Week 9:

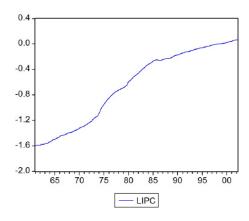
- 20. Consider the following process: $y_t = 2.5 + 0.75y_{t-1} + \varepsilon_t + 0.6\varepsilon_{t-1} 0.3\varepsilon_{t-2}$ where $\varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$:
 - a. Given $y_n = 12$, $\hat{\epsilon}_n = 1.5$ and $\hat{\epsilon}_{n-1} = 1$ obtain point forecasts for the next 3 periods.
 - b. Characterize the forecasting function , $f_{t,h}$ for the long run (when $h \rightarrow \infty$)
- 21. Given the following estimation outputs what model you think is best to describe and forecast the AIRPASS time series?

	M1	M2		
Method: Lea ample (adjusted): 19	51 M02 1961 M06 125 after adjustments I after 8 iterations	Dependent Variable: D(LOG(AIRPASS),1,12) Method: Least Squares Sample (adjusted): 1951 M02 1961 M06 Included observations: 125 after adjustments Convergence achieved after 10 iterations MA Backcast: 1949M11 1951 M01		
Variable	Coefficient Std. Error t-Statistic Prob.	Variable Coefficient Std. Error t-Statistic Prob.		
MA(1) SMA(12)	-0.394813 0.082383 -4.792405 0.0000 -0.640659 0.072003 -8.897624 0.0000	NA(1) -0.388933 0.082464 -4.716423 0.0000 MA(3) -0.190940 0.083017 -2.300027 0.0237 SMA(12) -0.675069 0.069870 -9.661783 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.369398 Mean dependent var 0.000791 0.364271 S.D. dependent var 0.046431 0.037021 Akaike info criterion -3.738810 0.168575 Schwarz criterion -3.693557 235.6756 Hannan-Quinn criter. -3.720426 1.934731	R-squared0.392082Mean dependent var0.00079Adjusted R-squared0.382116S.D. dependent var0.04643S.E. of regression0.036497Akaike info criterion-3.75944Sum squared resid0.162511Schwarz criterion-3.69156Log likelihood237.9652Hannan-Quinn criter3.73186Durbin-Watson stat1.959840-3.69156		
Sample: 1951M02 Included observatio	ns: 125	Sample: 1951M02 1961M06 Included observations: 125 Autocorrelation Partial Correlation AC PAC Q-Stat		
Autocorrelation	Partial Correlation AC PAC Q-Stat I I 0.030 0.01118 0.020 0.1679 I I 2 0.021 0.020 0.1679 I I 3 -0.144 -0.146 2.8815 I I 5 0.036 0.050 5.0683 I I 6 0.038 0.022 5.2572 I I 6 0.038 0.022 5.2572 I I 8 -0.051 -0.093 5.6111 I I 8 -0.050 -0.054 5.9560 I I 10 -0.081 -0.102 7.9664 I I 11 0.027 -0.016 8.0647 I I 12 0.18 0.053 8.1093 I I 12 0.018 0.053 8.0937 I I 13 0.055 0.060 8.6955 <t< td=""><td>x.d.contention t of and contention x.o x</td></t<>	x.d.contention t of and contention x.o x		
Forecast: AIRPASSF Actual: AIRPASS Forecast sample: 1961M07 1961M12 Included observations: 6 Root Mean Squared Error 10.43481 Mean Absolute Error 10.19416 Mean Abs. Percent Error 2.071642		Forecast: AIRPASSF Actual: AIRPASS Forecast sample: 1961M07 1961M12 Included observations: 6 Root Mean Squared Error 10.57776 Mean Absolute Error 8.880508 Mean Abs. Percent Error 1.783386		

22. Suppose that the last five observations of a given time series are:

 $x_{96} = 60.4, x_{97} = 58.9, x_{98} = 64.7 x_{99} = 70.4$ and $x_{100} = 62.6$.

Obtain the forecasts of the next four observations for the following estimated models where $\epsilon_t \sim WN(0, \sigma_{\epsilon}^2)$:


i.
$$(1 - 0.43L)(1 - L)x_t = \varepsilon_t$$

- ii. $x_t = 0.2 + 1.8x_{t-1} 0.81x_{t-2} + \varepsilon_t$
- iii. $(1 1.4L + 0.8L^2)(1 L)x_t = \varepsilon_t$

Week 10:

Exercise 4 (chapter 10 Textbook)

23. This exercise makes use of quarterly data from the Belgium Consumer Price Index. The data has been seasonally adjusted and covers the period 1961Q01-2002Q02. In the next figure you will find the time series plot, in logs. The time series will be denoted mathematically as $log (IPC_t)$ and inEViews output by LIPC.

a. Before proposing a model, the practitioner needs to study the stationary properties of the data. A possibility is to apply the Augmented Dickey- Fuller (ADF) test to the log of the time series of interest. What made the practitioner apply the log transformation to the time series? And what are the issues that the practitioner needs to be worry to apply the ADF correctly? Justify your answers

b. According to all the figures given below apply ADF tests to the time series $log (IPC_t)$.

Exogenous: Constant, Linear Trend Lag Length: 2 (Automatic based on SIC, MAXLAG=13)

Exogenous:	Constant
------------	----------

...

Lag Length: 2 (Automatic based on SIC, MAXLAG=13)

		t-Statistic	Eug Eongin. 2 (Flatomatic Babba on Bio, In Fazi io 10)		
Augmented Dickey-F	uller test statistic	-0.171180		t-Statistic	
Test critical values:	1% level 5% level 10% level	-4.015341 -3.437629 -3.143037	Augmented Dickeγ-Fuller test statis Test critical values: 1% level 5% level	tic	
			10% level	-2.576241	

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LIPC) Method: Least Squares Date: 03/26/13 Time: 10:12 Sample(adjusted): 1961:4 2002:2 Included observations: 163 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LIPC) Method: Least Squares Date: 03/26/13 Time: 10:09 Sample(adjusted): 1961:4 2002:2 Included observations: 163 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LIPC(-1)	-0.000698	0.004079	-0.171180	0.8643
D(LIPC(-1))	0.389586	0.074688	5.216175	0.0000
D(LIPC(-2))	0.340018	0.075088	4.528247	0.0000
С	0.003237	0.007059	0.458514	0.6472
@TREND(1961:1)	-1.11E-05	5.02E-05	-0.221045	0.8253
R-squared	0.486964	Mean depen	dent var	0.010180
Adjusted R-squared	0.473976	S.D. depend	lent var	0.008596
S.E. of regression	0.006235	Akaike info	criterion	-7.287211
Sum squared resid	0.006141	Schwarz criterion		-7.192311
Log likelihood	598.9077	F-statistic		37.49267
Durbin-Watson stat	2.148955	Prob(F-statis	stic)	0.000000

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LIPC(-1)	-0.001578	0.000885	-1.783204	0.0765
D(LIPC(-1))	0.391527	0.073948	5.294619	0.0000
D(LIPC(-2))	0.343006	0.073640	4.657877	0.0000
C	0.001689	0.000900	1.877070	0.0623
R-squared	0.486805	Mean dependent var		0.010180
Adjusted R-squared	0.477123	S.D. dependent var		0.008596
S.E. of regression	0.006216	Akaike info criterion		-7.299172
Sum squared resid	0.006143	Schwarz criterion		-7.223251
Log likelihood	598.8825	F-statistic		50.27468
Durbin-Watson stat	2.151675	Prob(F-statistic)		0.000000

(a) ADF test with constant and trend

(b) ADF test with constant