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1 - INTRODUCTION 
 
We use the term  "pragmatic forecasting procedures" by opposition to model 
based approaches to forecasting (as ARIMA modelling and structural time series 
modelling). Pragmatic forecasting procedures were designed to solve the problem 
of generating good forecasts for certain general patterns of time series behaviour 
without clearly defining a data generating process' model nor the correspondent 
optimal forecast function.  
 
Pragmatic forecasting procedures are extrapolative short term forecasting 
methods. Extrapolative are all univariate methods despite its statistical 
sofistication. All extrapolative methods have the implicit assumption that near 
future will be in the line of (at least) recent past. But, as things are changing it's 
better not to project actual conditions to far ahead and stay in short term horizons. 
What short term is is more difficult to define: practical needs are always pressing 
you to cover more periods ahead ! 
 
Pragmatic forecasting procedures all share the implicit (and also pragmatic) idea 
that a series has a set of components (trend, seasonals, and an error). If you 
conceive components as deterministic (an overall polinomial trend, a fixed 
seasonal pattern) a least squares regression on time and seasonal dummies is a 
good choice. But probably the error is red and forecasts black ! If you admit that 
components evolve according to a non specified pattern, then you need more 
flexible estimators. Estimators based on moving averages were a possible solution 
now in oblivion because estimators based in exponentially wheigted moving 
averages - exponential smoothing - were found superior and easy to use (and you 
don't even have to know that you are working with exponentially weighted moving 
averages). 
 
Exponential smoothing - the set of forecasting methods that is known under the 
name of exponential smoothing (for a compreensive review see Gardner, 1985) - 
appeared by late fifties early sixties (Brown, 1959; Holt, 1960; Winters, 1960). 
Easy to use, understand and implement, even for large sistems, its popularity grew 
among users.  Later, with the development of computational facilities, which also 
facilitates more flexible usage of exponential smoothing, more sofisticated 
methods entered into the competion but, among extrapolative time series 
methods, exponential smoothing was found hard to beat in forecasting 
perfomance. After all what came as a pragmatig forecasting procedure was found 



 3 

optimal for some data generating processes and very robust in general. So, it 
continues in use and it continues deserving atention both for application in large 
routine forecasting and for providing a perfomance benchmark  for more 
sofisticated methods. Its behaviour shows that naïves are not as naïves as they 
used to be. 
 
2 - "CONSTANT" LEVEL SERIES:  SIMPLE SMOOTHING 
 
Assume you want to forecast future values of a series that behave like the one 
shown in Graph 1: 
 
Graph 1  
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The series has no trend and can be viewed as oscilations around a "locally 
constant level". The pragmatic solution to forecast future values is to estimate the 
level at the end of the series, let $aT  be that estimate, and, since there is no trend, 
to project it into the future, i.e. the forecast function is: 
 

$ $Y aT h T+ =  , for h =1 2, ,... 
 
Now, the problem is how to estimate the level. We can use means: an operator 
that filters erratic components. But since the level is changing it seems reasonable 
to think that recent values of the series are more important to estimate the actual 
level than long past ones. So, we want to discard some of the past information. 
This can be done by using moving averages: only the last N observations enter 
to form the level estimate. And each time a new observation arrives the actual 
level estimate is revised: the most ancient observation is dropped and is replaced 
by the newcomer.  
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Simple exponential smoothing proposes another solution. Assume that at time 
t-1, you have an estimate of the level, $at−1 , and that at time t you observe yt , and 
want to update the estimate of the level. Then, the new estimate may be formed 
via the recursion: 
 

$ ( ) $a y at t t= + − −α α1 1 ,  with 0 1< <α  . 
 
Actually, sistematic use of this estimator is equivalent to an exponentially weighted 
moving average: 
 

$ ( ) ( ) ( )a y y y yt t t t t= + − + − + − +− − −α α α α α α α1 1 11
2

2
3

3 L 
 

High values of the smoothing constant discount past information very quickly but 
filter poorly erratic oscilations, low values of the smoothing constant have the 
opposite effect. 
 
3 - "LOCAL" LINEAR SERIES - HOLT'S METHOD 
 
Assume now that you want to forecast a series like the one in Graph 2: 
 
Graph 2 

90

100

110

120

130

140

150

160

170

 
 

The series is trended and this trend can be aproximated, at least locally, by a 
linear function, i. e. the trend is changing but linearity seems adequate for adjacent 
observations.  
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To forecast future values of a linear trend we need two estimates: an estimate of 
the level of trend ( $aT ) and an estimate of the slope of trend ( $bT ) at the end of the 
period. Then the forecast function is: 
 

$ $ $ .Y a b hT h T T+ = +  , for h =1 2, ,... 
 
How to get $aT  and $bT ? Overall least squares is not adequate for a changing 
lienear trend. "Moving" least squares or weighted least squares are better. 
Pragmatic solutions use estimators based on moving averages, simple moving 
averages and double moving averages, simple exponential smoothing and double 
exponential smoothing, etc. Holt's solution uses the two following recursive 
estimators: 
 
  $ ( )( $ $ )a y a bt t t t= + − +− −α α1 1 1 ,  with 0 1< <α   
 
  $ ( $ $ ) ( ) $b a a bt t t t= − + −− −β β1 11 ,  with 0 1< <β  . 
 
4 - DAMPED TRENDS 
 
Empirical aplications shown that Holt's linear forecasts tend to overstate medium 
and long horizons. Gardner and McKenzie (1985) suggest the introduction of a 
parameter that moderates extrapolation as time horizon grows. This was found 
adequate for series like the one in Graph 3. 
 
Graph 3 
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To damp extrapolations, the linear forecast function was modified by introducing a 
parameter φ, taking values between 0 and 1. So the forecast function becames: 
 

$ $ $Y a bT h T T
j

j

h

+
=

= + ∑φ
1

 , for h =1 2, ,... 

 
In accordance, recursive estimators are now: 
 
  $ ( )( $ $ )a y a bt t t t= + − +− −α α φ1 1 1 ,  with 0 1< <α   
 
  $ ( $ $ ) ( ) $b a a bt t t t= − + −− −β β φ1 11 ,  with 0 1< <β  
 
The method can be viewed as a generalization of exponential smoothing 
forecasting patterns: 
 
1) With φ = 0   the method collapses in simple exponential smoothing. 
 

2) With 0 1< <φ  the trend is damping and  lim $ $ $ ( )Y a bT h T T+ = +
−
φ
φ1

. For low and 

moderate values of φ the eventual forecast function becomes practically constant a 
few steps ahead. 
 
3) With φ =1 Holt's method emerges. 
 
4) With φ >1  the forecast's function slope is recieving exponentially growing 
weight and forecasts become explosive.  
 
5 - SEASONAL SERIES:  HOLT-WINTERS METHODS 
 
For series that exhibit seasonality, possibly non deterministic, the same principle of 
recursive estimators was extended to the estimation of seasonal factors (Winters, 
1960). As seasonal patterns can be judge additive or multiplicative, two sets of 
recursions are available. 
 
If additive seasonality is considered adequate (see Graph 4), the set of estimators 
and the forecast function are: 
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Graph 4 
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Additive seasonality 
 
Estimators: 
  $ ( $ ) ( )( $ $ )a y s a bt t t L t t= − + − +− − −α α1 1 1 ,  with 0 1< <α   
 
  $ ( $ $ ) ( ) $b a a bt t t t= − + −− −β β1 11 ,  with 0 1< <β  
 
  $ ( $ ) ( ) $s y a st t t t L= − + − −γ γ1  , with 0 1< <β  
 
 
Forecast function:     $ $ $ . $Y a b h sT h T T T h kL+ + −= + +  ,  

 
for h =1 2, ,..., and  k =1 for h L≤ , k = 2  for L h L< ≤ 2  ... 

 
 
For series exhibiting multiplicative seasonality (see Graph 5) the set of estimators 
and the forecast function are: 
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Graph 5 
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Multiplicative seasonality 
 
Estimators: 
  $ ( / $ ) ( )( $ $ )a y s a bt t t L t t= + − +− − −α α1 1 1 ,  with 0 1< <α   
 
  $ ( $ $ ) ( ) $b a a bt t t t= − + −− −β β1 11 ,  with 0 1< <β  
 
  $ ( / $ ) ( ) $s y a st t t t L= + − −γ γ1  , with 0 1< <β  
   

 
Forecast function:       $ ( $ $ . ). $Y a b h sT h T T T h kL+ + −= +  ,  

 
for h =1 2, ,..., and  k =1 for h L≤ , k = 2  for L h L< ≤ 2  ... 

 
If the trend is more locally constant than locally linear the equation of the slope 
estimator can be dropped. Damped trends can also be considered by introducing 
the φ parameter as above.  
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6 - PRACTICAL ISSUES 
 
6.1 - IDENTIFICATION 
 
The above presentation of exponential smoothing methods shows that exponential 
smoothing is more than a collection of methods. Exponential smoothing should be 
viewed as a forecasting methodology, with different methods for different time 
series patterns. So, selection of the appropriate exponential smoothing procedure 
is important in order to achieve more accuracy, a criticism that is often made to 
forecasting competions.  
 
The simplest way to select the most appropriate method is by visual inspection, 
i.e., graphic analysis of the patterns of the series. A more objective selection 
procedure, that can be used in automatic forecasting, was proposed by Gardner 
and McKenzie (1988). We reproduce their identification rules in Table 1. 

Table 1 
Gardner and McKenzie identification rules 

 Case Minimum variance series Procedure selected  
 A Original Constant level  
 B First difference Damped trend  
 C Second difference Linear or exponential trend  
 D First seasonal diference Constant level, seasonal  
 E First difference of D Damped trend, seasonal  
 F Second difference of D Linear or exponential, seasonal  
 
Tashman and Kurk (1996) report results on the use of three selection protocols 
(Gardner-McKenzie's variance analysis, a visual protocol and a selection 
procedure using Schwarz BIC).   
 
6.2 - CHOOSING SMOOTHING PARAMETERS 
 
When computational facilities were not as developped as they are now, work with 
exponential smoothing methods, tended to guesstimate the smoothing 
parameters. Values of the smoothing parameters between 0.1 and 0.3 were 
suggested. The most usual approach, now, is the estimation by minimization of 
some function of one-step-ahead forecast errors (usually the sum of squared 
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errors). This approach has shown that the suggested range for guesstimates is 
often violated. 
 
6.3 - STARTING VALUES 
 
Any recursive estimator needs starting values. To start the simple exponential 
smoothing, we need an estimate of $a0 ; for starting the Holt's method, we need $a0  
and $b0 ; and for seasonal methods, we need $a0 , $b0   and $si  for i L= − − +0 1 1, ,..., .  
 
Many heuristic solutions are in use. The current idea concerning starting values 
seems to be that, no matter how we start, starting values are no longer important 
after some recursions for moderate long series.  
 
This line of reasoning can be suported by what happens with the simple 
exponential smoothing. In fact, after t periods, the estimator of the level of the 
series will be computed as: 
 

$ ( ) ( ) ( ) ( ) $a y y y y at t t t
t t= + − + − + + − + −− −
−α α α α α α α α1 1 1 11

2
2

1
1 0L  

 
and we see that the effect of the starting value is vanishing as t grows.  
 
For seasonal factors, this will not happen so quickly, unless we have a very long 
series or use a very high smoothing parameter. And, more generally, even for 
simpler methods, empirical applications show that parameter optimization (and 
forecasts to some extent) is very sensitive to different starting values (Chatfield 
and Yar, 1988).  
 
 
7 - OPTIMALITY OF EXPONENTIAL SMOOTHING METHODS 
 
Optimality of exponential smoothing methods for some stochastic processes and 
ARIMA models was soon recognized (Muth, 1960; Nerlove and Wage, 1964; Theil 
and Wage, 1964; Roberts, 1982). We present some results: 
 
Simple exponential smoothing 
 
Note that $ ( ) $a y at t t= + − −α α1 1  can also be written (the error correction form) as 
(1) $ $a a et t t= +−1 α  where e y at t t= − −$ 1 is the last one step ahead forecast error. 
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From (1) we have $
( )

a e
Bt
t=

−
α

1
  and from the error definition y a et t t= +−$ 1 .  So, by 

substitution, y e
B

et
t

t=
−

+−α 1

1( )
, or  

 
( ) ( )1 1 1− = − − −B y e et t tα .  

 
Provided the errors are white noise, yt  is an ARIMA(0,1,1) with parameter 
θ α= −1 . As 0 1< <α , also 0 1< <θ  and simple exponential smoothing is 
equivalent to adjusting a restricted ARIMA(0,1,1). We can also see that simple 
exponential smoothing is stable (invertible) for 0 2< <α  and not only for 
0 1< <α . 
 
Simple exponential smoothing is also optimal for the structural model: 
 

yt t t

t t t

= +
= +−

µ ε
µ µ η1

 

 
Holt's method 
 
Holt's estimators in the error correction form are: 
 
  $ $ $a a b et t t t= + +− −1 1 α  , and 
 
  $ $b b et t t= +−1 αβ ,   where e y a bt t t t= − +− −( $ $ )1 1 .  
 

So we have $
( )

b e
Bt
t=

−
αβ
1

 and $
( ) ( )

a e
B

e
Bt

t t=
−

+
−

−αβ α1
21 1

 . Substitution of $at−1  and $bt−1 

in y a b et t t t= + +− −$ $
1 1  gives 

 
( ) ( ) ( )1 2 12

1 2− = − − − − −− −B y e e et t t tα αβ α . 
 
Provided errors are white noise,  yt  is following an ARIMA(0,2,2) with parameters 
θ α αβ1 2= − −  and θ α2 1= − . Applying Holt's method is equivalent to adjusting a 
restricted ARIMA(0,2,2). 
 
Holt's method is also optimal for the structural model: 
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yt t t

t t t t

t t t

= +
= + +
= +

− −

−

µ ε
µ µ β η
β β ξ

1 1

1

 

 
Damped exponential smoothing 
 
As a similar analysis shows, applying damped exponential smoothing with 
0 1< <φ  is equivalent to adjusting an ARIMA(1,1,2), with θ φ α φαβ1 1= + − −  and 
θ φ α2 1= −( ). 
 
Holt-Winters 
 
Additive Holt-Winters is equivalent to adjusting an ARIMA L L( , , )( , , )0 1 1 0 1 0+  (see 
Roberts, 1982). Additive Holt-Winters ARIMA equivalent is similar to Harvey's 
basic structural model ARIMA equivalent (Harvey, 1989). 
 
Multiplicative Holt-Winters is nonlinear and does not have any ARIMA equivalent. 
 
8 - PREDICTION INTERVALS 
 
When we do not define clearly the model, it is hard to construct prediction intervals 
for more then one step ahead (as we don't kown how to obtain forecast variances 
for longer horizons). Intervals derived by assuming deterministic trends and 
seasonals seem "unhelpful and potentially misleading" (Chatfield and Yar, 1988). 
So, except for the multiplicative Holt-Winters, intervals derived from ARIMA 
model's for wich exponential smoothing methods are optimal are an option. For 
multiplicative Holt-Winters see Chatfield and Yar (1991). 
 
An empirical approach to prediction intervals, based on computation of error's 
variances for different lead times during model-fitting, was proposed by Gardner 
(1988). He also proposed the use of Chebyshev's inequality in defining the 
confidence level. This seems to give rise to too much wide prediction intervals, 
which would be not very helpfull. 
 
 
9 - ROBUSTNESS 
 
Although easy to use and understand and despite its optimal limited range of 
application compared to Arima modelling exponential smoothing methods 
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compared very well with model based methods in forecasting competitions (see 
Makridakis et al., 1982). Recently, Chen (1997) investigated robustness properties 
of four time series forecasting methods for seasonal series (wich include Holt-
Winters, ARIMA, structural components, and regression on polinomial time trends 
and dummies with stationary ARMA errors). He concluded that "the strongly robust 
properties of the Holt-Winters method are due to the reasonable structure of the 
predictor with parsimonious parametrization. This has flexibility to handle a wide 
class of time series having stochastic/deterministic linear trend and seasonal 
components. This flexibility and parsimony are even more important in the case 
where the time series has structural changes". 
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