Week4:

Exercises 3 (chapter 6 Textbook)

- 6. Consider the MA(1) process $y_t = \varepsilon_t 0.12 \ \varepsilon_{t-1}$ where $\ \varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$
 - a. Find the ACF of the process.
 - b. Is the model stationary? Justify your answer.
 - c. Is the model invertible? Justify your answer.
 - d. Characterize the behavior of the Partial Autocorrelation Function of the process.
- 7. Consider the MA(2) process $y_t=14+\ \epsilon_t-0.1\ \epsilon_{t-1}+0.21\epsilon_{t-2}$ where $\ \epsilon_t\sim WN(0,\sigma_\epsilon^2)$
 - a. Find the ACF of the process.
 - b. Is the model stationary? Justify your answer.
 - c. Is the model invertible? Justify your answer.
 - d. Characterize the behavior of the Partial Autocorrelation Function of the process.

8. Suppose that you have time series data of a given country's inflation denoted as y_t . With these data the following model was estimated :

Dependent Variable: INFL Method: Least Squares Date: 11/08/12 Time: 16:08 Sample: 1971M01 2011M12 Included observations: 492

Convergence achieved after 35 iterations MA Backcast: 1970M10 1970M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.000127	0.007137	140.1296	0.0000
MA(1)	0.372642	0.034864	10.68835	0.0000
MA(2)	-0.287517	0.036356	-7.908265	0.0000
MA(3)	-0.642579	0.035015	-18.35160	0.0000
R-squared	0.568424	Mean dependent var		1.002714
Adjusted R-squared	0.565771	S.D. dependent var		0.536875
S.E. of regression	0.353779	Akaike info criterion		0.767809
Sum squared resid	61.07791	Schwarz criterion		0.801943
Log likelihood	-184.8810	Hannan-Quinn criter.		0.781212
F-statistic	214.2467	Durbin-Watson stat		1.389038
Prob(F-statistic)	0.000000			
Inverted MA Roots	.85	61+.62i	6162i	

- a. Obtain the general theoretical expression for $E[y_t]$ and $Var(y_t)$
- b. Using the Eviews output provide an estimate for $E[y_t]$ and $Var(y_t)$

Week 5:

Exercises 1, 5 and 6 (chapter 7 Textbook)

- 9. Consider the AR(2) process $y_t = 2 + 0.8y_{t-1} 0.1y_{t-2} + \varepsilon_t$ where $\varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$
 - a. Is the process stationary?
 - b. Compute the unconditional mean and variance of the process.
 - c. Determine the PACF and describe the ACF of the process.
- 10. Suppose that you have time series data of a given country's inflation denoted as y_t . With these data the following model was estimated :

Dependent Variable: INFL Method: Least Squares Date: 11/07/12 Time: 14:02

Sample (adjusted): 1971M03 2011M12 Included observations: 490 after adjustments Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.999994	0.016895	59.18885	0.0000
AR(1)	1.006304	0.029335	34.30388	0.0000
AR(2)	-0.769362	0.029310	-26.24904	0.0000
R-squared	0.718467	Mean dependent var		1.000375
Adjusted R-squared	0.717311	S.D. dependent var		0.536716
S.E. of regression	0.285364	Akaike info criterion		0.336001
Sum squared resid	39.65768	Schwarz criterion		0.361681
Log likelihood	-79.32032	Hannan-Quinn criter.		0.346087
F-statistic	621.4079	Durbin-Watson stat		2.779603
Prob(F-statistic)	0.000000			
Inverted AR Roots	.50+.72i	.5072i		

- a. Obtain the general theoretical expression for $E[y_t]$.
- b. Using the Eviews output provide an estimate for $E[y_t]$.
- c. Suppose that the inflation rate at November 2011 and December 2011 were 1 and 1.2 respectively. Obtain the optimal forecast estimate for the inflation rate according to this model for:
 - i. January 2012
 - ii. February 2012
- d. Provide estimates for the forecast uncertainty for:
 - i. January 2012
 - ii. February 2012