonment value, are not considered. 

---- Figure 1 about here ---- 

 

The value of the project is defined by V . The investment expenditure made at any stage J  is 

denoted by JK  for all possible values of J . Both the project value and the set of investment 

expenditures are treated as stochastic. It is assumed that they are individually well described by 

the geometric Brownian motion process
1
: 

 d d dX X XX X t X z   , (1.1) 

for  , JX V K J  , where X  represent the respective drift parameters, X  the respective 

instantaneous volatility parameter, and d Xz  the respective increment of a standard Wiener 

process. Dependence between any two of the factors is represented by the covariance term; so, 

                                                 
1
 Many authors assume a mixed jump diffusion process for the underlying values, but in this case the entire project 

fails, perhaps due to a collapse in the project value, or escalation of the investment cost, or other reasons, so the 

jump process is not confined to a particular element. 
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for example, the covariance between the real asset value and the investment expenditure at stage 

J  is specified by: 

  Cov d ,d d
J JJ VK V KV K t    . 

Different stages may have different factor volatilities and correlations.  The risk-free rate is r, 

and the investment expenditure at each stage K is assumed to be instantaneous. 

 

2.1 One-Stage Model 

The stage 1J   model represents the investment opportunity for developing a project value V  

following the investment cost 1K , given that the research effort may fail totally with probability 

1 . We only provide here the main results since the solution is directly obtainable from 

McDonald and Siegel (1986). An alternative solution developed by Adkins and Paxson (2011) 

and applied to the one-stage model is briefly described in Appendix A, since it naturally extends 

to dimensions greater than two
2
.   

 

The value 1F  of the investment opportunity at stage 1J   depends on the project value and the 

investment cost, so  1 1 1,F F V K . By Ito’s lemma, the risk neutral valuation relationship is: 

 

 

1 1

1

2 2 2
2 2 2 21 1 11 1

1 12 22 2

1 1

1 1
1 1 1

1

0

V VK V K

V K

F F F
V K VK

V K V K

F F
V K r F ,

V K

  
     

   

 
      

 

 (1.2) 

where the X  for  , JX V K J  denote the respective risk neutral drift rate parameters. The 

generic solution to (1.2) is the two-factor power function: 

 1 11

1 1 1 ,F AV K
 

  (1.3) 

                                                 
2
 The additional subscripts indicating the relevant quadrant are explained in Appendices A and B. 
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where 1  and 11  denote the generic unknown parameters for the two factors, project value and 

investment cost, and 1A  denotes a generic unknown coefficient. In this notation, the first 

subscript for 1A , 1  and 11  refers to the specific stage under consideration, while the second 

subscript of 10
 
refers to any feasible successive stage, which only becomes relevant for 1J  . 

By substituting (1.3) in (1.2), the power function satisfies the valuation relation with 

characteristic root function: 

 
 

     
1 1 1 1

1 1 11

2 21 1
1 1 11 11 1 11 1 11 12 2

1 1 0V K VK V K V K

Q ,

r .

 

                     
 (1.4) 

 

Since a justified economic incentive to exercise the stage-one option exists provided that the 

project value is sufficiently high and the investment cost is sufficiently low, and the incentive 

intensifies for project value increases and investment cost decreases, we conjecture that 

1 12 0    and 11 112 0   . Also 1 12 0A A   since the option value is positive. Then (1.3) 

becomes: 

 12 112

1 12 1 .F A V K
 

  (1.5) 

The threshold levels for the project value and the investment cost signaling the optimal exercise 

for the investment option at stage 1J   are denoted by 
1V̂  and 

11K̂ , respectively. The value 

matching relationship describes the conservation equality at optimality that the option value 

 1 1 1 11
ˆ ˆ ˆ,F F V K  exactly compensates the net asset value 1 11

ˆ ˆV K . Then: 

 12 112

12 1 11 1 11
ˆ ˆ ˆ ˆA V K V K
 

  . (1.6) 

The first order condition for optimality is characterized by the two associated smooth pasting 

conditions, one for each factor, Samuelson (1965) and Dixit (1993). These can be expressed as: 

 12 112 1 11
12 1 11

12 102

ˆ ˆ
ˆ ˆ V K

A V K
 

 
   . (1.7) 
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Since the option value is always non-negative, 12 0A  . Also, (1.7) corroborates our conjecture 

that 12 0  and 112 0  . Together, (1.6) and (1.7) demonstrate Euler’s result on homogeneity 

degree-one functions, Sydsæter et al. (2005), so 12 112 1   . Replacing 112  by 121   in (1.4)  

yields: 

        
1 1

21
1 12 12 1 12 12 12 12

1 1 0                  
V K K

Q , r ,  (1.8) 

where 
1 1 1

2 2 2

1
2        

V K V,K V K
. From (1.8), 12 1   is the positive root solution for a 

quadratic equation, which is greater than 1. Further, the threshold levels are related by: 

 12
1 11

12

ˆ ˆ ,
1

V K






 (1.9) 

with   1212
1

12 12 12 1A


 
  .    The markup factor is simply  12

1 11

12

ˆ ˆ/
1

V K






. 

Finally, the option threshold value at the 1J   stage defined by  1 1 1 11
ˆ ˆ ˆF F V ,K  is: 

 1
1

12

V̂
F̂ .


 (1.10) 

 

Applying Ito’s lemma to (1.5): 

 
1 1 11 1 1d d d ,F F FF F t F z    (1.11) 

where 

     
1 1 1 1 1

2 21
12 12 12 122

1 2 1 ,F V K VK V K V K                   

    
1 1 1 1

22 2 2 2

12 12 12 121 2 1 .F V K VK V K               
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Under risk neutrality, the expected return on the option equals the risk-free rate adjusted by the 

probability of failure, so 
1 1F r   , which is borne out by 1Q , (1.8). 

 

2.2 Two-Stage Model 

At the preceding stage, 2J  ,  the firm examines the viability of committing an investment 2K  

to acquire the option to invest 1F  by comparing the value of the compound option 2F  with the 

net benefits 1 2F K . Because of (1.3), 2F  depends on the three factors V , 1K  and 2K , so 

 2 2 1 2, ,F F V K K . By Ito’s lemma, the risk neutral valuation relationship for 2F  is: 

 

 

1 2

1 1 2 2 1 2 1 2

2 1

2 2 2
2 2 2 2 2 22 2 21 1 1

1 22 2 22 2 2

1 2

2 2 2

2 2 2
, 1 , 2 , 1 2

1 2 1 2

2 2 2
2 1 2 2

2 1

0.

V K K

V K V K V K V K K K K K

V K K

F F F
V K K

V K K

F F F
VK VK K K

V K V K K K

F F F
V K K r F

V K K

  
 

  

  
  

     

  
     

  

  

        

   

 (1.12) 

 

We conjecture that the solution to (1.12) is a product power function, with generic form: 

 24 21 22

2 2 1 2 ,F A V K K
  

  (1.13) 

where 2 , 21  and 22  denote the generic unknown parameters for the three factors, project 

value and investment expenditure at stage-one and -two respectively, and 2A  denotes an 

unknown coefficient. Substitution reveals that (1.13) satisfies (1.12), with characteristic root 

equation: 

 

 

     

 

1 2

1 1 2 2 1 2 1 2

1 2

2 2 21 22

2 2 21 1 1
2 2 21 21 22 222 2 2

2 21 2 22 21 22

2 21 22 2

, ,

1 1 1

0.

V K K

VK V K VK V K K K K K

V K K

Q

r

     

  

     

  

        

              

      

 (1.14) 
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Since the stage-two option value increases for positive changes in 2V  but for negative changes in 

12K  and 22K , we conjecture in Appendix B that the relevant hyper-quadrant is labeled IV where 

2 24 0   , 21 214 0    and 22 224 0   . From (1.13), the option valuation function 

becomes: 

 24 214 224

2 24 1 2F A V K K
  

 . (1.15) 

 

We specify that the stage-two threshold levels signaling an optimal exercise are represented by 

2V̂ , 21K̂  and 
22K̂  for V , 1K  and 2K , respectively. The set  2 21 22

ˆ ˆ ˆ, ,V K K  forms the boundary that 

discriminates between the “exercise” decision and the “wait” decision. This boundary is 

determined from establishing the relationship amongst 
2V̂ , 21K̂  and 

22K̂  , or alternatively, from 

identifying the dependence of 
2V̂  with respect to 21K̂  and 

22K̂ . A stage-two option exercise 

occurs for the balance between the stage-two option value 24 214 224

24 2 21 22
ˆ ˆ ˆA V K K
    and the stage-one 

option value 12 11

12 1 11
ˆ ˆA V K
   less the investment cost 

22K̂ incurred in its acquisition. This equilibrium 

amongst the threshold levels is the value matching relation that is expressed as: 

 24 214 224 12 121

24 2 12 22 12 2 12 22
ˆ ˆ ˆ ˆ ˆ ˆ ,A V K K A V K K
    

   (1.16) 

where 12A  and 12  are known from the evaluation for stage-one. The three smooth pasting 

conditions associated with (1.16), one for each of the three factors V , 1K  and 2K , respectively, 

can be expressed as: 

 24 214 224 12 121

24 24 2 12 22 12 12 2 12
ˆ ˆ ˆ ˆ ˆ ,A V K K A V K
      

  (1.17) 

  24 214 224 12 121

214 24 2 12 22 12 12 2 12
ˆ ˆ ˆ ˆ ˆ1 ,A V K K A V K
      

   (1.18) 

 24 214 224

224 24 2 12 22 22
ˆ ˆ ˆ ˆ .A V K K K
      (1.19) 
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Since an option value is non-negative, then 24 0A  . This implies that 24 0  from (1.17), 

214 0  from (1.18), and 224 0  from (1.19), which justifies our conjecture on the signs of the 

power parameters. Moreover, the dependence amongst the parameters can be found from 

combining the smooth pasting conditions and the value matching relationship. First, the 

comparison of (1.17) and (1.19) with (1.16) yields: 

 24
224

12

1 ,





   (1.20) 

which implies that 24 12  . Second, the comparison of (1.19) with (1.20) yields: 

 12
214 24

12

1
.


 




  (1.21) 

Third, a comparison of (1.20) with (1.21) yields: 

 24 214 224 1.      (1.22) 

The pattern amongst the parameters is highly significant. First, it leads to a simplification in 

calculating their solution values. If we specify 24 24 12/ 0    , then by using the substitutions 

24 24 12   ,  214 12 241     and 224 241   , the quadratic function 2Q (1.14) can be 

expressed as: 

 

  

        
 

1 1 2

2

2 12 24 12 24 24

2 21 1
24 24 2 24 12 12 1 122 2

2

, 1 ,1

1 1

0,

V K K K

K

Q

r

    

           

 

 

       

   

 (1.23) 

where 

 
 

   
1 2

1 1 2 2 1 2 1 2

22 2 2 2 2

2 12 12

12 12 12 12

1

2 1 2 2 1

V K K

VK V K VK V K K K K K .

     

            

   

    
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The value of 24  is evaluated as the positive root of 2 0Q  , (1.23), where 12 is the previously 

calculated stage-one solution. The values of 24 , 214  and 224 are then obtained from 24  and  

12 . Subsequently, we show that 24  is greater than 1, so 24 12  . 

 

The second significant feature is the ease in deriving the solution. Although the solution for 24A

and 
2V̂  as a function of 

21K̂  and 
22K̂  can be derived from the value matching relationship and the 

smooth pasting conditions, (1.16) - (1.19), a more convenient way is based on the homogeneity 

degree-one property for 2F , since the result is easily extendable for deriving the stage-three 

solution and beyond. The valuation function 2F  (1.13) can be expressed in the form:  

    
22

2 1 11 21 1

2 22 1 2 2 1 1 2 2 1 1 2, , ,F F F K B F V K K B AV K K
              (1.24) 

where 2

2 2 1B A A


 . In this formulation, the two-stage option value 2F  is a function of two 

stochastic factors: (i) the stage-one option value 1F , and (ii) the stage-two investment cost 2K . 

Moreover, since 2F  is characterized as homogenous degree-one and its form (1.24) exactly 

mirrors the stage-one investment option value 1F , the solution is directly obtainable from the 

results for the one-stage model. If the stage-two thresholds for optimal exercise occur at the 

levels  12 1 2 12
ˆ ˆ ˆF F V ,K  and 

22K̂ , for the stage-one option and the stage-two investment cost, 

respectively, then the stage-two value matching relationship (1.16) can be expressed as: 

 24 241

24 12 22 12 22
ˆ ˆ ˆ ˆ .B F K F K
 

   (1.25) 

Except for the change in variable, (1.25) is identical in form to (1.6), so  
 24 24

1

24 24 241 /B
  


  , 

which implies: 

 
 

 
 

24
24 12

24 12

1 1

24 12

24

24 12

1 1
A


 

 

 

 

   
  

  

, (1.26) 

so the two-stage option value is defined by: 
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  
 

 
   

24
24 12

12 2412 24 24

24 12

1 1

124 12 1

2 2 1 2 2 1 2

24 12

1 1
, ,F V K K V K K


 

   

 

 

 

 

 
  

  
  

. (1.27) 

Also: 

   12 121 24
12 1 2 12 12 2 12 22

24

ˆ ˆ ˆ ˆ ˆ,
1

F F V K A V K K
  




  


, (1.28) 

so: 

 

 

 

12
12

12 12

12
12

12 12

1
1 1

24 1212
2 12 22

12 24

1
1 1

24 1212
12 22

12 24 12

1ˆ ˆ ˆ
1 1

1 ˆ ˆ .
1

V K K

K K




 




 

 

 

 

  





 
  

  

 
  

  

 (1.29) 

For an economically meaningful solution to emerge, then from (1.28) 24  has to exceed one. In 

(1.29), the threshold level for the stage-two project value 
2V̂  is related to the stage-one and stage-

two investment cost levels, 
12K̂  and 

22K̂ , respectively, and this relationship defines two-stage 

compound option and extends the single stage standard result of McDonald and Siegel (1986). 

The two investment cost threshold levels enter the formulation as a weighted geometric average 

with weights dependent on only the stage-one parameter. If the levels are specified to be equal, 

then the stage-two project value level 
2V̂  and the equal investment cost level are linearly related, 

just as for 
1V̂  and 

1K̂  at stage-one. The composite stage-two basic mark-up factor:    

 
  12

1

24 1212

12 24

1

1 1

 

 

 
 

  
 

is composed of two components: the stage-one mark-up factor adjusted by a term reflecting the 

impact of the second stage. Since 12 24, 1   , the adjusting component      12

1

24 12 241 1      

is greater than one provided 12 242 1   , which is always true for 12 24  .   However, now 
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this basic factor is applied to the K powers 

12

12 12

1 1

12 22
ˆ ˆK K



 



. So for consistency with the Stage 1 

markup factor, we denote the Stage 2 markup effective factor, MEF, as simply 2 12 22
ˆ ˆ ˆ/ ( )V K K

. 

Standard real-option theory tells us that the underlying volatility has a profound effect on the 

solution, McDonald and Siegel (1986), Dixit and Pindyck (1994). For a given value of the stage-

one power parameter 12 , a positive change in 2  produces a decrease in the parameter 24 , but 

an increase in  24 24 1/    and in the adjusting component that yields an increase in the stage-

two mark-up factor.  Now, the variance term 2  depends on the parameter 12  as well as the 

volatilities for V , 1K  and 2K , and their covariances. We first consider the consequences if all 

the covariances can be assumed to be zero. High values for 12 , which are caused by low V  

and 
1K , tend to ratchet up the value of  2 , while a value of  12  closer to 1 due to high V  or 

1K , tends to diminish the effect of 
1K  in explaining 2 . The importance of  

1K  in determining 

2  depends on its magnitude relative to V . Further, since the value of 12  depends positively 

on the probability of a catastrophic failure at the 1J   stage, the importance of 
2K  relative to 

V  and 
1K  in explaining 2  diminishes as the failure probability increases. It is through this 

mechanism that the probabilities of catastrophic failures at succeeding stages are translated into 

the investment strategy at stage-two.  

 

We now turn our attention to the effects of the covariance terms on 2 . If 
1

0VK  , 
2

0VK  , or 

1 2
0K K  , then the value of 2  declines while the value of 12  increases relative to the instance 

of zero correlations. This can be explained in the following way. A long investment cost acts as a 

partial hedge for a long project value whenever 
1

0VK   and 
2

0VK  , since a random positive 

(negative) movement in the investment cost is partly compensated by a movement in the same 

direction in the project value. (A long/short position in the investment cost might be established 

through fixed-price/cost-plus construction contracts). This partial hedge reduces the riskiness of 
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the combined position, which is reflected in a lower value of 2 . In contrast, a long investment 

cost and V  position becomes more risky whenever 
1VK  or 

2VK  is negative. If  
1 2

0K K  , then a 

random movement in the 2J   stage investment cost tends to be followed by a movement in the 

opposite direction in the 1J   stage investment cost, and a long 2J   stage investment cost acts 

as a hedge against a short 1J   stage investment cost. A positive movement in the 2J   stage 

investment cost that is followed by a negative movement in the 1J   stage investment cost can 

be interpreted as dynamic learning, since a higher than anticipated preliminary investment cost 

leads to a lower investment cost at a subsequent stage, while a negative movement in the 2J   

stage investment cost that is followed by a positive movement in the 1J   stage investment cost 

can be interpreted as compensatory. Under-investment is corrected by over-investment at a 

subsequent stage. In contrast, when 
1 2

0K K  , the volatility 2  is inflated. This can arise from a 

positive movement in the 2J   stage investment cost that is followed by a positive movement in 

the 1J   stage investment cost, which suggests that errors at the earlier 2J   stage are 

compounded at the later 1J   stage. However, a positive value for 
1 2K K  can just as well be due 

to a negative movement in the 2J   stage investment cost followed by a negative movement in 

the 1J   stage investment cost. This may also represent bad news if low investment levels 

presage low project values. Clearly, the sensitivity of the volatility 2  depends on the 

magnitudes of the contributory quantities as well as their interactions. 

 

By combining (1.23) with (1.8) in order to eliminate 12 , the 2Q  function can be expressed as:  

      
2 2

21
2 24 24 2 24 1 22

1 0.K KQ r r                 (1.30) 

The parameter 24 , which is required to be greater than one, is evaluated as the positive root of 

the quadratic function 2Q  (1.30). Given that 2

2 0 , since it is a variance expression, then 24 1  

provided that the value of  2Q  evaluated at 24 1  is negative, Dixit and Pindyck (1994). It can 

be observed from (1.30) that for 2 0Q  at 24 1  , then 2 1  , see also Figure 2. 

---- Figure 2 about here --- 
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The parameter   measures the conditional probability of a catastrophic failure at a particular 

stage. The existence of a solution to the sequential investment model represented by an 

American perpetual compound option depends crucially on the probabilities at the two stages 

following a distinct pattern. Although it plays an important role in deciding an acceptable 

investment level at each stage, the stochastic nature of the investment expenditures is not critical. 

The condition 2 1   for obtaining a meaningful solution continues to hold even if both 
1K  and 

2K  are zero, so our findings also apply for a deterministic investment cost. The only 

requirement for a meaningful solution to exist is that the conditional probability of a failure at the 

2J   stage has to exceed that for the 1J   stage. This condition can be seen simply as a 

stipulation imposed by the model structure. Since  2 2 11    , the failure probability at the 

2J   stage is always greater than that for the 1J   stage. Alternatively, this condition could be 

interpreted as the presence of dynamic learning. Because of the reduction in the failure 

probabilities, the effect of making an investment at the 2J   stage is to increase the affordable 

amount of investment expenditure made at the subsequent stage. Ceteris paribus, project viability 

is able to support a higher level of investment expenditure at the next stage, and this implies 

some element of learning. 

 

By applying Ito’s lemma to (1.24),  then the return on the option 2F  is: 

 
2 2 2

2

2

d
d dF F F

F
t z

F
   , (1.31) 

where: 

     
2 1 2 1 2 1 2 1 2

2 21
24 24 24 242

1 2 1F F K F K F K F K                  , 

  
1 2 1 2 2 2 1 2 1 212 121F K F K VK V K K K K K             , 

    
2 1 2 1 2 1 2

22 2 2 2

24 24 24 241 2 1F F K F K F K              . 
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Under risk neutrality, 
2 2F r   , which is borne out by the 2Q  function. 

 

2.3 Three-Stage Model 

Since the extension of the sequential investment model to the 3J   stage is achieved by 

replication, we only provide the crucial results with only a basic explanation. Then, the 

comparison of the results for each of the three stages facilitates the formulation of a more general 

result for a J N  stage project. 

 

The value of the option to invest at the 3J   stage 3F  depends on the project value V , and the 

investment costs at the 1J  , 2J   and 3J   stages, 1K , 2K  and 3K , respectively, so 

 3 3 1 2 3F F V ,K ,K ,K . Using Ito’s lemma, it can be shown that the risk neutral valuation 

relationship for 3F  is a four-dimensional partial differential equation, whose solution is the 

product power function: 

 3 13 23 33

3 3 1 2 3F A V K K K
   

 , (1.32) 

with characteristic root equation: 

 

 

       
1 2 3

1 1 2 2 3 3

1 2 1 2 1 3 1 3 2 3 2 3

1 2 3

3 3 13 23 33

2 2 2 21 1 1 1
3 3 13 13 23 23 33 332 2 2 2

3 13 3 23 3 33

13 23 13 33 23 33

3 13 23 33

1 1 1 1V K K K

VK V K VK V K VK V K

K K K K K K K K K K K K

V K K K

Q , , ,

r

   

           

              

              

       

       

  

  

      3 0. 

 (1.33) 

The function 3Q  specifies a hyper-ellipse that has a presence in all possible quadrants. The 

relevant quadrant is where 3 0  , 13 0  , 23 0   and 33 0  , since we expect the stage-three 

investment option to become more valuable and its value to rise because of a project value 
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increase but an investment cost decrease.  For convenience, we suppress the subscript 

designating the relevant quadrant.  

 

Alternatively, the valuation function 3F  can be expressed as: 

    
3

31

3 33 2 3 3 2 1 2 3, , , ,F F F K B F V K K K
 

      (1.34) 

where 3 3 2 3 2 1 ,         13 3 12 3 2 11 ,         23 3 22 3 21 ,       and  33 31 ,    

with 1 1.   The coefficient 3B  is determined as:  

 
  3

3

3

3

3 3 2

3 3

11

1
B A A









 


 


 

At the stage-three investment decision, the thresholds signaling an optimal exercise for the stage-

three option value 3F , the stage-two option value 2F  and the stage-three investment cost 3K  are 

denoted by 3 13 23 33

3 3 3 13 23 33
ˆ ˆ ˆ ˆ ˆF A V K K K ,

   
   23 2 3 13 23

ˆ ˆ ˆ ˆF F V ,K ,K  and 
33K̂ , respectively. Value 

conservation at the stage-three investment holds when the stage-three option value 
3F̂  exactly 

compensates the stage-two option value 
23F̂  less the investment cost 

33K̂ . The value matching 

relationship becomes: 

 3 31

3 3 23 33 23 33
ˆ ˆ ˆ ˆF B F K F K .

 
    (1.35) 

The optimal stage-three investment solution is obtained from the two smooth pasting conditions 

associated with the value matching relationship (1.35) and can be expressed as: 

 3
23 33

3 1
ˆ ˆF K







. (1.36) 

Since from (1.27): 
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  
 

 
   

2
2 1

1 21 2 24

2 1

1 1

12 1 1

23 2 3 13 23 3 13 23

2 1

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆF F V ,K ,K V K K ,


 

   

 

 

 

 

 
  

   
  

 (1.37) 

then from (1.36): 

 
 

   
   

1 2
2

2 1

1 1 2 1 2 1 2

12

1

1 1 13 2 1
3 13 23 3311

3 12
1 11

ˆ ˆ ˆ ˆV K K K

 
 

      



  

 

 



   
   

      

 (1.38) 

Clearly, an economically meaningful solution is only obtainable provided 3  exceeds 1, which 

implies that 3 2 .   If the investment cost threshold levels for the three stages are all equal, 

then the project value threshold is a linear relationship of this equal investment cost threshold. 

The stage-three mark-up factor in (1.38) can be expressed as: 

 
 

 

1
1 2

1

1

1 1

32 1
21

2 31

1
1 11

  




 


 


    
   

     

 

where the first term is the stage-two mark-up factor and the second term      1 21

2 3 31 1
 

   

denotes the adjusting component. The stage-three mark-up factor exceeds the stage-two mark-up 

factor provided    2 3 31 1 1      or 2 32 1   , which is true for 2 3  .  For consistency 

with the Stage 1 markup factor, we denote the Stage 3 markup effective factor, MEF, as simply 

3 13 23 33
ˆ ˆ ˆ ˆ/ ( )V K K K 

. 

In (1.38), the solution to the boundary discriminating between investing and not investing at 

stage-three requires evaluating only 3 , since 2  and 1  are presumed to have been calculated at 

each of the subsequent two stages. By eliminating 13 , 23  and 33  from (1.33) yields after some 

simplification: 
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      

 

        

 
1 2 3

3

3 3 2 1 3 2 1 3 2 3

21
3 3 32

2 21 1
3 2 2 2 2 1 1 1 1 1 22 2

3

1 1 1

1

1 1 1 1

0

V K K K

K

Q , , ,

r ,

        

  

              

 

  

 

          
 

   

 

where: 

 

   

   

       

1 2 3

1 1 2 2 3 3

1 2 1 2 1 3 1 3 2 3 2 3

2 22 2 2 2 2 2 2 21 1 1 1 1
3 2 1 2 1 22 2 2 2 2

2

1 1 2 1 2 2 3 23 1 2

1 2 2 1 2 2

1 1

1 1

1 1 1 1

V K K K

VK V K VK V K VK V K

K K K K K K K K K K K K .

         

                

              

     

    

      

 

Then after further simplification, we obtain: 

      
3 3

21
3 3 3 3 3 2 32

1 0K KQ r r .                 (1.39) 

The value of 3  is the positive root solution to (1.39). By applying a similar argument as before, 

its value exceeds one provided that 3 2  . Further, it depends not only on the stage-three 

catastrophic failure probability 3  but also the probability 2  at the next stage, as well as on the 

composite variance term 2

3 . This variance term is defined as the sum of variance and 

covariances amongst the factors, the project value and the stage-three, -two and -one investment 

costs, weighted by combinations of 3 , 2  and 1 . Because of this, the stage-three investment 

commitment is decided by the properties of both the current and subsequent stages. 

 

2.4 N-Stage Model 

The solution to the 1J N   stage of the sequential investment model is derived from the 

results for the 2J   and 3J   stages by induction, as shown in Appendix C.  
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3 Numerical Illustrations 

We have presented a general analytical framework for evaluating a sequential investment project 

that can be characterized by J N  successive investment stages. This framework incorporates 

three sources of uncertainty: (i) uncertainty regarding the asset value on completion of the 

project, (ii) uncertainty regarding the cost of the investment at each of the stages, and (iii) 

uncertainty, at each stage, regarding the possibility of a catastrophic failure that causes the 

“sudden death” of the project, by imposing the stage option value to collapse to zero. Further, the 

framework allows for the first two types of uncertainty to co-vary. Analysis of the general 

framework also yields closed-form solutions for the optimal investment strategy as the maximal 

amount of investment allowable at each stage according to the project’s prevailing value, or 

alternatively the minimal prevailing value that would justify proceeding with the stage 

investment, if the investment cost is at the assumed base value.  

We establish that for an investment to be economically justified at each stage, the prevailing 

project value has to exceed the anticipated investment cost. Also we assumed that the probability 

of a catastrophic failure at each stage declines successively as the stage approaches completion.  

 

To obtain additional insights into the behaviour of the analytical framework, we conduct some 

numerical evaluations on an illustration involving a 4-stage sequential investment project using 

the base case information exhibited in Table 1. The set of probabilities of catastrophic failure at 

the stages adheres to the condition 1 2 3 4      . Initially, the variances for the investment 

costs at the four stages have been set to be equal and the covariance terms between the five 

factors to equal zero.  

---- Table 1 about here ---- 

First, we consider the results for the base case information, and then examine the impact of key 

sensitivities. 

Table 2 shows the results calculated from the values exhibited in Table 1, using the 

backwardation principle so the 1J   stage is enumerated first, then the 2J   stage, and so on. 
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The volatilities at each of the 4 stages, 1 , 2 , 3  and 4 , are evaluated from (1.49), the 

parameters J  for 1J   from (1.8) and for 2 3 4J , ,  from (1.49), and the mark-up factors for 

each of the 4 stages from (1.47). Table 2 illustrates that the volatilities at each stage, J   for 

1,2,3,4J  , increase in magnitude as the stage in question becomes more distant from 

completion. This finding is in line with expectations, since the volatility depends not only on the 

volatilities for the project value and the current stage investment cost but also on the cascading 

effect of the investment cost volatilities and parameter values for all possible subsequent stages. 

As expected, the parameter values J  for 1 2 3 4J , , ,  are all greater than one. This feature arises 

owing to the pattern of failure probabilities specified in Table 1. Even though 4 3 2 1      , 

as required by the model, this does not imply that the J  necessarily follow a declining pattern. 

The values for the J  depend not only on the volatility for the stage in question but also on the 

failure probability J . These two effects work in opposing directions. While an increase in 

volatility for the J  stage yields an increase in J , an increase in the failure probability J  leads 

a decline in J . Although the former is more dominant according (Dixit and Pindyck 1994), it is 

conceivable that 1J J   .  Note that with these parameter values, V̂  increases with the distance 

of the stage from completion, and with the stage volatility, but the excess of the V̂  over the 

assumed investment cost is variable over each stage.  The real option value (ROV), which is the 

option to continue the next stages if ˆV V , and otherwise V  less the remaining investment costs 

(or zero) also varies by stage.  In all stages, the ROV is the option value, unless  V=100 > V̂ , 

when the ROV is the intrinsic value.  The ROV increases as V increases for all stages unless V> 

V̂ , at which point the investment should be made.  So in the base case, in stages 1 and 2 and in 

all stages when V>127.2, ROV is the intrinsic value, and otherwise the (unexercised) option 

value. But there are some apparent anomalies such as stage 3, when the ROV is slightly less than 

the intrinsic value, showing that these are not ordinary options.  

---- Table 2 about here ---- 

The middle column in the first panel is labeled the mark-up effective factor (MEF). This reveals 

the MEFs to be in excess of one, as required. The MEF is a critical element of the investment 
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strategy, since it stipulates for each stage that for an investment at that stage to be economically 

justified, the ratio of the anticipated project value to investment cost has to be at least equal to 

the MEF.  According to our results, the MEFs decrease in magnitude as the stage becomes more 

distant from completion, but the project value that justifies investment less the assumed 

remaining investment costs declines, given these parameter values.  

 

3.1 Probability of Failure 

We examine how the probability of a catastrophic failure influences the solution initially by 

increasing its value, J  for 1 2 3 4J , , , by a constant amount from 5% to 30% (0% is the base 

case). The results for ROV do not necessarily conform with expectations. The increase in 

probability at each stage has the consequence of raising the volatility, of lowering the parameter 

value J  and lowering the MEF, but only for stages 2, 3 and 4. For the 1J   stage, since an 

increase in 1  effectively raises the discount rate but leaves the volatility 1  unaffected, there is 

a consequential rise in the parameter value J  and fall in the MEF reflecting a greater urgency in 

exercising the option, Dixit and Pindyck (1994). However, this feature is not replicated for stages 

2 3 4J , ,  since the effect of the increased discount rate due to the failure probability increase is 

dominated by the cascading impact of the failure probability at the stage 1J   on the volatility 

J  at stages 2 3 4J , , . A change in the failure probability J  for J I  has both a direct effect 

on the solution at the stage J I  as well as an indirect effect on the solution at the stages J I  

due to the cascading impact of I  on the volatilities.  

For every stage, an increase in the probability of failure results in a decline of the stage V which 

would justify an investment at that stage. The ROV does change along the stages or with 

increases in the stage failure probabilities.  Later stage 1 & 2 ROV are reduced by failure 

probability increases, but earlier 3 & 4 stage ROVs are initially increased by modest increases in 

failure probabilities. But the threshold V̂  decreases for each stage as the probability of failure 

increases, a surprising result. 
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---- Figure 3 about here ---- 

3.2 Volatility 

For the single-stage investment opportunity, an increase in project value volatility is normally 

accompanied with a fall in the parameter value, a rise in the MEF, a rise in V̂  and a rise in the 

ROV (positive “vega”). We obtain this finding for the multi-stage sequential investment 

opportunity for some stages and for some ranges of volatility. Figure 4 illustrates the effect of 

changing the project value volatility along a range of 0% to 60%. For all stages, an increase in 

the value volatility results in an increase of the threshold V that justifies an investment at that 

stage. For the early stages, 3 4J , , while there is a fall in the parameter value and a rise in the 

MEF, there is, in contrast, a decrease in the ROV for certain volatility ranges.  This is an instance 

of a negative “vega” for these parameter values.  So high project volatility and a high probability 

of failure do not always increase option value in sequential investments.  However, the V 

thresholds for all stages increase with increases of volatility, which is consistent with traditional 

real option theory.   

A somewhat similar pattern of effects arising from the increase in project value volatility is 

shown for an increase in the investment cost volatility,. Figure 5 illustrates the impact of 

increasing all investment cost volatilities along a range of 0% to 30%. There are both positive 

and negative vega effects, depending on the stages and the level of volatility. However, the V 

thresholds for all stages increase with increases of investment cost volatility (with a base 

correlation of zero, showing that the effect on the threshold V is not dramatic), which is 

consistent with traditional real option theory. 

 ---- Figure 4 and Figure 5 about here ---- 

3.3 Correlation 

Changes in the correlation coefficients impact on the solution through the relevant stage 

volatility, J  for 1 2 3 4J , , , , which in turn influences the parameter value. Further, since the 

volatility at the preceding stage 1J   depends on the volatility at the current stage J , changes in 
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the correlation coefficient cascade through the volatilities of the preceding stages. Theoretically, 

we argue that owing to the hedging effect, a positive change in the correlation between the 

project value and the investment cost depresses the stage volatility, which in turn raises the 

parameter value, while a negative change in the correlation between value and investment cost 

increases the stage volatility. For a consistent terminology, when correlation increases and 

overall volatility decreases, there is a negative chi (and negative vega) if ROV increases, and 

vice versa. There are numerous examples of both positive and negative vegas, and positive and 

negative chi’s using this model.   

 ---- Figure 6 about here ---- 

By setting 
1 2 3 4VK VK VK VK      , Figure 6 illustrates the effects of a correlation change on the 

solution, using the base case value and cost volatilities. This reveals that the correlation decrease 

is accompanied by a rise in the volatility at all of the stages, 1 2 3 4J , , , , which leads to a fall in 

the parameter value and a rise in the effective mark-up factor. For the stages 3 4J , , although 

the volatility is observed to rise, there is a decrease in the ROV, indicating a positive chi (and 

positive vega). For stages 1 and 2, a rise in the volatility results in no change in the ROV 

(reflecting just the intrinsic value).   

The effect of correlation changes on ROV is similar to the mixed and odd V and K vegas.  

Although correlation increases results in overall volatility decreases, sometimes the ROV 

increases and sometimes decreases, depending on the stage and on the level of correlation.   For 

all stages, a decrease in correlation results in increased V thresholds.  

Many of these results are changed for way out-of-the-money real sequential options, where 

ˆV V , so the real option value is always equal to or above the intrinsic value (typically zero).   

There are many other alternative combinations of changes in value volatility, investment cost 

volatility at each stage, and probability of failure at each stage that could be simulated, to 

illustrate the power and surprises of viewing sequential investment opportunities (and eventually 

investment requirements over stages) using this model. 
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4 Conclusion 

We provide an analytical solution for a multi-factor, multi-phase sequential investment process, 

where there is the real option at any stage of continuing, or abandoning the project development.  

This model is particularly appropriate for real sequential R&D investment opportunities, such as 

geological exploration in natural resources that may be followed by development and then 

production, or drug development processes, where after drug discovery there are subsequent tests 

and trials required before production and marketing is feasible or allowed.  Also, in these cases 

often there is a decreasing probability of project failure, as more information appears, and the 

efficacy and robustness of the original discovery are examined.   

Other authors have provided unsatisfactory solutions to similar problems, or relied on bivariate 

or multivariate distribution functions, or required complex numerical solutions.  

An advantage of our approach is that the effect of changing input parameter values can clearly be 

seen in terms of resulting overall project process volatility, the V thresholds which justify 

continuing with the investment stages, and on the ROV at each stage.  Some of the results are 

intuitive.  For instance, an increase in the failure probability by a constant amount for all stages , 

and increase in either value or investment cost volatility, or decrease in the correlation, results in 

raising the V threshold consistently although not necessarily proportionally.  But these saem 

changes have sometimes intuitive and sometimes mixed and odd results on the ROV at each 

stage, and at different failure probability, volatility and correlation levels.  

So in general, the effect of changes in input parameter values on the real option value and on the 

investment process continuance is sometimes surprising, and dependent on the specific input 

values and the number and sequence of stages, seen only in the solutions for each case.  Indeed, 

the degree of real option moneyness matters in the magnitude (and even sign) of the sensitivity 

of real sequential investment options to changes in some critical parameter values.  

 

Our model is not appropriate where the probability of failure increases with completion of each 

investment stage.  Also we have assumed instantaneous investment completion,  constant project 
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value and investment cost drifts, volatilities and correlation, and no competition. Relaxing these 

assumptions are challenging issues for further research. 
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Appendix A: One-Stage Model 

The function 1Q  (1.4) specifies an ellipse defined over a two-dimensional space spanned by two 

unknown parameters, 1  and 10 . Since for a zero value of one parameter, the other parameter 

takes on a positive and a negative value,  1Q  has a presence in all 4 quadrants, which we label I – 

IV. The specification for these four quadrants is: 

I:  11 101,   11 1010, 0    

II:  12 102,   12 1020, 0    

III:  13 103,   13 1030, 0    

IV:  14 104,   14 1040, 0    

This suggests that (1.3) takes the expanded form: 

 13 11311 111 12 112 14 114

1 11 1 12 1 13 1 14 1F A V K A V K A V K A V K
      

     (1.40) 

Now, (1.40) is simplified by invoking the limiting boundary conditions. A justified economic 

incentive to exercise the option 1F   exists provided that the project value is sufficiently high and 

the investment cost is sufficiently low, and this incentive intensifies for project value increases 

and investment cost decreases. This suggests that the relevant quadrant is II, 12 1120, 0    

with 12 0A  . In contrast, no justified economic incentive exists if the project value is 

significantly low or the investment cost is significantly high. This suggests that quadrants I, III 

and IV should be ignored, that 11 13 14 0A A A   , and the corresponding option value is zero. 

This implies that (1.40) becomes: 

 10212

1 12 1 .F A V K


  (1.41) 

 

 



 

31 

 

Appendix B: Two-stage Model 

The function 2Q  (1.14) specifies a hyper-ellipse defined over a three dimensional space spanned 

by the three unknown parameters, 2 , 21  and 22 . Since any one parameter has both a positive 

and a negative root for zero values of the remaining two parameters, the hyper-ellipse has a 

presence in all 8 quadrants. Labeling these quadrants as I – VIII, where: 

I  21 211 221, ,    
21 211 221

0 0 0     , ,  

II  22 212 222, ,    
22 212 222

0 0 0     , ,  

III  23 213 223, ,    
23 213 223

0 0 0     , ,  

IV  24 214 224, ,    
24 214 224

0 0 0     , ,  

V  25 215 225, ,    
25 215 225

0 0 0     , ,  

VI  26 216 226, ,    
26 216 226

0 0 0     , ,  

VII  27 217 227, ,    
27 217 227

0 0 0     , ,  

VIII  28 218 228, ,    
28 218 228

0 0 0     , ,  

The expanded version of the valuation function (1.13) then becomes: 

 2 21 22

8

2 2 1 2

1

.M M M

M

M

F A V K K



    (1.42) 

The form of (1.42) is simplified by invoking the limiting boundary conditions. Applying a 

similar argument as before reveals the relevant quadrant to be IV. Exercising the option 2F  is 

economically justified only if the project value V  is sufficiently high and the investment 

expenditures, 1K  and 2K , are sufficiently low, while the resulting option value 2F  only becomes 

significantly high provided that 2 0  , 21 0   and 22 0  . In contrast, there is no economic 
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justification for exercising the option 2F  whenever the project value is sufficiently low, or either 

of the two investment expenditures, 1K  and 2K , are sufficiently high. This suggests that the 

quadrants other than IV are not relevant, and that their coefficients, 21A , 22A , 23A , 25A , 26A , 

27A  and 28A , are all set to equal zero. Consequently, (1.42) simplifies to: 

 24 214 224

2 24 1 2 .F A V K K
    (1.43) 
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Appendix C: N-Stage Model  

The value of the option to invest at the J N  stage, denoted by  1N N NF F V ,K , ,K , is 

described by a 1N   dimensional partial differential equation, whose solution takes the form of a 

recursive product power function: 

 1 2 1

1 2 1
N N N NN N N

N N N N N NF A V K K K B F K
     

  , (1.44) 

where the power parameters for  NF   are related to the J  according to: 
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Also, we have 
1
N

N N NB A A


 . The stage- N  value matching relationship can now defined as: 

 
1

1 1
N N

N N ,N NN N ,N NN
ˆ ˆ ˆ ˆB F K F K
 

    (1.45) 

where 1
ˆ ˆ ˆ, , ,N N NNV K K  denote the respective optimal threshold levels with 

 
 

1 1 1 2 1 1 1

1 1 1 1

1 1 2 1
N N N N N

N ,N N N N N N

N N N N N N

ˆ ˆ ˆ ˆF F V ,K , ,K

ˆ ˆ ˆ ˆA V K K K .
       

  

 




 

The stage- N  value matching relationship (1.45) is expressed in the form of a two factor 

investment opportunity model, the value gained after exercise 
1N ,NF 

 and the investment cost 

NNK , so the thresholds  can be determined from standard theoretical results. It follows that: 

 1 1 1 2 1 1 1

1 1 1 2 1
1

N N N N N N
N ,N N N N N N N NN

N

ˆ ˆ ˆ ˆ ˆ ˆF A V K K K K
    


    

   


 (1.46) 

and 
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0

1 2 1

1 2 1

1 1

N

N N N N NNN
N N N N N NN

N N

ˆ ˆ ˆ ˆ ˆV K K K K
A


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






 
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 (1.47) 

where 
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The parameter N  is evaluated from the characteristic root equation, which can be expressed as: 

        21
12

1 0
N NN N N N N N N K N KQ r r .                  (1.48) 

The variance term 2

N  is given by: 

 2 Tw ΩwN   (1.49) 

where Ω  is the 1N   dimensional square variance-covariance matrix with its first diagonal 

element being 2

V , the second 
1

2

K , and so on until 2

NK . The off-diagonal elements denote the 

corresponding covariances. The column vector w  is given by: 
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The full expression for 2 Tw ΩwN   is: 
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Because of the homogeneity degree-one property, we have Tw 0i  where i  is the unit vector. 

Note that for 1N  ,  Tw 1 1 , . 

 

Having evaluated N , we can solve for: 
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 

1
1

N

N

N

N

N

B












 , (1.50) 

and then NA  is determined from: 

 
1

N

N N NA B A


 . (1.51) 

The 1 1NA A  and 1 1NB B  are obtainable by applying (1.50) and (1.51) recursively, starting at

1J   and ending at 1J N  .  

 

The solution to the stage-N investment decision is obtained through a process of backwardation, 

starting from the stage-one decision. This backwardation process yields consecutively the values 

of 1 2 1N, , ,    , 1 2 1NB ,B , ,B   and 1 2 1NA ,A , ,A  , which are required for evaluating N , NB  

and NA . From these values, we can then determine the discriminatory boundary linking the 

project value threshold ˆ
NV  with the investment cost thresholds 1 2

ˆ ˆ ˆ, ,N N NNK K K . Further, for a 

meaningful solution to the stage-N investment decision to be obtained, the 1 2 1N N, , , ,     have 

to individually exceed 1, which demands because of (1.49) that 1 2 1N N       .  
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Figure 1 

Sequential Investment Process 
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Figure 2 

The 2Q  Function for Investment Stage 2 
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Table 1 

Base Case Information 

 

Project value drift rate 
V  0% 

Project value volatility 
V  25% 

Investment cost drift rate 
1 2 3 4K K K K       0% 

Investment cost volatility 
1 2 3 4K K K K       5% 

Stage 1 failure probability 
1  0% 

Stage 2 failure probability 
2  10% 

Stage 3 failure probability 
3  20% 

Stage 4 failure probability 
4  40% 

Risk-free probability r  6% 

 

All the correlations between the project value and the investment costs at each stage are set to 

equal zero, so the correlation matrix is specified by: 

 V  
1K  2K  3K  4K  

V  100%     

1K  0% 100%    

2K  0% 0% 100%   

3K  0% 0% 0% 100%  

4K  0% 0% 0% 0% 100% 
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Table 2 

Base Case Results 

V=100, K1=K2=K3=K4=25 

 

   

  

 

 

  

Figure 3 

The Effect of Increasing the Failure Probability by a Constant Amount of 5% 

      

 

 

 

 

 

STAGE VOLATILITY  MEF V^ V^-SKN ROV

1 0.2550 1.9478 2.0551 51.3766 26.3766 75.0000

2 0.4918 1.4294 1.8534 92.6715 42.6715 50.0000

3 0.7015 1.2176 1.6929 126.9680 51.9680 51.1388

4 0.8535 1.2760 1.2720 127.1951 27.1951 32.0015
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Figure 4 

The Effect of Changing the Project Value Volatility 

    

 

   

    
Figure 5 

The Effect of Increasing all Investment Cost Volatilities to 10% 
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Figure 6 

The Effect of Changing the Correlation between Value and Cost at All Stages 
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