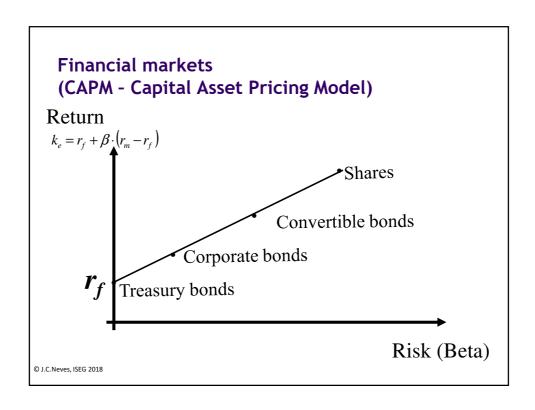


Cost of Capital

João Carvalho das Neves

Professor of Corporate Finance & Real Estate Finance ISEG, Universidade de Lisboa jcneves@iseg.ulisboa.pt


Types of cost of capital that you need to address

- Cost of equity (ke)
- Cost of debt (kd)
- Cost of prefered capital (kp)
- WACC (km)
- Unlevered cost of capital (ku)

i. Cost of equity (ke)

Models to estimate the cost of equity

- Historical based
 - CAPM
 - CAPM 2° moment
 - D-CAPM
 - Merton
 - APM Arbitrage Pricing Model
 - Multifactors (Fama e French)
 - Regression
 - Accounting Approach
 - Modigliani e Miller
 - Covariance of operational income
 - Covariance of sales

- Implicit prices using discounting models
 - Models of Gordon, Malkiel, H
 - **EVA Model**
 - DCF
 - Compound betas
 - Leverage effect
 - Conservation of risk
 - Simultaneous equations
 - Regression of Business Units
- Implicit prices using options models
 - Shares (Hsia)
 - Options on shares (McNulty)

© J.C.Neves, ISEG 2018

Most commonly used models to estimate the cost of equity (ke)

* CAPM

$$k_e = r_f + eta (r_m - r_f)$$
 $F_f = Risk$ free rate of return $F_m = Risk$ free rate of $F_m =$

* THE GORDON MODEL

$$k_e = \frac{d_1}{P_0} + g$$

 d_1 = Dividend per share year 1 P_0 = Share price year 0 g = Growth rate in the long term

* THE MODIGLIANI & MILLER (M&M) MODEL

$$k_e = k_u + (k_u - k_d) \times \frac{D}{E} \times (1 - t)$$

 \boldsymbol{k}_{u} - Unlevered cost of capital D - Debt

E - Equity

t - Corporate income tax rate

* INTUITIVE MODELS

$$k_e = k_d + \rho$$
 k_d = Cost of debt ρ Risk premium over debt η = Risk premium over Treasury Bonds

CAPM - A standard in the market

$$r_e = r_f + \beta \left(r_m - r_f \right)$$

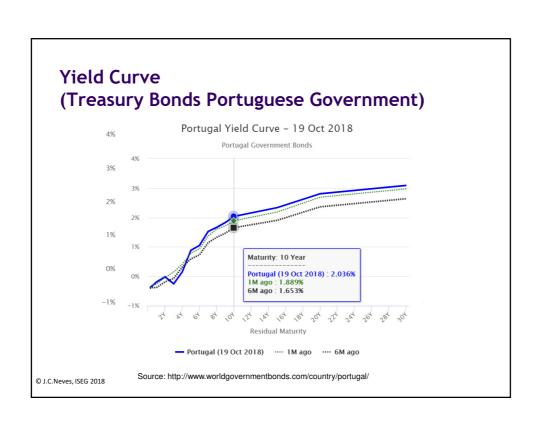
CAPM

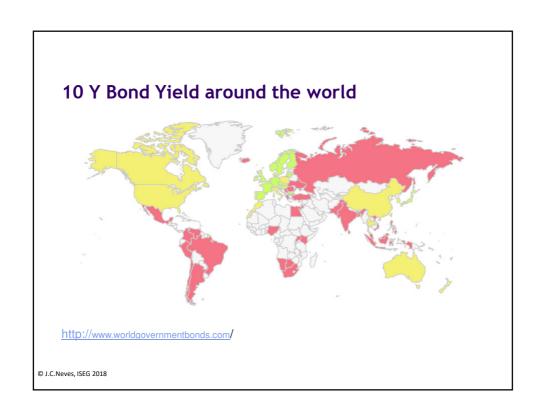
 $r_e = r_f + \boldsymbol{\beta} \cdot (r_m - r_f)$

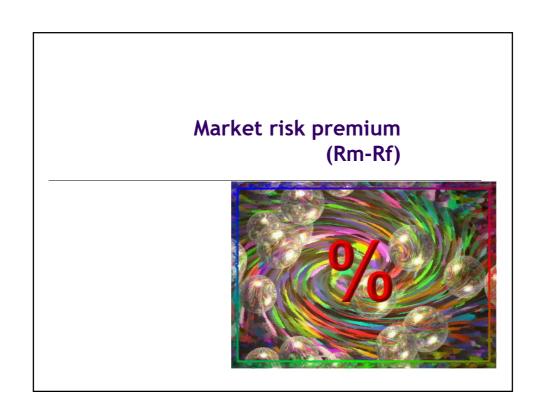
$$r_e - r_f = \alpha + \beta \left(r_m - r_f \right)$$

The market model

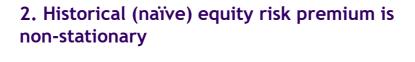
The market model

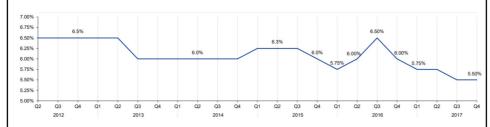



© J.C.Neves, ISEG 2018


Choosing the CAPM variables!

- Risk free rate
 - Which rate to choose?
 - Stationary or variable?
- Market risk premium
 - Stationary or variable?
- Betas
 - Raw data, adjusted for market conditions, adjusted for trends?
- Cost of equity
 - Stationary or variable?
 - Nominal terms or real terms (constant)?


Three ways to estimate risk premium


- Investor's Survey inquiry investors on required risk premiums and use the average premium from these surveys.
- Historical (naïve) risk premium Assume that the risk premium delivered over long-term periods is equal to the expected premium.
- Implied risk premium in today's asset prices.

© J.C.Neves, ISEG 2018

1. Investor's Surveys

- Impractical surveying all investors in a market place.
- Surveys are usual sent to a sample of few individuals and use these results. Examples:
 - Investors Securities Industries Association (individual investors);
 - Merrill Lynch (Institutional Investors);
 - Campbell Harvey & Graham (CFOs);
 - Pablo Fernandez (Analysts) and (Academics)
- The limitations of this approach are:
 - There are no constraints on reasonability
 - The survey results are backward looking
 - They tend to be short term; even the longest surveys do not go beyond one year

Source: KPMG, Nederlands, Equity Market Risk Premium – Research Summary, 24 January 2018

© J.C.Neves, ISEG 2018

Standard error of equity risk premium against the number of years

Estimation Period	Standard Error of Risk Premium Estimate
5 years	$20\% / \sqrt{5} = 8.94\%$
10 years	$20\% / \sqrt{10} = 6.32\%$
25 years	$20\% / \sqrt{25} = 4.00\%$
50 years	$20\% / \sqrt{50} = 2.83\%$
80 years	$20\% / \sqrt{80} = 2.23\%$

The longer the series is, the smaller the standard error

Can we trust the past?

- Noisy estimates:
 - Even with long time periods of history, the risk premium that you derive will have substantial standard error.
 - If you have 80 years of historical data and you assume a standard deviation of 20% in annual stock returns, the Standard Error in the Risk Premium would be = 20%//80 = 2.26%
- Survivorship Bias:
 - Using historical data from equity markets creates a sampling bias.

© J.C.Neves, ISEG 2018

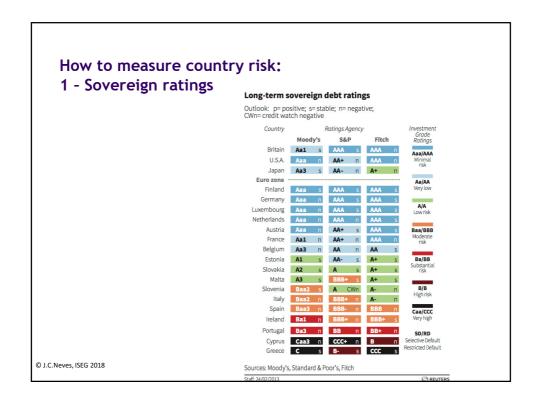
3. Implied risk premium

- If shares are correctly priced in the market and we can estimate
 the expected cash flows from buying these shares, than we can
 estimate the expected rate of return by computing the internal
 rate of return. Subtracting out the risk free rate yields the implied
 equity risk premium.
- This implied equity premium is a forward looking approach
- It can be updated as often as you want (every minute of every day if you wish).

The country risk affects the equity risk premium

Equity risk premium varies across countries

TABLE 3 Equity Premium for Selected Countries


		Mean real	Mean real return		
Country	Period	Market index (%)	Relatively riskless security (%)	Equity premium (%)	
United Kingdom	1900-2005	7.4	1.3	6.1	
Japan	1900-2005	9.3	-0.5	9.8	
Germany	1900-2005	8.2	-0.9	9.1	
France	1900-2005	6.1	-3.2	9.3	
Sweden	1900-2005	10.1	2.1	8.0	
Australia	1900-2005	9.2	0.7	8.5	
India	1991-2004	12.6	1.3	11.3	

Source: Dimson et al. (2002) and Mehra (2007) for India.

Macro determinants of equity risk premium

- Economic risk: If the underlying economy is more uncertain, equity risk will be higher.
 - Higher volatility in the GDP implies higher equity risk.
- Political risk: The higher the uncertainty about fiscal and government policy implies higher level of equity risk.
- Market transparency: If information provided by companies are more transparent, equity risk premiums would be lower.
- Liquidity: Markets with higher level of liquidity would have lower level of equity risk.
- Catastrophic risk: The perceived likelihood to occur catastrophic risk in investing in equites, would increase the equity risk.

© J.C.Neves, ISEG 2018

11

How to measure country risk: 2 - Country Risk Scores (0 a 100)

- The PRS Group
 - Political Risk Services
- ICRG
 - International Country Risk Guide
- The Economist

PS: Scores are not linear

© J.C.Neves, ISEG 2018

How to measure country risk:

3 - Market data

- Bond default spread
 - Treasury bond of emergent country Treasury bond of stable country
- Credit Default Swap Spreads
 - A credit default swap (CDS) is a financial swap agreement that the seller of the CDS will compensate the buyer in the event of a loan default or other credit event.
- Relative volatility of markets
 - volatilidade of emergent country / volatilidade of stable country

Risk premium based on "Bond Default Spread"

Equity risk premium = Equity risk premium in USA + Emergent country risk premium (4,79%)(?)

$$CRP = CDS \frac{\sigma_{_{e}}}{\sigma_{_{T}}}$$

CRP= Country Risk Premium

CDS = Country Default Spread

= Treasury Yield of Emergent Country - USA Treasury Yield

 $\sigma_{\rm e}$ = Standard deviation of shares

 σ_T = Standard deviation of Treasury Bonds

India Example from Damodaran, The Dark Side of Valuation, p. 68:

$$CRP = 3\% \times \frac{31,82\%}{14,90\%} = 6,43\%$$

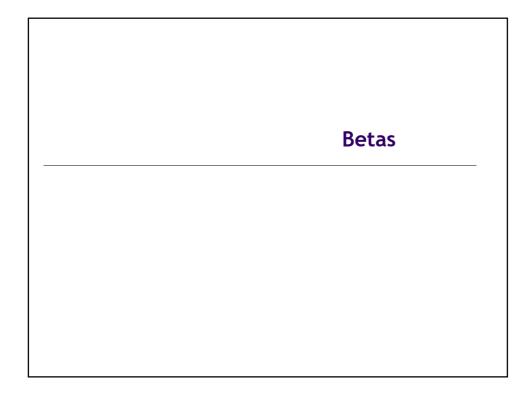
$$ERP = ERP_{USA} + CRP_{Emergent} = 4,79\% + 6,43\% = 11,22\%$$

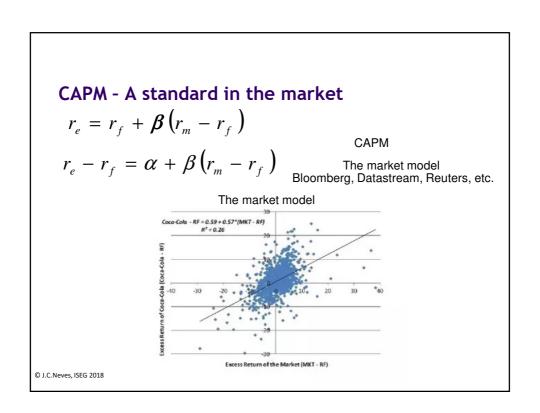
© J.C.Neves, ISEG 2018

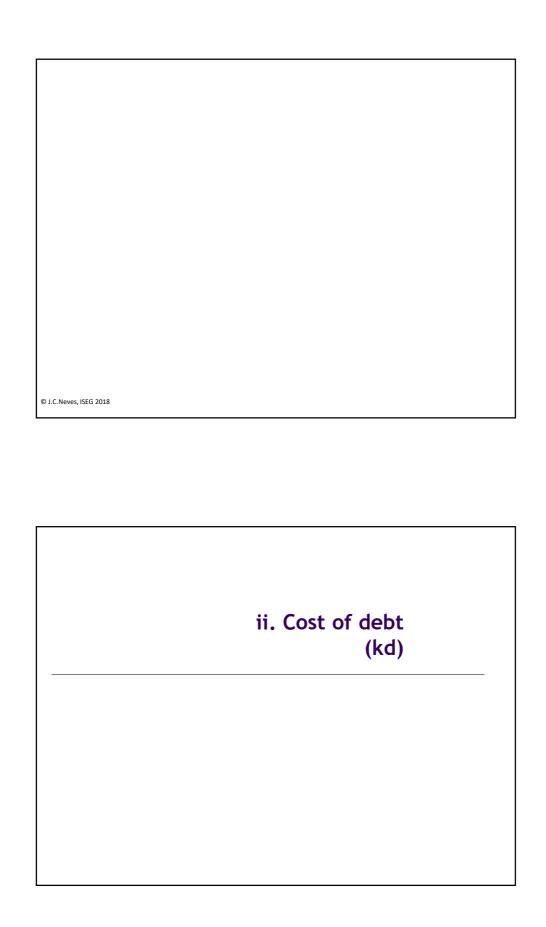
Equity risk premium based on "relative volatility of markets"

$$ERP_{Emergent} = ERP_{USA} \frac{\sigma_{Emergent}}{\sigma_{USA}}$$

ERP_{Emergent} = Equity risk premium of emergent market


ERP_{USA} = Equity risk premium of USA


 σ_{Emergent} = Standard deviation of shares in the emergent country σ_{USA} = Standard deviation of shares in USA or equivalent country


Brasil example:

$$ERP_{Brasil} = 4,79\% \times \frac{25,83\%}{15,27\%} = 8,1\%$$

$$CRP = 8.1\% - 4.79\% = 3.31\%$$

Cost of debt Ranked by best practice

- The company has bonds quoted:
 - Use the yield to maturity
- The company has a rating but no bond is quoted:
 - Use yield to maturity of identical risk bonds
- No bonds are quoted and no rating:
 - Interets rate of next loan
 - Interest rate of most recent loan
 - Estimate a syntetic rating base on Times interest earning
 - Average cost of debt

© J.C.Neves, ISEG 2018

Reuters corporate default spreads

Rating	1 yr	2 yr	3 yr	5 yr	7 yr	10 yr	30 yr
Aaa/AAA	14	16	27	40	56	68	90
Aa1/AA+	22	30	31	48	64	77	99
Aa2/AA	24	37	39	54	67	80	103
Aa3/AA-	25	39	40	58	71	81	109
A1/A+	43	48	52	65	79	93	117
A2/A	46	51	54	67	81	95	121
A3/A-	50	54	57	72	84	98	124
Baa1/BBB+	62	72	80	92	121	141	170
Baa2/BBB	65	80	88	97	128	151	177
Baa3/BBB-	72	85	90	102	134	159	183
Ba1/BB+	185	195	205	215	235	255	275
Ba2/BB	195	205	215	225	245	265	285
Ba3/BB-	205	215	225	235	255	275	295
B1/B+	265	275	285	315	355	395	445
B2/B	275	285	295	325	365	405	455
B3/B-	285	295	305	335	375	415	465
Caa/CCC+	450	460	470	495	505	515	545
US Treasury Yield	4.74	4.71	4.68	4.63	4.60	4.59	4.56

Spread values represent basis points (bps) over a US Treasury security of the same maturity, or the closest matching maturity.

Rating and interest coverage ratio

For smaller non-financial service companies (market cap < \$ 5 billion)

`		•	,
If interest coverage ratio is			
greater than	≤to	Rating is	Spread is
12.5	100000	Aaa/AAA	0.75%
9.5	12.499999	Aa2/AA	1.00%
7.5	9.499999	A1/A+	1.10%
6	7.499999	A2/A	1.25%
4.5	5.999999	A3/A-	1.75%
4	4.499999	Baa2/BBB	2.25%
3.5	3.9999999	Ba1/BB+	3.25%
3	3.499999	Ba2/BB	4.25%
2.5	2.999999	B1/B+	5.50%
2	2.499999	B2/B	6.50%
1.5	1.999999	B3/B-	7.50%
1.25	1.499999	Caa/CCC	9.00%
0.8	1.249999	Ca2/CC	12.00%
0.5	0.799999	C2/C	16.00%
-100000	0.499999	D2/D	20.00%

© J.C.Neves, ISEG 2018

Source: Damodaran, 2016

iii. Cost of prefered equity (kp)

Cost of prefered shares

- No growth of dividends:
 - = dividends/Price
- Constant growth of dividens:
 - = (Dividends/Price) + g
- If there are special rights
 - Use the options theory

© J.C.Neves, ISEG 2018

Hibrid securities

• Decompose the security into equity and debt

Flotation costs

• Flotation cost as a fixed cost per share

$$k_e = \frac{D_1}{P_0 - F} + g$$

• Flotation cost as a percentage of the share price

$$k_e = \frac{D_1}{P_0 \times (1 - f)} + g$$

© J.C.Neves, ISEG 2018

iv. Weighed average cost of capital (km)

Weighted average cost of capital (km)

$$k_{m} = k_{e} \frac{E}{C} + k_{p} \frac{E_{p}}{C} + k_{d} \frac{D}{C} (1 - t)$$

$$k_{m} = k_{u} \cdot \left(1 - t \frac{D}{C} \right)$$

E - Equity based on ordinary shares

E_n – Equity based on prefered shares

D - Debt

 $C = Invested Capital = E + E_p + D$

t = Tax rate

© J.C.Neves, ISEG 2018

Target capital structure is recommended to estimate WACC.

- If you do not know what is the target capital structure, then you may:
 - Read statements by management to infer what is the target capital structure
 - Assume the current capital structure as the target capital structure
 - Examine trends in the company capital structure to infer about the target capital structure
 - Use averages of comparable companies' capital structure as the target capital structure

v. Unlevered cost of capital (ku)

Unlevered cost of capital (ku)

CAPM

$$k_u = r_f + \beta_u (r_m - r_f)$$

MODIGLIANI & MILLER

$$k_u = \frac{k_m}{1 - t \times \frac{D}{D + E}}$$

Hamada Formula:

$$\beta_{u} = \frac{\beta_{e} + \beta_{D} \left(D_{E} \right)}{1 + D_{E} \left(1 - t \right)}$$

Hamada Formula Simplified:

$$\beta_U = \frac{\beta_E}{1 + \frac{D}{E}(1 - t)}$$

$$k_{u} = \frac{k_{e} + \frac{D}{E} k_{d} (1 - t)}{1 + \frac{D}{E} (1 - t)}$$

Estimating a Beta of an unquoted company using the pure-play model

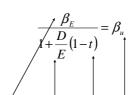
Step 1: Select the comparable Determine comparable company or companies. These are companies with similar business risk.

 \downarrow

Step 2: Estimate comparable's beta Estimate the equity beta of the comparable company or companies.

Ţ

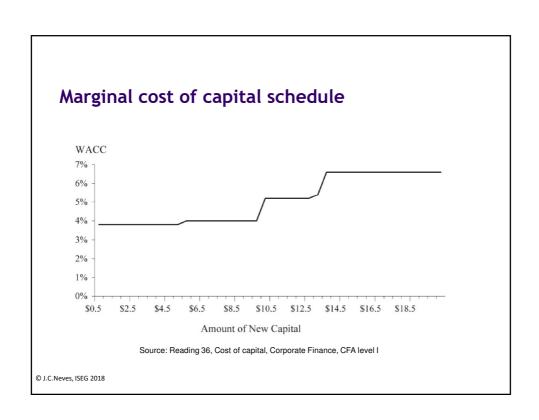
Step 3: Unlever the comparable's beta Unlever the beta of the comparable company or companies, removing the financial risk component of the equity beta, leaving the business risk component of the beta.

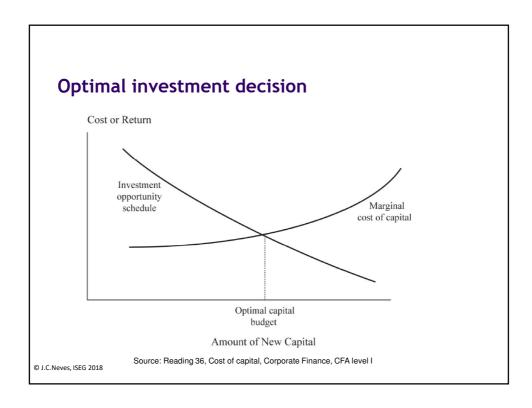

 \downarrow

Step 4: Lever the beta for the project's financial risk Lever the beta of the project by adjusting the asset beta for the financial risk of the project.

Source: Reading 36, Cost of capital, Corporate Finance, CFA level I

© J.C.Neves, ISEG 2018


Levered betas and unlevered betas



		/		,	
	Number of		Market		Unlevered
Industry	firms	Beta	D/E	Tax rate	Beta
Advertising	38	1,02	69,06%	30,60%	0,69
Aerospace and Defense	27	1,02	36,89%	20,49%	0,79
Agricultural Products	33	0,82	63,38%	15,71%	0,53
Tires and Rubber	5	1,37	147,21%	32,84%	0,69
Tobacco	4	0,58	53,27%	24,63%	0,41
Trading Companies and Distributors	49	1,19	158,87%	25,88%	0,55
Trucking	16	0,93	142,43%	17,08%	0,43
Water Utilities	12	0,60	137,38%	39,13%	0,33
Wireless Telecommunication Services	11	1,00	45,26%	25,30%	0,75
Grand Total	4167	1,04	85,33%	20,93%	0,80

Source: http://pages.stern.nyu.edu/~adamodar/

vi. Applying the cost of capital in budgeting

What do CFO's do?

- The most popular method for estimating the cost of equity is the capital asset pricing model.
- Few companies use the dividend cash flow model to estimate a cost of equity.
- Publicly traded companies are more likely to use the capital asset pricing model than are private companies.
- In evaluating projects, the majority use a single company cost of capital, but a large portion apply some type of risk adjustment for individual projects.

Source: Reading 36, Cost of capital, Corporate Finance, CFA level I