CHAPTER 6 FORECASTING WITH MOVING AVERAGE (MA) MODELS

6.1 A Model with No Dependence: White Noise

Definition: (White noise) Let ε_t be a stochastic process. If $E[\varepsilon_t] = 0$, $Var(\varepsilon_t) = \sigma_\varepsilon^2$ (constant) and $Cov(\varepsilon_t, \varepsilon_{t-k}) = 0$, $k \neq 0$ Then we say that the process ε_t is white noise.

6 - 4 - 2 - 4 - 0 - 25 50 75 100 125 150 - Ynoise=1+N(0,4)

The white noise process is stationary and it does not exhibit any linear dependence.

Figure 6.1 Time Series and Autocorrelation Functions of a Simulated White Noise Process

Figure 6.2 Autocorrelation Functions of Monthly Returns to Microsoft and the Dow Jones Index

Difficult to predict

mple: 1986:03 20 luded observatior				Sample: 1986:03 200 Included observation			
Autocorrelation	Partial Correlation	AC	PAC	Autocorrelation	Partial Correlation	AC	PAC
		1 -0.081 2 -0.094	-0.081 -0.101	:1:	111	1 -0.021 2 -0.044	
, <u>T</u>	, in		0.117			3 -0.056	
up.		4 -0.017			₫ ,	4 -0.126	-0.131
111	11:		0.030				0.037
111	'".	1	-0.029 0.113	'['	' <u>U</u> '	6 -0.031	
: F:	1 15		0.023	'. "			0.081
- 111		9 -0.006			'¶'	8 -0.044 9 -0.043	
i la	1 6	10 0.131		'%'	'%;		0.035
1 1	1 1	11 0.013	0.035	ifi		11 -0.012	
1 (1	1 1	12 -0.016		1 1		12 0.015	-0.006
<u> (</u>	' Q '	13 -0.020		1 1	1 1	13 -0.003	0.003
<u>'</u>	1 11		0.013		' '	14 -0.034	
<u>'", '</u>	<u>"</u> ";	15 -0.075 16 0.064	0.068	'¶'	'Q'	15 -0.059	
; 6 ;	1 16		0.066				0.042
	1 1	18 -0.094			'	17 0.031 18 0.079	0.012
- II	₁	19 -0.049				19 -0.026	
,]],	1		0.005			20 -0.016	

The Wold Decomposition Theorem

If $\{Y_t\}$ is a covariance stationary process and $\{\varepsilon_t\}$ is a white noise process then there exists a unique linear representation as:

$$Y_t = V_t + \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \dots = V_t + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$$

where V_t is a deterministic component and $\sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$ is the stochastic component with $\psi_0 = 1$, $\sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i} < \infty$.

The Wold decomposition theorem guarantees that any (purely nondeterministic) covariance stationary stochastic process can be expressed as a linear combination of past shocks

Finite Representation of the Wold Decomposition Theorem

$$Y_t = \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \dots = (1 + \psi_1 L + \psi_2 L^2 + \dots) \varepsilon_t = \Psi(L) \varepsilon_t$$

The infinite polynomial can be appproximated by the ratio of two finite polynominals:

$$\Psi(L) \approx \frac{\Theta_q(L)}{\Phi_p(L)}$$

where
$$\Theta_q(L) = 1 + \theta_1 L + \theta_2 L^2 + \cdots + \theta_q L^q$$

and
$$\Phi_p(L) = 1 - \varphi_1 L - \varphi_2 L^2 - \dots - \varphi_p L^p$$

and the Wold decomposition can be approximated (or written) as:

$$Y_t = \Psi(L)\varepsilon_t \approx \frac{\Theta_q(L)}{\Phi_p(L)}\varepsilon_t \Leftrightarrow \Phi_p(L)Y_t = \Theta_q(L)\varepsilon_t \Leftrightarrow$$

$$\Leftrightarrow Y_t - \underbrace{\varphi_1 Y_{t-1} - \varphi_2 Y_{t-2} - \cdots - \varphi_p Y_{t-p}}_{AR(p)} = \underbrace{\epsilon_t + \theta_1 \epsilon_t + \theta_2 \epsilon_t + \cdots + \theta_q \epsilon_{t-q}}_{MA(q)}$$

A moving average process of order $q \ge 0$, referred as MA(q), has the following functional form:

$$Y_t = \mu + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} \cdot \cdot \cdot \cdot + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

where ε_t is a zero-mean white noise process.

A process is **invertible** if it can be written as a linear function of past observations (up to an unpredictable shock):

$$X_t = \varepsilon_t + \pi_1 X_{t-1} + \pi_2 X_{t-2} + \pi_3 X_{t-3} + \dots$$

This happens *iif* all the roots ξ_i of the $\pi(L)$ polynomial are outside the unit circle:

$$|\xi_{i}| > 1$$
,

I.e., iff the modules of the inverse roots are smaller than 1: $|1/\xi_i| < 1$

(if
$$1/\xi = a + bi$$
, where $i = \sqrt{-1}$, $\sqrt{(a^2 + b^2)} < 1$)

6.3.1 MA(1) Process

$$Y_t = \mu + \theta \varepsilon_{t-1} + \varepsilon_t$$

$$E[Y_t] = \mu$$

$$\sigma_Y^2 = Var(Y_t) = (1 + \theta^2)\sigma_{\varepsilon}^2$$

$$\rho_1 = \frac{\theta}{1 + \theta^2}$$

$$\rho_k = 0, k \ge 2$$

 r_k decays to zero

Figure 6.3 Simulated MA(1) Processes

Figure 6.4 Autocorrelation Functions of Simulated MA(1) Processes

We say that an MA(1) process is **invertible** if $|\theta| < 1$

Figure 6.5 Percentage Changes in the 5-Year Treasury Note Yield

Sample: 1953M04 2008M04 Included observations: 660

Autocorrelation	Partial Correlation		AC	PAC
		3 4 5	-0.073	0.129 -0.063 -0.017 -0.060

Table 6.1 Estimation Output: 5-Year Treasury Yield (Monthly Percentage Changes)

Dependent Variable: DY Method: Least Squares

Sample (adjusted): 1953M05 2007M11

Included observations: 655 after adjustments Convergence achieved after 7 iterations

Backcast: 1953M04

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	0.160159 0.485011	0.258095 0.034468	0.620544 14.07130	0.5351 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.165370 0.164092 4.449443 12927.79 -1906.173 2.055799	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		0.168613 4.866609 5.826484 5.840177 129.3829 0.000000
Inverted MA Roots	49			

h = 1 12/2007	$f_{t,1} = \hat{\mu} + \hat{\theta}\varepsilon_t =$ = 0.160 + 0.485 $\hat{\varepsilon}_t$ = -6.276%	$\sigma_{t+1 t}^2 = \hat{\sigma}_{\varepsilon}^2 = 4.449^2$	$f(Y_{t+1} I_t) \to N(\mu_{t+1 t}, \sigma_{t+1 t}^2)$ = $N(-6.276, 4.449^2)$
h = 2 1/2008	$f_{t,2} = \hat{\mu} = 0.160\%$	$\sigma_{t+2 t}^2 = \hat{\sigma}_{\varepsilon}^2 (1 + \hat{\theta}^2)$ = 4.449 ² (1 + 0.485 ²) = 23.683 = $\hat{\sigma}_{\gamma}^2$	$f(Y_{t+2} I_t) \to N(0.16, 23.683)$
h = 3 2/2008	$f_{t,3} = \hat{\mu} = 0.160\%$	$\sigma_{t+3 t}^2 = 23.683 = \hat{\sigma}_Y^2$	$f(Y_{t+3} I_t) \rightarrow N(0.16, 23.683)$
h = 4 3/2008	$f_{t,4} = \hat{\mu} = 0.160\%$	$\sigma_{t+4 t}^2 = 23.683 = \hat{\sigma}_Y^2$	$f(Y_{t+4} I_t) \rightarrow N(0.16, 23.683)$
h = 5 4/2008	$f_{t,5} = \hat{\mu} = 0.160\%$	$\sigma_{t+5 t}^2 = 23.683 = \hat{\sigma}_Y^2$	$f(Y_{t+5} I_t) \rightarrow N(0.16, 23.683)$

Table 6.2 December 2007-April 2008 Forecasts of 5-year Treasure Yield Changes

Figure 6.6 Multistep Forecast of Monthly Changes of 5-year Treasury Yield

$$Y_t = \mu + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \varepsilon_t$$

$$E[Y_t] = \mu$$

$$\sigma_Y^2 = Var(Y_t) = (1 + \theta_1^2 + \theta_2^2)\sigma_{\varepsilon}^2$$

Figure 6.7 Simulated MA(2) Processes

Figure 6.8 Autocorrelation Functions of Simulated MA(2) Processes

$$\rho_1 = \frac{\theta_1 + \theta_1 \theta_2}{1 + \theta_1^2 + \theta_2^2}$$

$$\rho_2 = \frac{\theta_2}{1 + \theta_1^2 + \theta_2^2}$$

$$\rho_{k} = 0, k \ge 3$$

 r_k decays to zero

The order q of an MA(q) process can be identified as the last k such that $\rho_k \neq 0$

Sample: 1 2000 Included observations: 1998 $Y_t = 2 + 1$

 $Y_{t} = 2 + 1.7\varepsilon_{t-1} + 0.72\varepsilon_{t-2} + \varepsilon_{t}$

Autocorrelation	Partial Correlation	AC PAC
		1 0.649 0.649 2 0.109 -0.542 3 -0.082 0.394 4 -0.054 -0.315 5 -0.007 0.271 6 0.016 -0.215 7 0.022 0.199 8 0.014 -0.184 9 -0.002 0.157 10 -0.010 -0.143

Sample: 1 2000

Included observations: 1998

 $Y_{t} = 2 - \varepsilon_{t-1} + 0.25\varepsilon_{t-2} + \varepsilon_{t}$

Autocorrelation	Partial Correlation	AC PAC
		1 -0.592 -0.592 2 0.119 -0.356 3 -0.026 -0.250 4 -0.001 -0.199 5 0.031 -0.106 6 -0.034 -0.088 7 0.028 -0.043 8 -0.014 -0.022 9 0.008 -0.001

The MA(2) process is invertible if the roots of the characteristic equation are, in absolute value, greater than one.

$$1 - \theta_1 x + \theta_2 x^2 = 0$$

Sample: 1 2000

Included observations: 1998

Autocorrelation	Partial Correlation	AC PAC
		1 -0.592 -0.592 2 0.119 -0.356 3 -0.026 -0.250 4 -0.001 -0.199 5 0.031 -0.106 6 -0.033 -0.087
) - -	₽ • • • •	7 0.027 -0.041 8 -0.014 -0.020 9 0.008 0.000 10 -0.011 -0.007

Figure 6.9 Autocorrelation Functions of MA Process $Y_t = 2 - 4\varepsilon_{t-1} + 4\varepsilon_{t-2} + \varepsilon_t$