

CAPITAL BUDGETING RISK ANALYSIS

João Carvalho das Neves

Professor Corporate and Real Estate Finance ISEG Universidade de Lisboa jcneves@iseg.ulisboa.pt

DECISIONS UNDER RISK AND UNCERTAINTY

RISK

* Unknown outcome in the future which can be attributed to the probability of the event

UNCERTAINTY

* Unknown outcome in the future which can not be attributed to the probability of event

SOURCES OF RISK AND UNCERTAINTY

Development of demand, prices and costs

No. of similar investments

Bias of individuals towards pessimism or optimism, or by factors which should not be considered

Changing economic environment that invalidates the past experience

Misinterpretation of data

Incorrect analysis

Dependence on management skills

Inflexibility of the investment

Asset obsolescence

© J.C. NEVES, ISEG, 2018

METHODS FOR ANALYSIS OF RISK AND UNCERTAINTY

INTUITIVE APPROACH

Qualitative/Subjective

Payback period adjusted to risk

Discount rate adjusted to risk

Cash flow adjusted to risk

ANALYTICAL APPROACH

Probabilistic distribution

Decision trees

NPV break even-point

Sensitivity analysis

Scenario analysis

Monte Carlo simulation

Decision theory

SENSITIVITY ANALYSIS

OTOBAI COMPANY, OSAKA, JAPAN (BREALEY ET AL., 2008, P. 271-283)

1. Assumptions (inputs, no formulas)

2. Cash flow model (no data, formulas only)

Investment	¥15 000
Life span (years)	10
Scooter market size	1 000 000
Market share	10%
Price	¥375 000
Variable unit cost	¥300 000
Fixed expenses	¥3 000
Income tax rate	50%

3. Output

(no data, formulas only)

NPV	
Cost of capital	10%
PV	¥18 434
NPV	¥3 434

		millions of yen
	Year 0	Years 1-10
Investment	¥15 000	
Revenue		¥37 500
Variable costs		¥30 000
Contribution margin		¥7 500
Fixed expenses		¥3 000
Depreciation		¥1 500
Profit before taxes		¥3 000
Income tax		¥1 500
NOPAT		¥1 500
Operating cash flow		¥3 000

© J.C. NEVES, ISEG, 2018

OTOBAI COMPANY - SENSITIVITY ANALYSIS

	Pessimistic	Expected	Optimistic	
Variable		NPV		
Market size	900 000	1 000 000	1 100 000	
	¥1 129	¥3 434	¥5 738	
		NPV		
Market share	4%	10%	16%	
	-¥10 392	¥3 434	¥17 259	
		NPV		
Unit price (yen)	¥350 000	¥375 000	¥380 000	
	-¥4 247	¥3 434	¥4 970	
Unit variable cost		NPV		
	¥360 000	¥300 000	¥275 000	
	-¥15 000	¥3 434	¥11 114	
		NPV		
Fixed cost	¥4 000	¥3 000	¥2 000	
	© J.C. NEVE ¥361 1	¥3 434	¥6 506	

3

SENSITIVITY ANALYSIS

See Data Table Analysis in EXCEL

- One way
- Two ways

NPV		Market share			
INPV		8%	10%	12%	14%
Unit price	¥350 000	-¥7 319	-¥4 247	-¥1 175	¥1 898
	¥357 500	-¥5 476	-¥1 943	¥1 590	¥5 123
	¥365 000	-¥3 633	¥361	¥4 355	¥8 349
	¥372 500	-¥1 789	¥2 666	¥7 120	¥11 575
	¥380 000	¥54	¥4 970	¥9 885	¥14 801

© J.C. NEVES, ISEG, 2018

LOOK FOR UNIDENTIFIED VARIABLES IN THE MODEL

- Patent problems to be resolved yet?
- Is there enough power service stations to recharge the scooter batteries?
 - Does the company need to do additional investments in power stations?
 - -Does this have a potential impact lowering the assumed demand?

The greatest risks often lie in the unknown unknowns ("unk-unks")

THE VALUE OF ADDITIONAL INFORMATION

- You can check whether you can resolve some of the uncertainty previously identified, before the company spends 15 billions of yens.
- What if the production is forecasting an extra 20.000 yen per unit because the people from production are worried about the risk on the use of a specific machine?

 $100.000 \ units \times \$20.000 / unit \times (1 - 0.5)$

Impact in NPV =
$$\sum_{i=1}^{10} \frac{10}{(1+0.1)^{i}} = \frac{10}{4} = \frac{1$$

- This would destroy the value of the scooter project: $+ \pm 3,43b \pm 6,14b = \pm 2,71b$
- Is that possible to do something to minimize this risk? For example
- What if you know that the chance of this risk to occur is 1 in 10 and you need to invest ¥10 million to test the machine?

$$- \frac{1}{4} \times 10M + 0.1 \times \frac{1}{4} \times 6.14b = + \frac{1}{4} \times 604M$$

• The value of additional information about market size is small as the project is acceptable even under pessimistic assumptions

© J.C. NEVES, ISEG, 2018

LIMITS TO SENSITIVITY ANALYSIS

Advantages

- Forces managers to identify the underlying risk drivers
- Indicates where additional information is most useful
- Helps to expose confuse or inappropriate forecasts

Limitations

- It always give some ambiguous results. What does optimistic and pessimistic means?
- the underlying input variables are likely to be interrelated. Example: market share penetration and unit price, or unit price and unit cost
- as a consequence you cannot push oneat-a-time sensitivity analysis too far

SCENARIO ANALYSIS

If the input variables are interrelated it may helt to consider some alternative plausible scenarios, such as rise or decline in oil prices, improve versus deterioration of purchasing power, etc.

It allows to look at different but consistent combinations of variables

© J.C. NEVES, ISEG, 2018

SCENARIO ANALYSIS

Scenarios can be based in most varied factors such as:

- Macro-economics (inflation, GDP growth, unemployment, etc.)
- Political (change of government, no change in government policy, etc.)
- Industry based (level of competition, innovation, etc.)
- ^a Company (growth, sales gross margin, restructuring costs and savings, etc.)

See Tools/Scenarios in EXCEL

SCENARIO ANALYSIS — OTOBAI IN EXCEL

Scenario Summary					
	Current Values:	Base Case	Optimistic	Pessimist	
Changing Cells:					
Investment	¥15 000	¥15 000	¥12 000	¥17 000	
Life_Span	10	10	10	10	
Market_Size	1 000 000	1 000 000	1 100 000	900 000	
Market_Share	10,00%	10,00%	12,00%	8,00%	
Price	¥375 000	¥375 000	¥385 000	¥360 000	
Variable_Unit_Cost	¥300 000	¥300 000	¥285 000	¥320 000	
Fixed_Expenses	¥3 000	¥3 000	¥2 800	¥3 200	
Income_Taxes	50%	50%	50%	50%	
Result Cells:					
Net_Present_Value	¥3 434	¥3 434	¥23 638	-¥12 760	

Notes: Current Values column represents values of changing cells at time Scenario Summary Report was created. Changing cells for each scenario are highlighted in gray.

© J.C. NEVES, ISEG, 2018

DEVELOPMENT OF SCENARIOS

- 1) Selection of critical variables
- 2) Selection of values for the variables in each scenario
- 3) Calculation of PV for each scenario
- 4) Analysis of value in each scenario
- 5) Decide on the asset valuation (or equity valuation) given the value of each scenario. You may attribute probabilities to each scenario and obtain a weighted valuation

© J.C. NEVES, ISEG, 2018

SCENARIO ANALYSIS LIMITATIONS

Scenarios are discrete - Optimistic, Most probable, Pessimistic

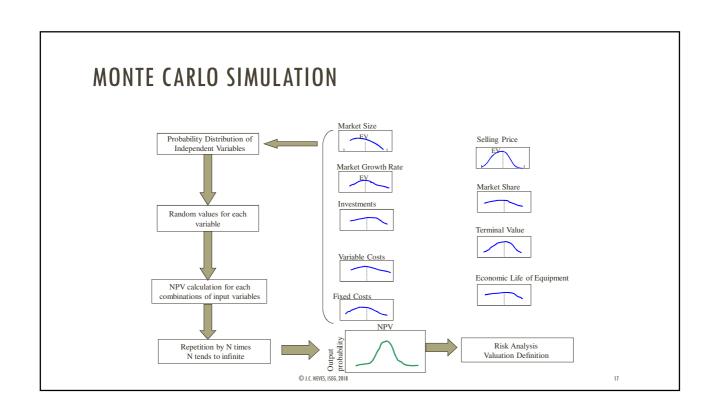
Complexity of analysis grows very quickly with the increase of critical variables (e.g.: 15 variables x 3 scenarios => 45 Expected values)

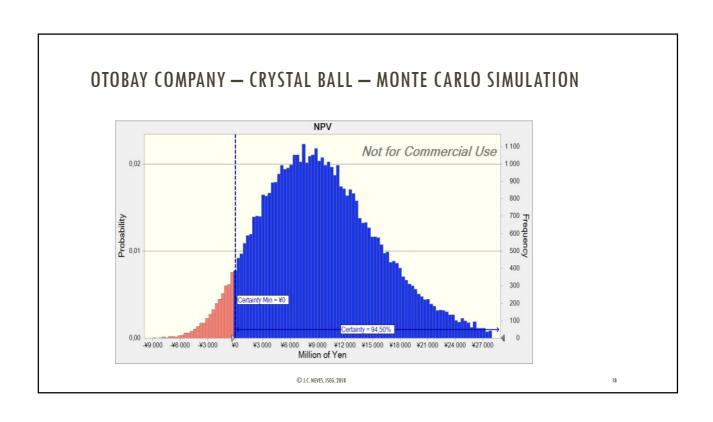
There is no optimal recommendation on how to use the results

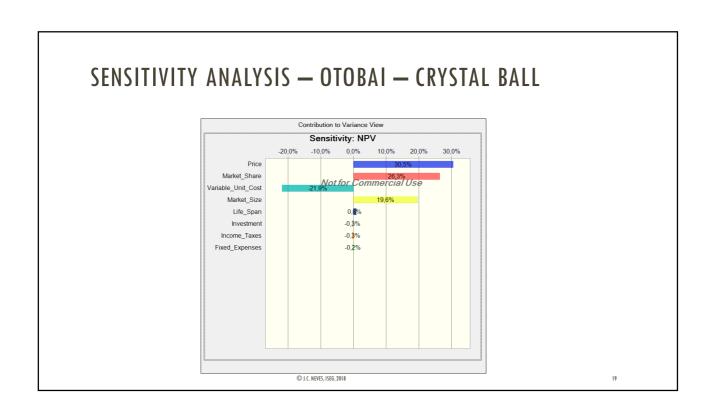
© J.C. NEVES, ISEG, 2018

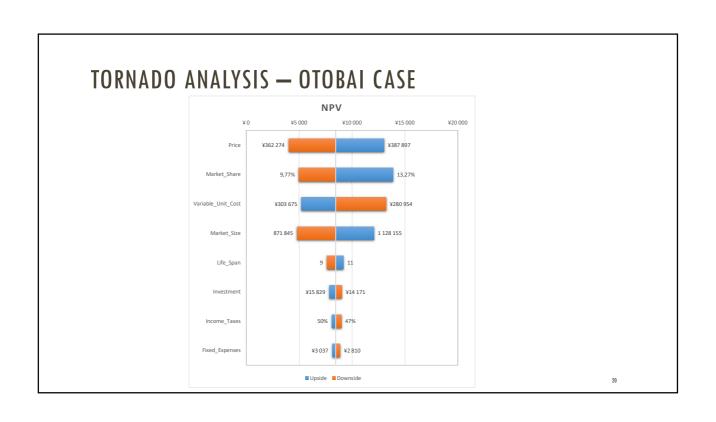
NPV BREAK-EVEN VS. ACCOUNTING BREAK-EVEN

Use Goal Seek in EXCEL searching NPV = 0 changing the cell of volume


Units: 85 098


Calculation of accounting break even:


BEP =
$$\frac{4.500 \, M}{5.000}$$
 = 60.000 units


Why the accounting and NPV break even are different?

© J.C. NEVES, ISEG, 2018

WHICH DISTRIBUTIONS SHOULD YOU USE?

Selecting a distribution for an assumption is one of the most challenging steps in creating a Crystal Ball model.

Crystal Ball has 17 possible discrete and continuous distributions you can use to describe an assumption, including a custom distribution, which can be a combination of continuous and discrete ranges.

- A continuous distribution assumes all values in the range are possible, so any range contains an infinite number of possible values. These distributions are smooth, solid curves.

 A discrete probability distribution describes distinct, finite, commonly integer values. These distributions look like different-height columns set next to each other.

The first step in selecting a probability distribution is to use any available data. In the absence of data, use your understanding of the physics or conditions of the variable to help select a distribution. Finally, apply reasonable limits to a simple distribution.

Distribution	Conditions	Applications	Examples
Normal	The mean value is most likely It is symmetrical about the mean It is more likely to be close to the mean than far away	Natural phenomena.	People's heights, reproduction rates, inflation
Lognormal	Upper limit is unlimited but values cannot fall below zero Distribution is positively skewed, with most values near lower limit Natural logarithm of the distribution is a normal distribution	Situations where values are positively skewed, but cannot be negative.	Real estate prices, stock prices, pay scales, oil reservoir size

21

WHICH DISTRIBUTIONS SHOULD YOU USE?

Gamma	The possible occurrences in any unit of measurement is not limited The occurrences are independent The average number of occurrences is constant from unit to unit	Applied for physical quantities, such as the time between events when the event process is not completely random.	Demand for expected number of units sold during lead time, meteorological processes (pollutant concentrations)
Logistic	Conditions and parameters are complex. See: Fishman, G. Springer Series in Operations Research. NY: Springer- Verlag, 1996.	Describes growth.	Growth of a population as a function of time, some chemical reactions
Pareto	Conditions and parameters are complex. See: Fishman, G. Springer Series in Operations Research. NY: Springer- Verlag, 1996.	Analyzes other distributions associated with empirical phenomena.	Investigating distributions associated with city population sizes, size of companies, stock price fluctuations
Extreme Value	Conditions and parameters are complex. See: Castillo, Enrique. Extreme Value Theory in Engineering. London: Academic Press, 1988.	Describes largest value of a response over time or the breaking strength of materials.	Largest flood flows, rainfall, and earthquakes, aircraft loads and tolerances
Neg. Binomial	Number of trials is not fixed Trials continue to the r th success (trials never less than r) Probability of success is the same from trial to trial	Models the distribution of the number of trials or failures until the r th successful occurrence.	Number of sales calls before you close 10 orders

Tech support: 800-373-5885 (in US) 303-534-1515 (outside US) helpdesk@decisioneering.com

© J.C. NEVES, ISEG, 2018

WHICH DISTRIBUTIONS SHOULD YOU USE?

Iriangular	The minimum is fixed The maximum is fixed It has a most likely value in this range.	When you know the minimum, maximum, and most likely	Sales estimates, number of cars sold is a week, inventory
	which forms a triangle with the minimum and maximum	values, popular for when you have limited data.	numbers, marketing costs
Uniform	Minimum is fixed Maximum is fixed All values in range are equally likely to occur	When you know the range and all possible values are equally likely.	A real estate appraisa leak on a pipeline
Custon	Very flexible distribution, used to repredistribution types Can be either continuous or discrete or Used to input an entire set of data point	a combination of both	describe with other
Less ce	ommonly used distributions are listed b	clow and on the back si	de of the card.
Binomial	For each trial, only 2 outcomes are possible; usually, success or failure The trials are independent The probability is the same from trial to trial	Describes the number of times an event occurs in a fixed number of trials, also used for Boolean logic (true/false or on/off).	Number of heads in 1 flips of a coin, likelihood of success or failure
Poisson	Number of possible occurrences is not limited Occurrences are independent Average number of occurrences is the same from unit to unit	Describes the number of times an event occurs in a given interval (usually time).	Number of telephone calls per minute, number of defects pe 100 square yards of material

Copyright @2000, Decisioneering, Inc.

© J.C. NEVES, ISEG, 2018

2

WHICH DISTRIBUTIONS SHOULD YOU USE?

DECISIONEERING

Exponential	The distribution describes the time between occurrences Distribution is not affected by previous events	Describes events that recur randomly.	Time between incoming phone calls, time between customer arrivals
Geometric	Number of trials is not fixed Trials continue until the first success Probability of success is the same from trial to trial	Describes the number of trials until the first successful occurrence.	Number of times you spin a roulette wheel before you win, how many wells to drill before you hit oil
Hypergeometric	Total number of items (population) is fixed Sample size (number of trials) is a portion of the population Probability of success changes after each trial	Describes the number of times an event occurs in a fixed number of trials, but trials are dependent on previous results.	Chance of a picked part being defective when selected from a box (without replacing picked parts to the box for the next trial)
Weibull	This flexible distribution can assume the properties of other distributions, then shape parameters equal 1, it is identical to Exponential. When equal to 2, it is identical to the Rayleigh.	Fatigue and failure tests or other physical quantities.	Failure time in a reliability study, breaking strength of a material in a control test
Beta	Range is between 0 and a positive value Shape can be specified with two positive values, alpha and beta	Represents variability over a fixed range, describes empirical data.	Representing the reliability of a company's devices

© J.C. NEVES, ISEG, 2018

24