CHAPTER 4 TOOLS OF THE FORECASTER

4.1 The Information Set

4.1.1 Some Information Sets Are More Valuable than Others

Table 4.1 OLS Regression Results: House Prices and Mortgages Rates

Model (i)

Dependent Variable: DP Method: Least Squares Sample (adjusted): 1974 2007 Included observations: 34 after adjustments Newey-West HAC Standard Errors & Covariance (lag truncation=3)							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C	2.507576	0.772012	3.248103	0.0028			
DP(-1)	0.949125	0.158163	6.000914	0.0000			
DP(-2)	-0.380643	0.207324	-1.835982	0.0760			
R-squared	0.512796	Mean dependent var		6.152156			
Adjusted R-squared	0.481363	S.D. dependent var		3.436283			
S.E. of regression	2.474689	Akaike info criterion		4.734204			
Sum squared resid	189.8467	Schwarz criterion		4.868883			
Log likelihood	-77.48147	F-statistic		16.31416			
Durbin-Watson stat	1.906822	Prob(F-statistic)		0.000014			

Model (ii)

Dependent Variable: DP				
Method: Least Squares				
Sample (adjusted): 1974 2007				
Included observations: 34 after adjustments				
Newey-West HAC Standard Errors & Covariance (lag truncation=3)				

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	2.220667	0.939448	2.363800	0.0250
DP(-1)	0.914249	0.187557	4.874509	0.0000
DP(-2)	-0.303738	0.276051	-1.100296	0.2803
DR(-1)	-0.227373	0.373079	-0.609449	0.5470
DR(-2)	-0.155855	0.295756	-0.526970	0.6022
R-squared	0.520419	Mean dependent var		6.152156
Adjusted R-squared	0.454270	S.D. dependent var		3.436283
S.E. of regression	2.538503	Akaike info criterion		4.836079
Sum squared resid	186.8759	Schwarz criterion		5.060544
Log likelihood	-77.21334	F-statistic		7.867378
Durbin-Watson stat	1.867714	Prob(F-statistic)		0.000201

4.2.1 Forecasting Environments

Figure 4.1 Forecasting Environments: Recursive Scheme

Copyright © 2013 Pearson Education, Inc.

Figure 4.2 Forecasting Environments: Rolling Scheme

Figure 4.3 Forecasting Environments: Fixed Scheme

4.3 The Loss Function

4.3.2 Examples

Figure 4.4 Symmetric Loss Functions

González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.

 $\downarrow a$

е

Figure 4.5 Asymmetric Loss Functions

Linex function

Lin-lin function

4.3.3 Optimal Forecast: An Introduction

Figure 4.6 The Forecasting Problem

Figure 4.7 Optimal Forecast Under Quadratic Loss

4.3.3.2 Functional Form of the Loss Function: The Case of a Quadratic Loss

Suppose that the forecaster has a symmetric quadratic loss function $L(e_{t,h}) = ae_{t,h}^2$ for a > 0. Let us construct the expected value of the loss,

$$E(L(e_{t,h}) | I_t) = aE(e_{t,h}^2) = aE(y_{t+h} - f_{t,h})^2 = aE(y_{t+h}^2 - 2f_{t,h}y_{t+h} + f_{t,h}^2)$$

= $a(E(y_{t+h}^2) - 2f_{t,h}E(y_{t+h}) + f_{t,h}^2)$

$$\frac{\partial E(L(e_{t,h} | I_t))}{\partial f_{t,h}} = -2aE(y_{t+h} | I_t) + 2af_{t,h} = 0 \quad \Longrightarrow f_{t,h}^* = E(y_{t+h} | I_t)$$

$$f_{t,h}^* = E(y_{t+h} \mid I_t) \equiv \mu_{t+h|t}$$

Distinguish between unconditional expectation and conditional expectation