
Exponential smoothing

Based on A. A. Costa,
Notes on pragmatic forecasting procedures

and exponential smoothing,
Cemapre 1998



1. Time Series Decomposition

Time series components:

I trend: long term movement that characterizes the evolution of
the average level of the series

I cycle: reflects repeated but non-periodic fluctuations.

I seasonality: specific patterns which systematically repeat more
a less after a certain period of time.

I irregular component: describes random, irregular influences.
It represents the residuals or remainder of the time series after
the other components have been removed

Usually we consider the two first components jointly as the
trend-cycle component
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Time Series Decomposition

Given the previous decomposition of time series we can now link all
the components using a structural model:

I additive model :
yt = at + st + et

I multiplicative model:

yt = at × st × et

where yt is the data at period t, at is the trend-cycle component, st is
the seasonal component and et is the irregular component.



Trend estimation - Moving Averages

One of the simplest method to filter the erratic component of a series
is the use of moving averages.

Consider a seasonally adjusted series.

A moving average of odd order m can be written as

Mt =
1

m

k∑
j=−k

yt+j ,

where m = 2k + 1 and t = k + 1, k + 2, ...T − k.

For a moving average of even order m we have m = 2k and, after
centering the series, Mt is defined for t = m + 1,m + 2, ....





Seasonality estimation and correction

With seasonal data we can obtain the seasonality corrected series
using moving averages with period equal/multiple to the number of
observations in one year, L, since we can assume that the seasonality
component is compensated within a year.

In monthly or quarterly data since L is even we have to recenter the
moving averages.

Assuming that the seasonal factor is constant we can obtain the
seasonality component and the seasonality corrected series with the
method presented in the following slides.



Seasonality estimation and correction

additive model: yt = at + st + et

1. Compute the L-moving averages :

Mt+0.5 =
1

L

t+L
2∑

i=t+1−L
2

yi with t =
L
2
, L

2
+ 1, ..., T − L

2

2. Compute the centered moving averages:

Mt =
1

2

t∑
i=t−1

Mt+0.5 with t = L
2
+ 1, L

2
+ 2, ..., T − L

2

3. Obtain the seasonal factor for each observation s∗t = yt −Mt with
t = L

2
+ 1, L

2
+ 2, ..., T − L

2

4. Compute the average of the seasonal factors si = average(s∗t(i)) with
i = 1, 2, ..., L

5. Normalize the seasonal factors: ŝi = si −
∑

i si
L

for i = 1, 2, ..., L

6. Subtract to each observation the corresponding seasonality factor
yDt = yt − ŝi(t) for t = 1, 2, ..., T



Seasonality estimation and correction

multiplicative model: yt = at × st × et

1. Compute the L-moving averages :

Mt+0.5 =
1

L

t+L
2∑

i=t+1−L
2

yi with t =
L
2
, L

2
+ 1, ..., T − L

2

2. Compute the centered moving averages:

Mt =
1

2

t∑
i=t−1

Mt+0.5 with t = L
2
+ 1, L

2
+ 2, ..., T − L

2

3. Obtain the seasonal factor for each observation s∗t = yt ÷Mt with
t = L

2
+ 1, L

2
+ 2, ..., T − L

2

4. Compute the average of the seasonal factors si = average(s∗t(i)) with
i = 1, 2, ..., L

5. Normalize the seasonal factors: ŝi = si ÷
∑

i si
L

for i = 1, 2, ..., L

6. Subtract to each observation the corresponding seasonality factor
yDt = yt − ŝi(t) for t = 1, 2, ..., T



2. Simple exponential smoothing

Non-trend and
locally-constant-level series
ft,h = âT for h = 1, 2, . . .

For forecasting, we should use
an estimate of the local average:

average of all past values?

a moving average?

an average with decaying weights?

âT = αyT + α(1− α)yT−1 + α(1− α)2yT−2 + α(1− α)3yT−3 + . . .

ât = αyt + (1− α)ât−1 or ft,1 = αyt + (1− α)ft−1,1

ât = ât−1 + α(yt − ât−1) or ft,1 = ft−1,1 + α et−1,1

0 < α < 1 α ' 0.3
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ât = ât−1 + α(yt − ât−1)
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3. Holt’s exponential smoothing

Locally-constant trend and
locally-constant-level series

For forecasting, we should use
two estimates of the local average:

local average

local trend

ft,h = ât + b̂th

ât = αyt + (1− α)(at−1 + bt−1)

b̂t = β(at − at−1) + (1− β)b̂t−1

0 < α, β < 1
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4. Holt-Winters

”Locally-constant” level, trend,
and seasonality

For forecasting, we should use
three estimates:

local level

local trend

local seasonality (additive)

ft,h = ât + b̂th+ ŝt+h−kL

ât = α(yt − ŝt−L) + (1− α)(ât−1 + b̂t−1)

b̂t = β(at − at−1) + (1− β)b̂t−1

ŝt = γ(at − at−1) + (1− γ)ŝt−L

0 < α, β, γ < 1

;
L = “# of months”: k = 1 if k ≤ L, k = 2 if L < h ≤ 2L, . . .
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0 < α, β, γ < 1

;
L = “# of months”: k = 1 if k ≤ L, k = 2 if L < h ≤ 2L, . . .



4. Holt-Winters

”Locally-constant” level, trend,
and seasonality

For forecasting, we should use
three estimates:

local level

local trend

local seasonality (additive)
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