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CHAPTER 6 
FORECASTING WITH MOVING AVERAGE (MA) MODELS 

González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc. 

Figure 6.1  Time Series and Autocorrelation Functions of a 
Simulated White Noise Process 

6.1   A Model with No Dependence: White Noise  
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Sample 1 1000

Observations 1000

Mean       0.957014

Median   0.941058

Maximum  7.235267

Minimum -5.443433

Std. Dev.   2.034487

Skewness  -0.029960

Kurtosis   2.784223

Jarque-Bera  2.089597

Probability  0.351763

The white noise process is 
stationary and it does not exhibit 

any linear dependence. 
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Figure 6.2  Autocorrelation Functions of Monthly Returns to Microsoft and  
     the Dow Jones Index 
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The Wold Decomposition Theorem 

The Wold decomposition theorem guarantees that any (purely nondeterministic) 
covariance stationary stochastic process can be expressed as a linear 
combination of past shocks 
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Finite Representation of the Wold Decomposition Theorem 

The infinite polynomial can be appproximated by the ratio of two finite 
polynominals : 

and the Wold decomposition can be approximated (or written) as: 
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A process is invertible if it can be written as a linear function 

of past observations (up to an unpredictable shock): 

 

Xt = εt + π1 Xt - 1 + π2 Xt - 2 + π3 Xt - 3 + … 

 

This happens iif all the roots ξ i   of the π(L) polynomial are 

outside the unit circle:  

|ξ i | > 1, 

 

I.e., iff the modules of the inverse roots are smaller than 1:  

|1/ξi | < 1   

 

(if 1/ξ = a + b i , where i = √-1, √(a2 + b2 ) < 1) 
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Figure 6.3  Simulated MA(1) Processes   

6.3.1 MA(1) Process  
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Figure 6.4 Autocorrelation Functions of Simulated MA(1) Processes 
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Figure 6.5 Percentage Changes in the 5-Year Treasury Note Yield 
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Table 6.1 Estimation Output: 5-Year Treasury Yield (Monthly Percentage Changes) 



14 

Table 6.2  December 2007-April 2008 Forecasts of 5-year Treasure Yield Changes 
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Figure 6.6  Multistep Forecast of Monthly Changes of 5-year Treasury Yield 
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Figure 6.7  Simulated MA(2) Processes 

MA(2) Process  

-1

0

1

2

3

4

5

200 225 250 275 300 325 350 375 400

MA(2) with theta_1=1.70 and theta_2=0.72

-1

0

1

2

3

4

5

200 225 250 275 300 325 350 375 400

MA(2) with theta_1=-1 and theta_2=0.25

ttttY    21 25.02ttttY    21 72.07.12

(a) (b) 



17 

Figure 6.8  Autocorrelation Functions of Simulated MA(2) Processes 

ttttY    21 25.02
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The order q of an MA(q) process can be 
identified as the last k such that ρk ≠ 0 
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Figure 6.9  Autocorrelation Functions of MA Process ttttY    21 442

   

The MA(2) process is invertible if the roots of the characteristic equation   
are, in absolute value, greater than one.  


