CHAPTER 14 FORECASTING VOLATILITY II

Figure 14.1 Autocorrelograms of the Squared Returns

SP500 index (weekly data)

Yen/US Dollor exchange rate (daily data)

Sample: 1/12/1998 7/07/2008 Included observations: 547 Sample: 4251 9414 Included observations: 5164

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 4 5 6 7 8 9 10 11 12	0.058 0.083 0.065 0.041 0.062 0.072 0.002 0.031 0.057 0.068	0.002 0.073 0.030 0.017 0.045 0.044 -0.032 0.030 0.035 0.045	30.605 32.441 36.282 38.590 39.525 41.644 44.538 44.541 45.083 46.911 49.486 51.110	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			1 2 3 4 5 6 7 8 9 10 11 12	0.113 0.088 0.069 0.103 0.090 0.090 0.090 0.094 0.089 0.032 0.071	0.077 0.054 0.037 0.076 0.049 0.049 0.051 0.044 -0.019 0.041	201.84 268.31 307.91 332.32 387.32 428.94 470.50 515.75 556.38 561.60 587.55 596.28	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10-year Treasury Note (daily data)

Sample: 10000 12136 Included observations: 1960

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ľЬ	l ib	1	0.089	0.089	15,563	0.000
ip i	l ip	2	0.096	0.089	33.691	0.000
ıþ	l ip	3	0.067	0.052	42.535	0.000
ų p	10	4	0.121	0.105	71.317	0.000
		5	0.186	0.163	139.06	0.000
l P	l ip	6	0.109	0.069	162.55	0.000
IP I	l ip	7	0.111	0.068	186.85	0.000
I <u>P</u>		8	0.090	0.045	202.79	0.000
le.		9	0.126	0.072	234.20	0.000
		10	0.154	0.093	280.80	0.000
Ľ	1 2	11	0.129		313.52	
i Ha	4 1	12	0.128	0.066	345.92	0.000

These slides are based on: González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc. Slides adapted for this course. We thank Gloria González-Rivera and assume full responsibility for all possible errors due to our changes

Model:
$$r_t = \mu_{t|t-1} + \varepsilon_t = \mu_{t|t-1} + \sigma_{t|t-1} z_t$$
$$\varepsilon_t = \sigma_{t|t-1} z_t$$

where:

 z_t is independent and identically distributed with $E[z_t] = 0$ and $E[z_t^2] = 1$

Conditional average: $E[r_t | I_{t-1}] = \mu_{t|t-1}$

Conditional variance:

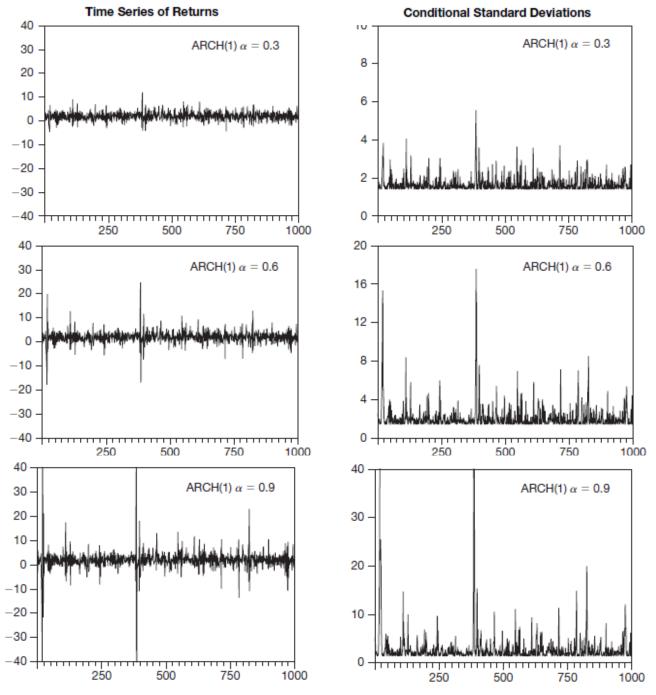
$$\sigma^{2}_{t|t-1} = Var(r_{t}|I_{t-1}) = E\left[\left(r_{t} - \mu_{t|t-1}\right)^{2} \middle| I_{t-1}\right] = E[\varepsilon_{t}^{2}|I_{t-1}]$$

- The heteroscedasticity of ε_t is just driven by $\sigma_{t|t-1}^2$
- The unconditional variance is constant: $E[\varepsilon_t] = \sigma_{\varepsilon}^2$

14.1.1 ARCH(1)

$$r_{t} = \mu_{t|t-1} + \varepsilon_{t} = \mu_{t|t-1} + \sigma_{t|t-1} z_{t}$$

$$\sigma^{2}_{t|t-1} = \omega + \alpha \varepsilon^{2}_{t-1} \implies \sigma^{2}_{\varepsilon} = \frac{\omega}{1-\alpha} \qquad \omega >$$


Table 14.1 Descriptive Statistics of ARCH(1) Process and Standardized Process

	Pane	el A		Panel B	
Descriptive Statis Sample: 1 1000	istics of an ARCH(1) proces	ss (returns)		120 Series: Standardized proces	s:
	$\alpha = 0.3$	$\alpha = 0.6$	$\alpha = 0.9$	100 - Z = r/st.dev Sample 1 1000	
Mean	1.975935	1.947474	1.881775	Observations 1000	/
Median	1.930632	1.924136	1.906267		· '
Maximum	11.78598	24.60907	55.02234	Mean -0.010666 Median -0.038664	- 17
Minimum	-4.482281	-17.69567	-49.36718	60 - Maximum 3.980160	- '
Std. Dev.	1.766631	2.611512	4.810237	Minimum -3.319720	
Skewness	0.208300	-0.065491	-0.863349	40 - Std. Dev. 1.003468	
Kurtosis	4.847531	19.48612	56.65335	20 - Skewness 0.141614 Kurtosis 3.204294	
Jarque-Bera Probability	149.4553 0.000000	11325.38 0.000000	120069.3 0.000000	0	

$$\frac{r_t - \mu_{t|t-1}}{\sigma_{t|t-1}} = z_t$$

 $0, \alpha \ge 0$

Figure 14.2 Simulated ARCH(1) Processes

Figure 14.3 Autocorrelation Functions of simulated ARCH(1) Process

$$r_t = 2 + \varepsilon_t$$

$$\sigma_{t|t-1}^2 = 2 + 0.3\varepsilon_{t-1}^2$$

Panel A										
Tin	nes series r _t					Times series r_t^2				
Sample: 1 1000 Included observations: 1000					Sample: 1 1000 Included observations: 1000					
Autocorrelation	Autocorrelation Partial Correlation AC PAC Autocorrelation Partial Correlation			AC	PAC					
		1 2 3 4 5 6 7 8 9 10 11 12	-0.062 0.071 0.050	-0.090 -0.071 0.059 0.059 -0.015 0.018 0.004 -0.051 0.001 -0.009 0.008 0.042			1 2 3 4 5 6 7 8 9 10 11 12	0.177 0.063	0.001 -0.009 -0.026	

Panel B

Times series $r_t / \sigma_{t|t-1}$

Times series $r_t^2 / \sigma_{t|t-1}^2$

Sample: 1 1000 Included observations: 1000

Sample: 1 1000	
Included observations: 1000	

Autocorrelation	Partial Correlation	I Correlation AC PAC Autocorrelation Partial Correlation			AC	PAG			
		1 2 3 4 5 6 7 8 9 10 11 12	0.050 -0.027 0.024 -0.005 -0.059	-0.039 0.074 0.061 -0.014 0.018 -0.012 -0.060 0.003 -0.015			1 2 3 4 5 6 7 8 9 10 11 12	0.067 -0.012 0.018 0.007 -0.048 -0.008 0.033 -0.033 -0.037 0.012 -0.052	-0.01 0.02 0.00 -0.04 -0.00 0.03 -0.03 -0.03

5

1-step-ahead variance forecast $\sigma_{t+1|t}^2 = \omega + \alpha \varepsilon_t^2$,

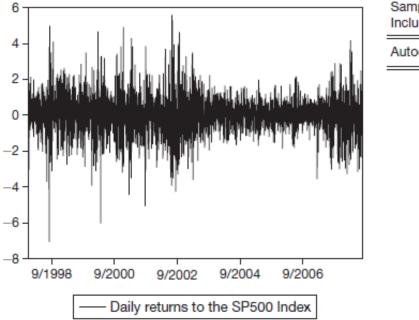
two-step-ahead forecast $\sigma_{t+2|t}^2 = \omega + \alpha E(\varepsilon_{t+1}^2 | I_t) = \omega + \alpha \sigma_{t+1|t}^2$

For any h > 1, using backward substitution we find that the *h*-step-ahead forecast of the conditional variance is

$$\sigma_{t+h|t}^2 = \omega(1 + \alpha + \alpha^2 + \alpha^3 + \dots + \alpha^{h-2}) + \alpha^{h-1}\sigma_{t+1|t}^2$$

$$\underset{h \longrightarrow \text{large}}{=} \frac{\omega}{1 - \alpha} + \alpha^{h-1}\sigma_{t+1|t}^2,$$

14.1.2 ARCH(p)


$$r_t = \mu_{t|t-1} + \varepsilon_t = \mu_{t|t-1} + \sigma_{t|t-1}z_t$$

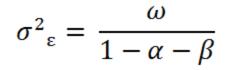
$$\sigma_{t|t-1}^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2 + \dots + \alpha_p \varepsilon_{t-p}^2$$

$$\omega > 0, \alpha_i \ge 0 \quad i = 1, 2 \dots p.$$

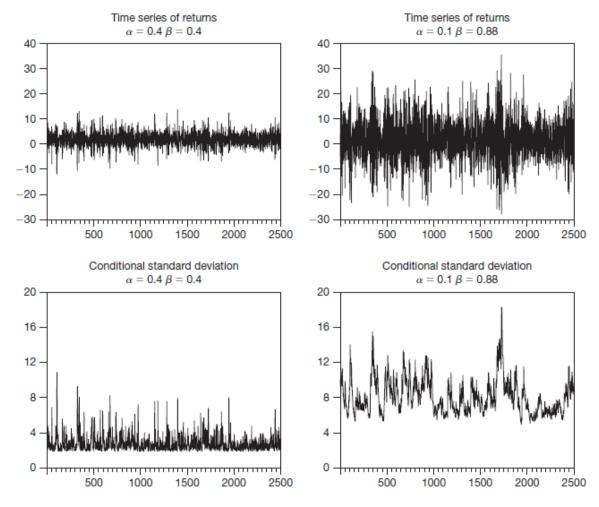
$$\alpha_1 + \alpha_2 + \dots + \alpha_p < 1,$$

Daily Returns rt

Autocorrelograms of the Squared Returns r²_t


Sample: 5815 8471 Included observations: 2657

Autocorrelation	Partial Correlation		AC	PAC
- ib		1	0.152	0.152
ı 🗖 i		2	0.196	0.177
		3	0.196	0.153
ı þ	l ip	4	0.136	0.067
·Þ		5	0.194	0.124
ı 🗗	l ip	6	0.144	0.062
ı 🗖 i	l ip	7	0.168	0.083
ı 🖻	l ip	8	0.160	0.066
ιþ	l I	9	0.117	0.019
ı 🖻	l i	10	0.147	0.049
ı þ	l ip	11	0.136	0.043
ı þ	l ip	12	0.130	0.033
ιþ		13	0.103	-0.000
ιþ	•	14	0.098	0.004
ιþ	u	15	0.080	-0.014


Figure 14.4 Daily SP500 Returns and Autocorrelations of Squared Returns

14.1.3 GARCH(1,1)

 $\sigma_{t|t-1}^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1|t-2}^2$

with non-negative parameters $\omega > 0$, $\alpha \ge 0$, and $\beta \ge 0$.

Figure 14.5 Low and High Persistence GARCH(1,1) Processes

Table 14.2Descriptive Statistics of Low and High PersistenceGARCH(1,1) Processes

Descriptive Statistics of a GARCH(1,1) process (returns) Sample: 1 20000							
Sample: 1 20000		010-099					
	$\alpha = 0.4, \ \beta = 0.4$	$\alpha = 0.1, \beta = 0.88$					
Mean	1.992061	2.019090					
Median	1.998115	1.993319					
Maximum	67.24605	84.91548					
Minimum	-46.49060	-80.57394					
Std. Dev.	3.281838	9.920762					
Skewness	0.160152	0.116894					
Kurtosis	26.86840	5.859899					
Jarque-Bera	474835.8	6861.400					
Probability	0.000000	0.000000					

Figure 14.6 Autocorrelation Functions of Low and High Persistence GARCH(1,1) Processes

$$r_t = 2 + \varepsilon_t$$

$$\sigma_{t|t-1}^2 = 2 + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1|t-2}^2$$

Time series r_t^2

Time series r,2

(2) $\alpha = 0.1$, $\beta = 0.88$ (high persistence)

(1) $\alpha = 0.4$, $\beta = 0.4$ (low persistence)

Sample: 1 20000 Included observations: 20000

Sample: 1 20000	

Included observations: 20000

Autocorrelation	Partial Correlation		AC	PAC		Autocorrelation	Partial Correlation		AC	PAC
		1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.383 0.376 0.249 0.167 0.139 0.113 0.089 0.086 0.048 0.034 0.026 0.015	0.470 0.208 0.182 -0.022 -0.046 -0.006 0.019 0.018 0.024 -0.029 -0.014 -0.006 0.002 0.017	= :			1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.263 0.301 0.249 0.254 0.209 0.255 0.277 0.248 0.260 0.215 0.199 0.212 0.233 0.245	0.249 0.143 0.129 0.065 0.119 0.139 0.079 0.085 0.025 0.009 0.041

Table 14.3 SP500 Daily Returns: Estimation of a GARCH(1,1) Model

Dependent Variable: R											
Method: ML - ARCH	Method: ML - ARCH (BHHH) - Normal distribution										
Sample: 5815 8471											
Included observations: 2657											
Convergence achieved	after 10 iterati	ons									
Bollerslev-Wooldrige r	obust standard	l errors & cova	riance								
Variance backcast: ON											
GARCH = C(2) + C(3))*RESID(-1)^	2 + C(4)*GAR	CH(-1)								
	Coefficient	Std. Error	z-Statistic	Prob.							
С	0.036267	0.017439	2.079665	0.0376							
	Variance	e Equation									
C	0.010421	0.005245	1.987099	0.0469							
RESID(-1)^2	0.065649	0.011338	5.790038	0.0000							
GARCH(-1)	0.927400	0.011045	83.96233	0.0000							
R-squared	-0.000534	Mean depend	ent var	0.009761							
Adjusted R-squared	-0.001666	S.D. depende	nt var	1.146761							
S.E. of regression	1.147716	2.888638									
Sum squared resid	0										
Log likelihood	-3833.556	Durbin-Wats	on stat	2.079139							

Figure 14.7 Autocorrelation Function of the Standardized Squared Residuals $\hat{\varepsilon}_t^2/\hat{\sigma}_{t|t-1}^2$ from GARCH(1,1) for SP500 Daily Returns

Sample: 5815 8471 Included observations: 2657

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
dı		1	-0.031	-0.031	2.5244	0.112
I))	2	0.033	0.032	5.4669	0.065
I)	1	3	0.007	0.009	5.6164	0.132
I)	1	4	0.005	0.005	5.6914	0.223
I)	I)	5	0.006	0.005	5.7756	0.329
•		6	-0.016	-0.016	6.4731	0.372
I)	1	7	0.000	-0.001	6.4731	0.486
I)		8	0.023	0.024	7.8948	0.444
I)		9	0.001	0.002	7.8965	0.545
l)	I)	10	0.024	0.023	9.4796	0.487
I)		11	0.009	0.010	9.7071	0.557
•		12	-0.010	-0.012	9.9971	0.616
I)	1	13	0.002	0.000	10.011	0.693
•	l II	14	-0.004	-0.003	10.063	0.758

Table 14.4 Maximum Likelihood Estimation of ARCH and GARCH Processes

SP500 daily returns—ARCH(9)								
Dependent Variable: R								
Method: ML - ARCH (BHHH) - Normal distribution								
Sample: 5815 8471								
Included observations: 2657								
Convergence achieved after 16 iterations								
Bollerslev-Wooldrige robust standard errors & covariance								
Variance backcast: ON								
$GARCH = C(2) + C(3)*RESID(-1)^{2} + C(4)*RESID(-2)^{2} + C(5)*RESID$								
(-3)^2 + C(6)*RESID(-4)^2 + C(7)*RESID(-5)^2 + C(8)*RESID(-6)^2								
+ C(9)*RESID(-7)^2 + C(10)*RESID(-8)^2 + C(11)*RESID(-9)^2								
	Coefficient	Std. Error	z-Statistic	Prob.				
С	0.037003	0.018214	2.031594	0.0422				
Variance Equation								
С	0.271763	0.040891	6.645982	0.0000				
RESID(-1)^2	0.029949	0.028081	1.066510	0.2862				
RESID(-2)^2	0.149370	0.044623	3.347391	0.0008				
RESID(-3)^2	0.095260	0.026377	3.611510	0.0003				
RESID(-4)^2	0.101684	0.027620	3.681607	0.0002				
RESID(-5)^2	0.082439	0.023397	3.523482	0.0004				
RESID(-6)^2	0.060298	0.021251	2.837387	0.0045				
RESID(-7)^2	0.090927	0.030511	2.980119	0.0029				
RESID(-8)^2	0.142659	0.029601	4.819476	0.0000				
RESID(-9)^2	0.082659	0.023815	3.470870	0.0005				
R-squared	-0.000565	Mean dependent var		0.009761				
Adjusted R-squared	-0.004346	S.D. dependent var		1.146761				
S.E. of regression	1.149251	Akaike info criterion		2.910013				
Sum squared resid	3494.776	Schwarz criterion		2.934377				
Log likelihood	-3854.952	Durbin-Watson stat 2.0790		2.079077				

Table 14.4 Maximum Likelihood Estimation of ARCH and GARCH Processes(continued)

SP500 daily returns—GARCH(1,1)								
Dependent Variable: F	ł							
Method: ML - ARCH (BHHH) - Normal distribution								
Sample: 5815 8471								
Included observations: 2657								
Convergence achieved after 10 iterations								
Bollerslev-Wooldrige robust standard errors & covariance								
Variance backcast: ON								
$GARCH = C(2) + C(3)*RESID(-1)^{2} + C(4)*GARCH(-1)$								
	Coefficient	Std. Error	z-Statistic	Prob.				
C	0.036267	0.017439	2.079665	0.0376				
Variance Equation								
С	0.010421	0.005245	1.987099	0.0469				
RESID(-1)^2	0.065649	0.011338	5.790038	0.0000				
GARCH(-1)	0.927400	0.011045	83.96233	0.0000				
R-squared	-0.000534	Mean dependent var		0.009761				
Adjusted R-squared	-0.001666	S.D. dependent var		1.146761				
S.E. of regression	1.147716	Akaike info criterion		2.888638				
Sum squared resid	3494.671	Schwarz criterion		2.897498				
Log likelihood	-3833.556	Durbin-Watson stat		2.079139				

Forecasting with GARCH(1,1)

1-step-ahead variance forecast

$$\sigma_{t+1|t}^2 = \boldsymbol{\omega} + \alpha \boldsymbol{\varepsilon}_t^2 + \beta \sigma_{t|t-1}^2$$

two-step-ahead forecast

$$\sigma_{t+2|t}^2 = \omega + \alpha E(\varepsilon_{t+1}^2 | I_t) + \beta \sigma_{t+1|t}^2 = \omega + (\alpha + \beta) \sigma_{t+1|t}^2$$

For any h > 1, using backward substitution we find that the *h*-step-ahead forecast of the conditional variance is

$$\sigma_{t+h|t}^2 = \omega(1 + (\alpha + \beta) + (\alpha + \beta)^2 + \dots + (\alpha + \beta)^{h-2}) + (\alpha + \beta)^{h-1}\sigma_{t+1|t}^2$$

If the forecast horizon is very large, and for $\alpha + \beta < 1$, the effect of $\sigma_{t+1|t}^2$ becomes negligible, and the *h*-step-ahead forecast becomes

$$\sigma_{t+h|t}^2 = \omega(1 + (\alpha + \beta) + (\alpha + \beta)^2 + (\alpha + \beta)^3 + \cdots) \rightarrow \frac{\omega}{1 - (\alpha + \beta)} \equiv \sigma^2$$