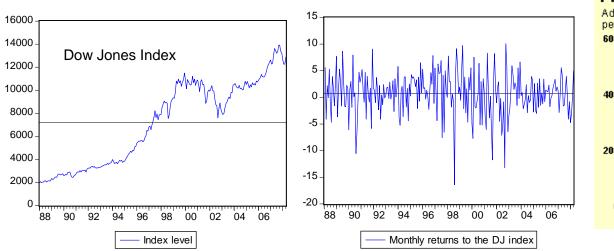
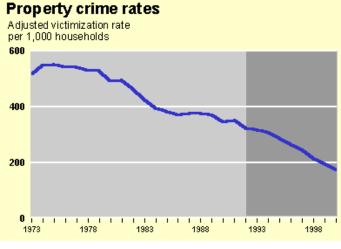
CHAPTER 3 STATISTICS AND TIME SERIES

A time series is a collection of records indexed by time.

 $\{y_t, t = 1, 2 \dots T\} = \{y_1, y_2, \dots, y_T\}$, where *T* is the number of periods

Figure 3.1 Examples of Time Series





1

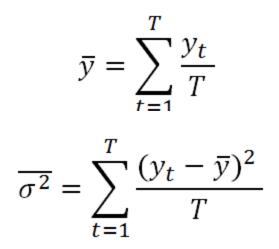
These slides are based on:

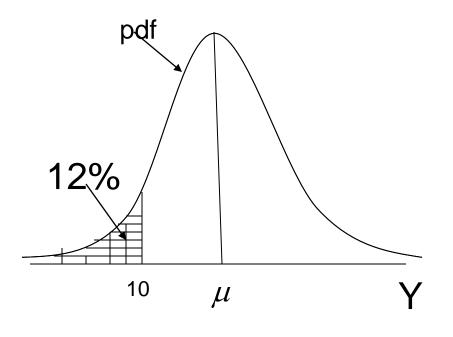
González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc. Slides adapted for this course. We thank Gloria González-Rivera and assume full responsibility for all errors due to our changes which are mainly in red **3.1 Stochastic Process and Time Series**

Random variables can be characterized in two ways:

 probability density/mass function (full characterization)

• moments (partial characterization)





 $P(Y \le 10) = 12\%$

Figure 3.2 Probability Density Function

3.1.1 Stochastic Process

A stochastic process is a collection of random variables indexed by time.

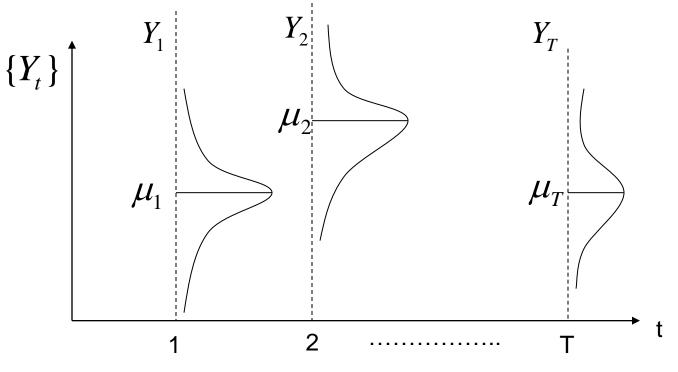


Figure 3.3 Graphical Representation of a Stochastic Process

A time series is a sample realization of a stochastic process.

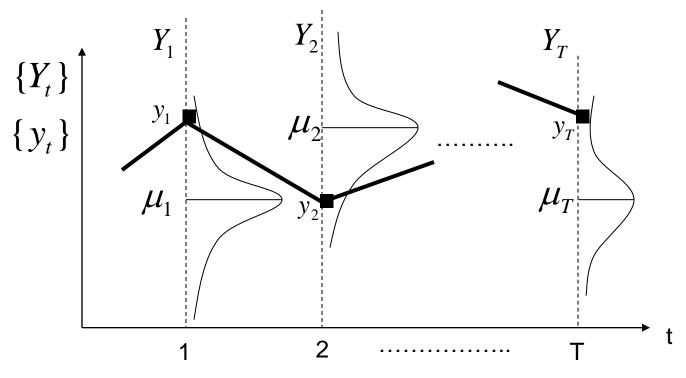
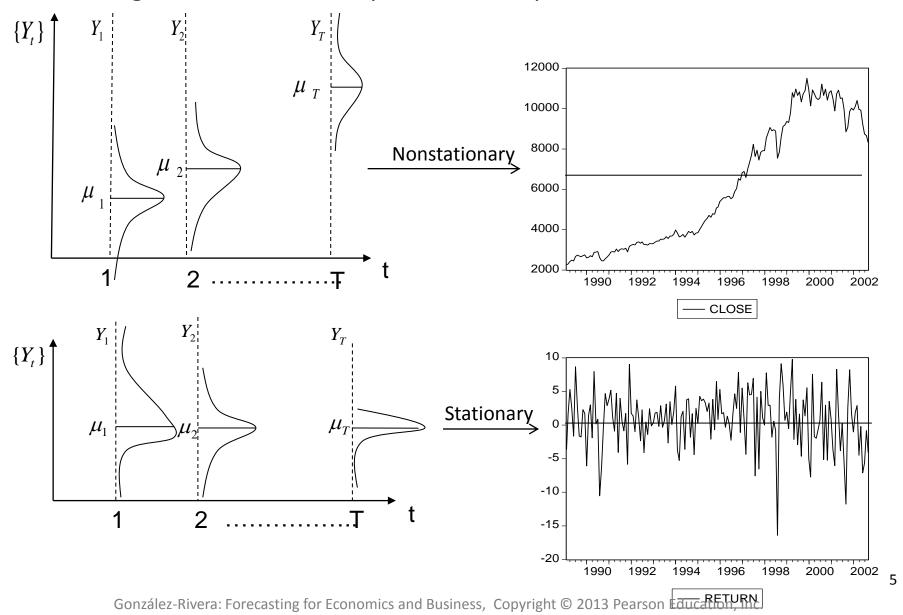


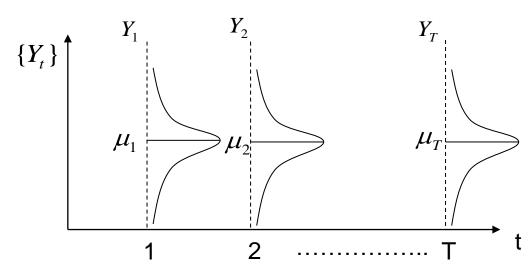
Figure 3.4 Graphical Representation of a Stochastic Process and a Time Series (Thick Line)

3.2.1 Stationarity

Figure 3.5 Nonstationary and Stationary Stochastic Process



A stochastic process is said to be **first order strongly stationary** if all random variables have the **same probability mass/density function**.



A stochastic process is said to be **first order weakly stationary** if all random variables have the same mean.

Figure 3.6 Strongly Stationary Stochastic Process

A stochastic process is said to be **second order weakly stationary** (or **covariance stationary**) if all random variables have the **same mean and the same variance and covariances do not depend on time, only on lag**.

3.2.2 Useful transformations of Nonstationary Processes

To transform a nonstationary series into a first-moment-stationary series, we can apply first differences :

$$\Delta y_t = (1 - L)y_t = y_t - y_{t-1}$$

$$\swarrow$$
Lag operator

To stabilize the variance we can use the Box-Cox transformation: (before taking differences)

$$y_i^{(\lambda)} = egin{cases} rac{y_i^\lambda - 1}{\lambda} & ext{if } \lambda
eq 0, \ \ln y_i & ext{if } \lambda = 0, \end{cases}$$

3.2.2 Useful transformations of Nonstationary Processes

Table 3.1 Dow Jones Index and Returns

				Δy_t	
Date	y_t	y_{t-1}	$\Delta y_t \qquad R_t$	$=\frac{y_{t-1}}{y_{t-1}} \times 100$	$R_t \approx \Delta \log(y_t)$
2001:01	10887.400	10788.000	99.40000	0.921394	0.917175
2001:02 2001:03 2001:04 2001:05 2001:06 2001:07 2001:08 2001:09 2001:10 2001:11 2001:11 2001:12 2002:01 2002:02	10495.300 9878.800 10735.000 10911.900 10502.400 10522.800 9949.800 8847.600 9075.100 9851.600 10021.600 9920.000 10106.100	10887.400 10495.300 9878.800 10735.000 10911.900 10502.400 10522.800 9949.800 8847.600 9075.100 9851.600 10021.600 9920.000	$\begin{array}{r} -392.10000 \\ -616.50000 \\ 856.20000 \\ 176.90000 \\ -409.50000 \\ 20.40000 \\ -573.00000 \\ -1102.20000 \\ 227.50000 \\ 776.50000 \\ 170.00000 \\ -101.60000 \\ 186.10000 \end{array}$	-3.601411 -5.874058 8.667045 1.647881 -3.752784 0.194241 -5.445319 -11.077610 2.571319 8.556380 1.725608 -1.013810 1.876008	-3.667862 -6.053649 8.311838 1.634451 -3.825013 0.194053 -5.599188 -11.740620 2.538816 8.209948 1.710889 -1.018984 1.858628
2002:03 2002:04	10403.900 9946.200	10106.100 10403.900	297.80000 -457.70000	2.946735 -4.399312	2.904153 -4.499017
2002:05 2002:06 2002:07	9925.300 9243.300 8736.600	9946.200 9925.300 9243.300	-20.90000 -682.00000 -506.70000	-0.210131 -6.871329 -5.481808	-0.210352 -7.118809 -5.637787
2002:08 2002:09	8663.500 8312.690	8736.600 8663.500	-73.10000 -350.81000	$-0.836710 \\ -4.049287$	-0.840230 -4.133554

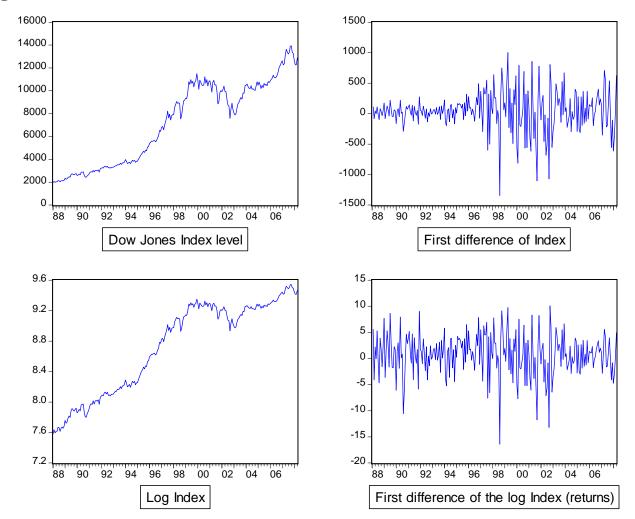


Figure 3.7 Dow Jones Index and Its Transformation to Returns

3.3 A New Tool of Analysis: The Autocorrelation Functions

Given two random variables *Y* and *X*, the correlation coefficient is a measure of the linear association.

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} \qquad -1 \le \rho_{X,Y} \le 1$$

Autocorrelation coefficient:
$$\rho_{Y_t,Y_{t-k}} = \frac{Cov(Y_t,Y_{t-k})}{\sqrt{Var(Y_t)}\sqrt{Var(Y_{t-k})}}$$

For second order stationary processes :

$$\rho_{Y_t,Y_{t-k}} = \rho_k = \frac{Cov(Y_t,Y_{t-k})}{Var(Y_t)} = \frac{\gamma_k}{\gamma_0} \qquad \rho_k = \rho_{-k} = \rho_{|k|}$$

The **autocorrelation function** (ACF) is the function

 $\rho: k \to \rho_k$

3.3 A New Tool of Analysis: The Autocorrelation Functions

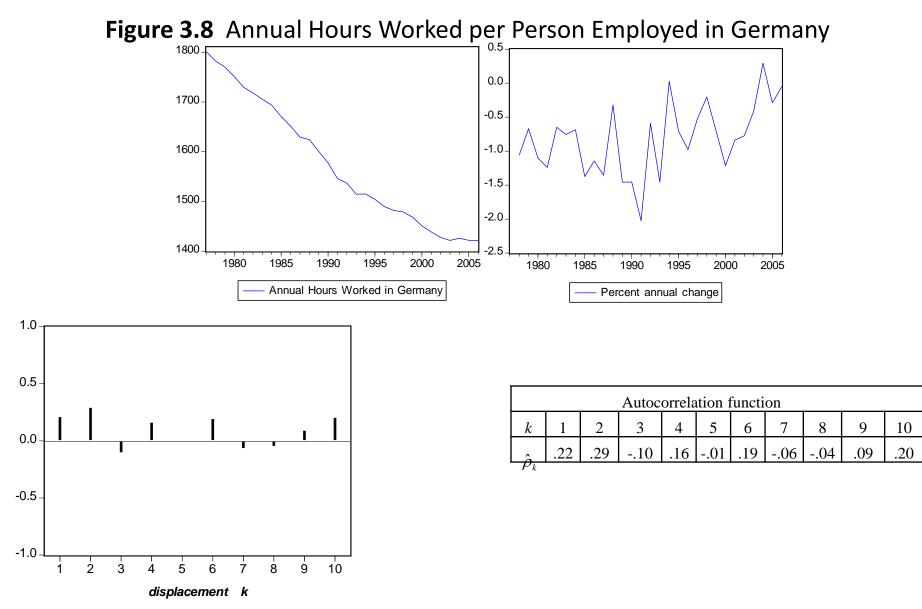
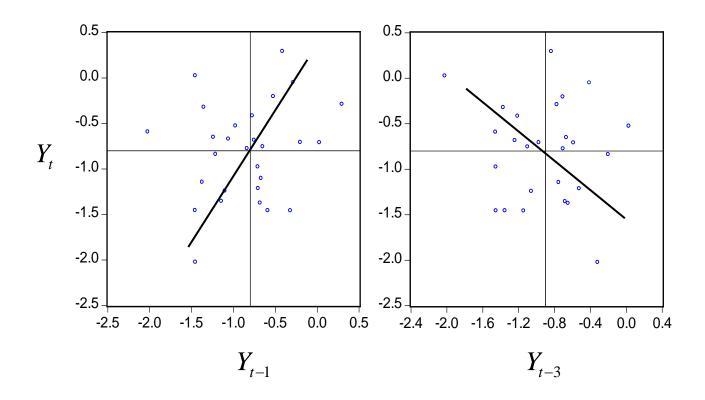


Table 3.2 Percentage Change in Working Hours in Germany:Calculation of the Autocorrelation Coefficients

	\boldsymbol{Y}_{t}	Y_{t-1}	Y_{t-3}
1978	-1.0604		
1979	-0.6699	-1.0604	
1980	-1.1018	-0.6699	
1981	-1.2413	-1.1018	-1.0604
1982	-0.6497	-1.2413	-0.6699
1983	-0.7536	-0.6497	-1.1018
1984	-0.6826	-0.7536	-1.2413
1985	-1.3733	-0.6826	-0.6497
1986	-1.1438	-1.3733	-0.7536
1987	-1.3533	-1.1438	-0.6826
1988	-0.3196	-1.3533	-1.3733
1989	-1.4574	-0.3196	-1.1438
1990	-1.4536	-1.4574	-1.3533
1991	-2.0234	-1.4536	-0.3196
1992	-0.5904	-2.0234	-1.4574
1993	-1.4550	-0.5904	-1.4536
1994	0.0264	-1.4550	-2.0234
1995	-0.7087	0.0264	-0.5904
1996	-0.9752	-0.7087	-1.4550
1997	-0.5249	-0.9752	0.0264
1998	-0.2026	-0.5249	-0.7087
1999	-0.7057	-0.2026	-0.9752
2000	-1.2126	-0.7057	-0.5249
2001	-0.8375	-1.2126	-0.2026
2002	-0.7745	-0.8375	-0.7057
2003	-0.4141	-0.7745	-1.2126
2004	0.2950	-0.4141	-0.8375
2005	-0.2879	0.2950	-0.7745
2006	-0.0492	-0.2879	-0.4141
Mean: $\hat{\mu}$	-0.8026		
Variance: $\hat{\gamma}_0$	0.2905		
$\gamma_{k}_{(k=1,3)}$		0.0651	-0.0282
$\hat{ ho}_{k}$ (k= 1,3)		0.2240	-0.0970

Figure 3.9 Percentage Change in Working Hours in Germany: Autocorrelations of Order 1 and 3



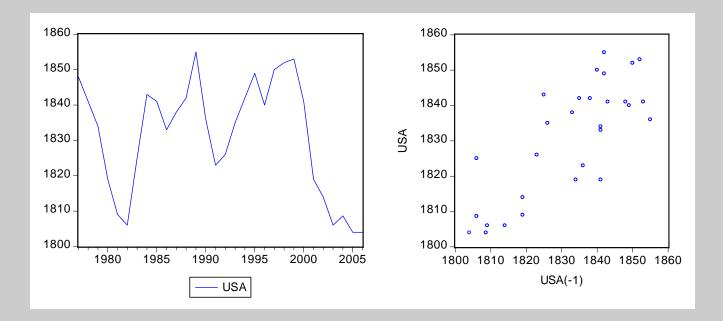
Autocorrelation between Y_t and Y_{t+k} controlling for the effect of

$$Y_{t+1}, Y_{t+2}, \dots, Y_{t+k-1}$$

Distance k	Regression	Partial autocorrelation coefficient r _k
1	$Y_{t+k} = \beta_0 + \beta_1 Y_{t+k-1} + \varepsilon_{t+k}$	β_1
2	$Y_{t+k} = \beta_0 + \beta_1 Y_{t+k-1} + \beta_2 Y_{t+k-2} + \varepsilon_{t+k}$	β_2
3	$Y_{t+k} = \beta_0 + \beta_1 Y_{t+k-1} + \beta_2 Y_{t+k-2} + \beta_3 Y_{t+k-3} + \varepsilon_{t+k}$	β_3
k	$Y_{t+k} = \beta_0 + \beta_1 Y_{t+k-1} + \beta_2 Y_{t+k-2} + \cdots + \beta_{k-1} Y_{t+1} + \beta_k Y_t + \varepsilon_{t+k}$	β_k

The partial **autocorrelation function** (PACF) is the function: $r: k \rightarrow r_k$

Figure 3.10 Annual Working Hours per Employee in the United States



Autocorrelation Function									
κ	1	2	3	4	5	6	7	8	9
ĥκ	.74	.36	.06	09	16	29	35	25	06

3.3.2 Statistical Tests for Autocorrelation Coefficients

$$H_0: \rho_k = 0$$
$$\hat{\rho}_k \to N(0, 1/T)$$

$$H_{0}: \rho_{1} = \rho_{2} = \cdots \rho_{k} = 0$$
$$Q_{k} = T(T+2) \sum_{j=1}^{k} \frac{\hat{\rho}_{k}^{2}}{T-j} \to \chi^{2}(k)$$

Sample: 1977 2006 Included observations: 30

Autocorrelation	Autocorrelation Partial Correlation			Q-Stat	Prob
		2 0 3 0 4 -0 5 -0 6 -0 7 -0 8 -0		22.537 22.676 22.951 23.957 27.270 32.432 35.229	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
		9-0 100	.064 0.001 .114 0.034	35.416 36.035	0.000 0.000

Figure 3.11 Time Series: Annual Working Hours per Employee in the United States. Autocorrelation Function