

Financial Forecasting 2018-2019 Master in Finance ISEG-ULisboa

Practice Exam

- **1**. (2.5 points) True or false
 - i. The simple exponential smoothing method is an adequate method to forecast series that present trend and seasonality.

 \Box True \Box False

ii. In order to filter out the erratic component of a series, we can use the method of moving averages.

 \Box True \Box False

- **iii**. The process $y_t = y_{t-1} + \epsilon_t$ where $\epsilon_t \sim WN$, is second order stationary. \Box True \Box False
- iv. The Box-Cox transformation can be used to remove seasonality from a time series.□ True □ False
- ${\bf v}.$ Given a set of candidate models for the data, the preferred model is the one with the maximum AIC value.

 \Box True \Box False

2. (2 points) Consider the following table that contains information about the adjustment of a model applied to the quarterly series of the number of unemployed individuals in a country. Given that the observed value for 2004Q2 was 1520 obtain the forecast for the periods 2004Q3 and 2004Q4.

Method: Holt-\ Original Serie					
Parameters:	Alpha			0.6700	
	Beta			0.5000	
	Gamma			0.0000	
Sum of Squared Residuals				448900.5	
Root Mean So	uared Erro	pr	85.78		
End of Period	Levels:	Mean		1432.857	
		Trend		2.263393	
		Seasonals:	Q1	-9.018304	
			Q2	4.184970	
			Q3	15.98824	
			04	-11 15/01	

3. (1 point) Consider the following process $X_t = 2.5 + 0.5\epsilon_{t-1} + 0.3\epsilon_{t-1} + \epsilon_t$ where $\epsilon_t \sim N(0, 1)$. What is the unconditional expected value of the process?

 $\Box 0 \qquad \Box 2.5 \qquad \Box 12.5 \qquad \Box 3.2$

- 4. (1 point) Consider the following process : $Y_t = \beta Y_{t-1} + 0.5Y_{t-2} + \epsilon_t$. Find the range of values of β that make the process stationary.
- 5. (1 point) Write in equation form the process Y_t that follows an $ARIMA(1,0,1)(0,0,1)_4$ and show that the process is equivalent to an ARIMA(p,d,q) with restrictions on the parameters. Specify these restrictions.
- 6. (2 points) The next figure illustrates the time series plot, SACF/SPACF and part of the EViews output for a statistical test applied to the series $INDPRO_t$ (Industrial Production Index).
 - (a) Do you think that $INDPRO_t$ is stationary? Justify your answer using the information provided in Figures 1 and 2.

Figure 1: INDPRO plot

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.980	0.980	118.20	0.000
1		2	0.957	-0.099	231.80	0.000
1		3	0.930	-0.098	340.01	0.000
·	10 1	4	0.898	-0.124	441.82	0.000
	E 1	5	0.858	-0.204	535.63	0.000
	1 1 1	6	0.819	0.038	621.84	0.000
1	1 10	7	0.777	-0.067	700.10	0.000
1	լ լիս	8	0.736	0.054	770.99	0.000
1	111	9	0.695	-0.016	834.64	0.000
·	1 1	10	0.654	-0.018	891.50	0.000
· _	1 1 1	11	0.614	0.036	942.18	0.000
·	1 1 1	12	0.580	0.078	987.77	0.000
·	1 1 1	13	0.547	0.016	1028.7	0.000
1 	1.0	14	0.516	-0.033	1065.5	0.000
	1 10	15	0.485	-0.041	1098.3	0.000
1	1 10	16	0.455	-0.054	1127.4	0.000
·	1 i i	17	0.426	-0.005	1153.3	0.000
· 🔲	1 101	18	0.401	0.066	1176.4	0.000
· •	1 1 10 1	19	0.379	0.066	1197.2	0.000
· 🖿	101	20	0.357	-0.051	1215.8	0.000

Figure 2: INDPRO correlogram

(b) Do you find evidence for the presence of a unit root? Justify your answer using the information provided in Figure 3 and explain whether this reinforces or weakens your answer to question (a).

Augmented Dickey-Fulle			1-Statistic	1100.	
	r test statistic		-1.825893	0.6860	
Test critical values:	1% level		-4.036983	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
	5% level		-3.448021		
	10% level		-3.149135		
*MacKinnon (1996) one-	sided p-value	s.			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
INDPRO(-1)	-0.041130	0.022526	-1.825893	0.0704	
C	3.776025	2.078829	1.816420	0.0719	
	0.007279	0.003403	2.139078	0.0345	
@TREND("2008M09")			Mean dependent var		
@TREND("2008M09") R-squared	0.037978	Mean depend	dent var	0.099599	
@TREND("2008M09") R-squared Adjusted R-squared	0.037978 0.021391	Mean depende S.D. depende	dent var ent var	0.099599	
@TREND("2008M09") R-squared Adjusted R-squared S.E. of regression	0.037978 0.021391 0.633950	Mean depend S.D. depende Akaike info cr	dent var ent var iterion	0.099599 0.640842 1.951195	
@TREND("2008M09") R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.037978 0.021391 0.633950 46.61960	Mean depende S.D. depende Akaike info cr Schwarz crite	dent var ent var iterion rion	0.099599 0.640842 1.951195 2.021257	
@TREND("2008M09") R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.037978 0.021391 0.633950 46.61960 -113.0961	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir	dent var ent var iterion rion in criter.	0.099599 0.640842 1.951195 2.021257 1.979645	

Figure 3: INDPRO unit root test

7. (1.5 points) The next figure shows the SACF/SPACF of a time series. Propose two candidate ARMA models that may provide a good fit to the series. Justify your options in detail.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.328	0.328	59.701	0.000
· 🗖	i 👘	2	0.257	0.167	96.320	0.000
· 🚍 ·	, j	3	0.241	0.134	128.64	0.000
· 🗖 ·	i p	4	0.197	0.069	150.22	0.000
i p	(C	5	0.066	-0.074	152.68	0.000
(p)	լին	6	0.092	0.026	157.43	0.000
i 🗖 i		7	0.083	0.023	161.31	0.000
1	լի	8	0.083	0.040	165.16	0.000
· 🗖	10	9	0.106	0.067	171.53	0.000
i p	11	10	0.080	0.001	175.12	0.000
i ĝi	10	11	0.051	-0.018	176.58	0.000
11	Q 1	12	-0.006	-0.071	176.60	0.000
ų i	10	13	-0.025	-0.048	176.96	0.000
ų i	1 10	14	-0.032	-0.014	177.53	0.000
i] i	10	15	-0.021	0.012	177.78	0.000
10	10	16	-0.046	-0.021	178.99	0.000
ų i	11	17	-0.031	-0.007	179.54	0.000
1)1	i Di	18	0.033	0.061	180.18	0.000
il i	101	19	-0.018	-0.033	180.36	0.000

8. (1.5 points) The following figure illustrates the correlogram and histogram of the residuals from an estimated model. With the available information, do you think that the model is adequately specified? Justify your answer.

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.106	-0.106	0.6076	
		2 -0.385	-0.401	8.7868	0.00
1 🔟 1	1. I.	3 0.105	0.007	9.4100	0.00
1 1 1	1 🔲 1	4 -0.020	-0.191	9.4339	0.02
1 🚺 1	1. I.	5 -0.025	-0.008	9.4704	0.05
1 🗐 1	1 1 1	6 0.127	0.052	10.439	0.06
	1 I I I	7 -0.012	0.022	10.447	0.10
i 🖞 i	E E	8 -0.073	0.004	10.784	0.14
1 🔟 1	I 🔤 👘 I	9 -0.188	-0.254	13.066	0.11
	I 🔲 I	10 -0.039	-0.147	13.168	0.15
	i 🗖 👘	11 0.400	0.266	23.972	0.00
1 1 1	i 🔲 i	12 0.045	0.113	24.111	0.01
I		13 -0.313	-0.073	31.074	0.00
1 1 1	1 I	14 0.047	0.001	31.232	0.00
1 1	1 🔲 1	15 -0.004	-0.109	31.233	0.00
n 🖞 n	101	16 -0.091	-0.076	31.871	0.00
a 🗋 a	1 🗖 1	17 0.017	-0.223	31.895	0.01
1) 1	1 🔲 1	18 0.040	-0.103	32.026	0.01
I 🛛 I	1 🛛 1	19 -0.063	-0.081	32.362	0.02
1 1	1 1 1	20 -0.041	0.058	32.510	0.02
1 🛛 1	1 🖬 1	21 -0.056	-0.090	32.794	0.03
1 🗖	1 🔲 1	22 0.271	0.169	39.655	0.00
1 1	1 🛛 1	23 0.021	-0.059	39.696	0.01
1 🔤 1	E E E	24 -0.229	-0.016	44.955	0.00

9. (2 points) Given the following estimated model for the process Y_t and the last two observations $y_T = 2.5$ and $y_{T-1} = 2.3$, obtain the one step-ahead forecast $f_{T,1}$ and the variance of the forecast error $\sigma_{T+1|T}^2$.

Sample: 1990Q1 2002 Included observations: Convergence achieved Coefficient covariance (Q3 51 after 10 iteratio computed using	ns g outer product	of gradients	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2.297473	0.125209	18.34915	0.0000
AR(1)	-0.245974	0.160855	-1.529163	0.1328
R-squared	0.061463	Mean dependent var		2.294340
Adjusted R-squared	0.022357	S.D. depende	nt var	1.129905
S.E. of regression	1.117203	Akaike info cr	terion	3.117779
Sum squared resid	59.91081	Schwarz crite	rion	3.231416
Log likelihood	-76.50337	Hannan-Quin	n criter.	3.161203
F-statistic	1.571718	Durbin-Watso	n stat	2.186875
Prob(F-statistic)	0.218189		GPR-560395	101000-0000000
Inverted AR Roots	25			

10. (2.5 points) Next figure illustrates Eviews results of an estimated model for the daily returns of an index from January 1, 2001 until September 30, 2011.

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.023	0.005	4.458	0.0000
AR(1)	0.064	0.020	3.21	0.0013
	Variance	Equation		
С	0.001	0.000	2.812	0.0049
RESID(-1) ^A 2	0.058	0.004	15.536	0.0000
GARCH(-1)	0.940	0.005	198.17	0.0000
R-squared	-0.001035	Mean depend	ent var	0.023609
Adjusted R-squared	-0.001407	S.D. depende	nt var	0.367533
S.E. of regression	0.367791	Akaike info cri	terion	0.564634
Sum squared resid	364.0128	Schwarz criter	ion	0.575585
Log likelihood	-755.2792	Hannan-Quin	n criter.	0.568594
Durbin-Watson stat	1.895248			

Moreover the realized values of the returns for the last 5 days of September 2011 and corresponding estimated values according to the previously estimated model are the following:

	Observed Values	Fitted values
26/11/2011	0.027	0.032
27/11/2011	-0.349	0.063
28/11/2011	0.050	0.023
29/11/2011	0.844	0.047
30/11/2011	-0.134	0.021

- (a) Write explicitly the standard mathematical form of the estimated model.
- (b) Obtain the forecast estimate of the volatility for 31/11/2011, knowing that the estimated volatility for 30/11/2011 is 0.224.

11. (2 points) Considering the information presented below regarding the PSI20 Index, identify and describe two stylized facts of financial time series evident in the data (closing prices and respective returns).

Figure 4: PSI20

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.992	0.992	506.61	0.000
1.	E I	2	0.982	-0.097	1004.4	0.00
1	()	3	0.971	-0.081	1491.9	0.00
1	I L I	4	0.959	-0.029	1968.7	0.00
1	- U)L	5	0.948	0.021	2435.2	0.00
1	i (ji)	6	0.937	0.027	2891.8	0.00
1 33 31	- iji	7	0.926	0.009	3339.2	0.00
	1 10	8	0.916	-0.015	3777.2	0.00
1	u()	9	0.905	-0.028	4205.7	0.00
1	1 II	10	0.894	0.011	4625.0	0.00
1	i)	11	0.885	0.069	5036.3	0.00
I 📃	ւի	12	0.876	0.043	5440.4	0.00
1	IQ I	13	0.868	-0.026	5837.4	0.00
1	u t i	14	0.859	-0.028	6227.2	0.00
1 83 23	11	15	0.850	0.004	6610.0	0.00
64 A.	a ja	16	0.842	0.021	6986.0	0.00
1 22	1	17	0.833	-0.003	7355.2	0.00
1	E) I	18	0.824	-0.084	7716.7	0.00
1	11	19	0.814	0.003	8070.5	0.00
1	i)i	20	0.805	0.014	8416.8	0.00
1	11	21	0.795	0.007	8755.7	0.00
1	. U C	22	0.786	-0.011	9087.2	0.00
1	11	23	0.776	0.007	9411.6	0.00
	3 1 12	24	0.767	-0.012	9728.9	0.00
1	. U 1	25	0.758	-0.014	10039.	0.00
1	i ji	26	0.748	0.016	10342.	0.00
1	11	27	0.739	0.008	10639.	0.00
I C	i))	28	0.732	0.069	10930.	0.00
1	i ĝi	29	0.725	0.047	11217.	0.00
1	ut i	30	0.719	-0.027	11499.	0.00
	i di i	31	0.712	-0.054	11776.	0.00
	3 is	32	0.705	-0.004	12049.	0.00
100 A	11	33	0.697	-0.008	12316.	0.00
1	ւթ	34	0.690	0.050	12578.	0.00
1	10	35	0.683	-0.011	12836.	0.00
1	ığı 🛛	36	0.676	-0.055	13088.	0.00

Figure 5: PSI20 correlogram

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ιþ	ıþ	1	0.104	0.104	5.5423	0.01
ı þi	որ	2	0.048	0.038	6.7472	0.03
ı þi	ւթ	3	0.052	0.044	8.1557	0.04
E 1	E 1	4	-0.086	-0.099	11.994	0.0
i)i	ին	5	0.024	0.039	12.287	0.03
1.1	11	6	0.003	0.002	12.292	0.05
ul i	101	7	-0.036	-0.030	12.975	0.0
ul t	10	8	-0.011	-0.017	13.044	0.1
id i	101	9	-0.050	-0.040	14.337	0.1
		10	-0.102	-0.091	19.765	0.0
d i	l III I	11	-0.070	-0.053	22.317	0.0
1.1	i)i	12	-0.003	0.022	22.322	0.0
ւի	լի	13	0.026	0.033	22.686	0.04
1 1	1 10	14	-0.001	-0.018	22.686	0.0
u)n	1	15	0.015	0.008	22.808	0.0
11	1	16	-0.004	-0.005	22.817	0.1
1	1	17	0.110	0.115	29.252	0.0
111	1	18	0.019	-0.015	29,450	0.04
i i	11	19	0.007	-0.007	29,478	0.0
ig i	l di	20	-0.033	-0.062	30.068	0.0
11	լի	21	0.006	0.027	30.085	0.0
1 L	i ji	22	0.014	0.009	30,184	0.1
11	11	23	-0.007	-0.001	30.214	0.14
111	101	24	-0.024	-0.028	30.526	0.1
11	10	25	0.002	0.013	30,528	0.20
i li c	ារាំ	26	0.027	0.039	30,925	0.23
d i	iĝi –	27	-0.068	-0.059	33,417	0.1
n i	l ili	28	-0.059	-0.044	35,295	0.1
di i	վելո	29	0.016	0.030	35,436	0.1
i Di	ւն	30	0.052	0.052	36.888	0.1
- in	1 10	31	0.016	-0.007	37.024	0.2
11	101	32	-0.023	-0.039	37.308	0.2
ığı	101	33	-0.049	-0.036	38.607	0.2
i ju	1 10	34	0.021	0.022	38.861	0.2
i)i		35	0.022	0.023	39.136	0.2
ili.	1 10	26	-0.007	-0.015	30 162	0.31

Figure 6: PSI20 returns

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı Þ	1 1	1	0.138	0.138	9.7608	0.00
	1	2	0.131	0.115	18.662	0.00
1 Ju	1	3	0.039	0.007	19.446	0.00
i 🗖	1 1	4	0.126	0.109	27.624	0.00
1 Ju	11	5	0.037	0.003	28.315	0.00
d i		6	-0.057	-0.092	29.978	0.00
u (L	i (li	7	-0.048	-0.041	31.192	0.00
u la companya da companya d	101	8	-0.049	-0.037	32.435	0.00
ul i	10	9	-0.040	-0.024	33.255	0.00
ul i	101	10	-0.062	-0.028	35.265	0.00
10	լին	11	-0.009	0.026	35.307	0.00
ng i	101	12	-0.050	-0.035	36.603	0.00
10	11	13	-0.019	-0.007	36.783	0.00
1 1		14	-0.008	0.009	36.817	0.00
ац II.	101	15	-0.022	-0.027	37.068	0.00
- du	1 10	16	-0.022	-0.019	37.325	0.00
ı þ	10	17	0.071	0.086	39.971	0.00
(p)	1	18	0.106	0.091	45.937	0.00
1	C 1	19	-0.022	-0.066	46.193	0.00
1	1 10	20	0.001	-0.012	46.194	0.00
ul i	l iĝi	21	-0.045	-0.062	47.288	0.00
ւի	101	22	0.058	0.036	49.086	0.00
- II	11	23	-0.006	0.008	49.105	0.00
ւի	10	24	0.056	0.074	50.818	0.00
1 i	1 1	25	-0.006	-0.005	50.838	0.00
ul i	ig i	26	-0.040	-0.062	51.714	0.00
u ju	ig i	27	-0.057	-0.055	53.489	0.00
d i	101	28	-0.069	-0.065	56.058	0.00
u i	101	29	-0.055	-0.036	57.727	0.00
	101	30	-0.085	-0.030	61.682	0.00
ng i	1 10	31	-0.050	-0.004	63.046	0.00
- III	լի	32	-0.011	0.037	63.114	0.00
11	i i i	33	-0.003	0.014	63.119	0.00
1	1 1	34	-0.006	-0.006	63.136	0.00
1	101	35	-0.021	-0.055	63.370	0.00
1 🗊	1 101	36	0.055	0.040	65.027	0.00

Figure 8: PSI20 squared returns correlogram

Figure 9: PSI20 correlogram