CHAPTER 7 FORECASTING WITH AUTOREGRESSIVE (AR) MODELS

Figure 7.1 A Variety of Time Series Cycles

Unemployed persons, 1989-2002 (seasonally adjusted)

Source: Bureau of Labor Statistics Current Population Survey

Note: Shaded areas represent recessions. Break in series in January 1994 is due

Number in Poverty and Poverty Rate: 1959 to 2009

Note: The data points are placed at the midpoints of the respective years.

Source: U.S. Census Bureau, Current Population Survey, 1960 to 2010 Annual Social and Economic Supplements.

7.1 Cycles

A cycle is a time series pattern of periodic fluctuations.

Figure 7.3 Unemployed Persons, 1989-2002 (Seasonally Adjusted)

An autoregressive model of order $p \ge 0$, referred as AR(p), has the following functional form

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \varepsilon_t$$

where ε_t is a white noise process.

A process is **covariance stationary (causal)** if it can be written as a linear function of past shocks:

$$X_t = \varepsilon_t + \varphi_1 \varepsilon_{t-1} + \varphi_2 \varepsilon_{t-2} + \varphi_3 \varepsilon_{t-3} + \dots$$

This happens *iif* all the roots ξ_i of the $\varphi(L)$ polynomial are outside the unit circle:

 $|\xi_i| > 1,$

i.e., *iff a*ll the modules of the inverse roots are smaller than 1: $|1/\xi_i| < 1$

(if
$$1/\xi = a + bi$$
, where $i = \sqrt{-1}$, $\sqrt{(a^2 + b^2)} < 1$)

NB: An AR(*p*) is always *invertible*. A MA(*q*) is always *stationary*.

$$Y_t = c + \phi Y_{t-1} + \varepsilon_t$$

Figure 7.4 Autoregressive Processes AR(1)

Figure 7.5 Autocorrelation Functions of Covariance-Stationary AR(1) Processes

Sample: 2 1000 Included observation	ns: 999			Sample: 2 1000 Included observation	us: 999			Sample: 2 1000 Included observation	s: 999			
Autocorrelation	Partial Correlation	AC	PAC	Autocorrelation	Partial Correlation	AC	PAC	Autocorrelation	Partial Correlation		AC	PAC
		1 0.334 2 0.082 - 3 0.018 4 0.043 5 -0.022 - 6 0.006 7 0.060 8 0.016 - 9 0.041 10 0.051 11 0.028 - 12 0.001 - 13 0.036 14 0.008 - 15 -0.026 -	0.334 0.034 0.002 0.044 0.056 0.033 0.058 0.031 0.053 0.024 0.001 0.007 0.023 0.023			1 0.732 2 0.546 3 0.400 4 0.279 5 0.168 6 0.085 7 0.032 8 -0.026 9 -0.071 10 -0.084 11 -0.060 12 -0.048 13 -0.060 14 -0.063 15 -0.054	0.732 0.021 -0.015 -0.030 -0.058 -0.025 -0.003 -0.057 -0.033 0.011 0.057 -0.010 -0.053 -0.013 0.006			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.951 0.904 0.861 0.774 0.734 0.696 0.658 0.622 0.590 0.561 0.534 0.508 0.481 0.457	0.951 -0.006 0.009 -0.019 -0.016 0.005 -0.0022 0.013 0.010 0.011 0.017 -0.014 -0.016 -0.014 -0.016 -0.007
ø	= 0.4			$\phi =$	0.7			<i>φ</i> :	= 0.95			

A necessary and sufficient condition for an AR(1) process $Y_t = c + \phi Y_{t-1} + \varepsilon_t$ to be covariance stationary is that $|\phi| < 1$.

Figure 7.6 Time Series Plot and Autocorrelation Functions of AR(1) with Negative Parameter

Sample: 2 150 Included observations: 149

Autocorrelation	Partial Correlation	AC PAC
		1 -0.894 -0.894 2 0.799 -0.002 3 -0.716 -0.015 4 0.629 -0.070 5 -0.546 0.026 6 0.451 -0.116 7 -0.361 0.046 8 0.269 -0.080 9 -0.228 -0.194 10 0.177 -0.079
		11 -0.108 0.108 12 0.063 0.032

Figure 7.7 Per Capita Income Growth (California, 1969-2002)

Sample: 1969 2002 Included observations: 33

Autocorrelation	Partial Correlation		AC	PAC
		1	0.620	0.620
		I	0.029	0.029
		2	0.471	0.125
		3	0.417	0.134
ı 📃	I] I	4	0.365	0.059
ı 🗾 I		5	0.327	0.051
		6	0.247	-0.050
ı 🔲 ı		7	0.098	-0.180
		8	0.135	0.126
		9	0.024	-0.179
		10 -	0.009	0.021
		11 -	0.021	-0.006
٦	I Ť			

7.2.2 AR(2) Process

Figure 7.8 Autoregressive Processes AR(2)

González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.

12

The necessary conditions for an AR(2) process to be covariance stationary are

$$-1 < \phi_2 < 1$$

 $-2 < \phi_1 < 2$

- 1

and the sufficient conditions are

$$\phi_1 + \phi_2 < 1$$
$$\phi_2 - \phi_1 < 1$$

$$Y_t = 1 + 0.5Y_{t-1} + 0.5Y_{t-2} + \varepsilon_t$$

Figure 7.9 Nonstationary AR(2)

Figure 7.10 Autocorrelation Functions of Covariance-Stationary AR(2) Processes

$Y_t = 1 +$	$+Y_{t-1} - 0.51$	t-2	+ .	ε _t	$Y_t = 1 - 0.$	$5Y_{t-1} + 0.41$	t-	2 +	ε _t	$Y_t = 1 + 0.$	$5Y_{t-1} + 0.3Y_{t-1}$	t-1	2 +	ε _t
Sample: 300 700 Included observation	s: 401				Sample: 300 700 Included observation	s: 401				Sample: 300 700 Included observation	is: 401			
Autocorrelation	Partial Correlation	A	C	PAC	Autocorrelation	Partial Correlation		AC	PAC	Autocorrelation	Partial Correlation		AC	PAC
		1 0. 2 0. 3 -0. 4 -0. 5 -0. 6 -0. 7 -0. 8 0. 9 0. 10 0. 11 0. 12 -0. 13 -0. 14 -0. 15 -0.	.668 .148 - .241 - .430 - .409 - .230 - .017 - .136 - .173 - .138 .041 - .102 - .211 - .203 .091	0.668 0.537 0.085 0.181 0.038 0.004 0.026 0.003 0.055 0.041 0.084 0.084 0.119 0.074 0.009 0.011			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	-0.810 0.782 -0.692 0.622 -0.566 0.500 -0.451 0.408 -0.373 0.336 -0.335 0.323 -0.336 0.231 -0.274	-0.810 0.365 0.023 -0.052 -0.020 -0.025 0.003 0.021 -0.024 -0.011 -0.166 -0.017 -0.039 -0.103 0.033			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.701 0.637 0.459 0.378 0.223 0.263 0.223 0.212 0.212 0.212 0.213 0.215 0.211 0.223	0.701 0.286 0.073 -0.035 -0.042 0.023 0.019 0.049 -0.014 0.027 0.051 0.044 0.033 0.005 0.044

PACF:
$$r_1 \neq 0, r_2 \neq 0, r_k = 0 \ k \ge 2$$

ACF: decays to zero

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}, \rho_0 = 1, \rho_1 = \frac{\phi_1}{1 - \phi_2}$$

Figure 7.11 U.S. Inflation Rate

Sample: 1913 2003 Included observations: 90

Autocorrelation	Partial Correlation	AC PAC
		1 0.639 0.639 2 0.259 -0.252 3 0.117 0.128 4 0.066 -0.038 5 0.144 0.210 6 0.181 -0.039 7 0.115 -0.016
		8 0.039 -0.032 9 0.039 0.089 10 0.035 -0.067 11 -0.047 -0.128 12 -0.174 -0.162 13 -0.280 -0.114
		14 -0.303 -0.081 15 -0.306 -0.172 16 -0.184 0.156 17 -0.032 0.073 18 -0.075 -0.125 19 -0.161 -0.034 20 -0.208 -0.031
		21 -0.155 0.137 22 -0.008 0.081 23 0.073 -0.005

Table 7.1 Estimation Results, U.S. Inflation Rate, AR(2) Model

Dependent Variable: CPI_GR Method: Least Squares Sample (adjusted): 1916 2003 Included observations: 88 after adjustments Convergence achieved after 3 iterations							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C AR(1) AR(2)	3.311924 0.799420 -0.251858	0.880693 0.104934 0.104879	3.760588 7.618326 -2.401413	0.0003 0.0000 0.0185			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.445779 0.432739 3.737777 1187.533 -239.3676 1.904683	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		3.298182 4.962744 5.508356 5.592810 34.18425 0.000000			
Inverted AR Roots	.4030i	.40+.30i					

 Table 7.2 Multistep Forecast of U.S. Inflation Rate

$\begin{array}{c} h = 1 \\ 2004 \end{array}$	$f_{t,1} = \hat{c} + \hat{\phi}_1 Y_t + \hat{\phi}_2 Y_{t-1} =$ = 1.49 + 0.79 × 2.25 - 0.25 × 1.56 = ≈ 2.90	$\sigma_{t+1 t}^2 = \hat{\sigma}_{\varepsilon}^2 = 3.74^2$	$f(Y_{t+1} I_t) \to N(\mu_{t+1 t}, \sigma_{t+1 t}^2)$ = N(2.90,3.74 ²)
h = 2 2005	$f_{t,2} = \hat{c} + \hat{\phi}_1 f_{t,1} + \hat{\phi}_2 Y_t =$ = 1.49 + 0.79 × 2.90 - 0.25 × 2.25 = ≈ 3.25	$\sigma_{t+2 t}^{2} = \hat{\sigma}_{\varepsilon}^{2} (1 + \hat{\phi}_{1}^{2}) =$ = 3.74 ² (1 + 0.79 ²) = $\approx 4.81^{2}$	$f(Y_{t+2} I_t) \rightarrow N(3.25, 4.81^2)$
h = 3 2006	$f_{t,3} = \hat{c} + \hat{\phi}_1 f_{t,2} + \hat{\phi}_2 f_{t,1} =$ = 1.49 + 0.79 × 3.25 - 0.25 × 2.90 = ≈ 3.36	$\sigma_{t+3 t}^{2} = \hat{\sigma}_{\varepsilon}^{2} (1 + \hat{\phi}_{1}^{2} + (\hat{\phi}_{2} + \hat{\phi}_{1}^{2})^{2}) = \\ \approx 5.03^{2}$	$f(Y_{t+3} I_t) \rightarrow N(3.36, 5.03^2)$
h = 4 2007	$f_{t,4} = \hat{c} + \hat{\phi}_1 f_{t,3} + \hat{\phi}_2 f_{t,2} =$ = 1.49 + 0.79 × 3.36 - 0.25 × 3.25 = ≈ 3.37	$\sigma_{t+4 t}^2 \approx 5.04^2$	$f(Y_{t+4} I_t) \rightarrow N(3.37, 5.04^2)$
h = 5 2008	$f_{t,5} = \hat{c} + \hat{\phi}_1 f_{t,4} + \hat{\phi}_2 f_{t,3} =$ = 1.49 + 0.79 × 3.37 - 0.25 × 3.36 = ≈ 3.34	$\sigma_{t+5 t}^2 \approx 5.04^2$	$f(Y_{t+5} I_t) \rightarrow N(3.34, 5.04^2)$
h = 6 2009	$f_{t,6} = \hat{c} + \hat{\phi}_1 f_{t,5} + \hat{\phi}_2 f_{t,4} =$ = 1.49 + 0.79 × 3.34 - 0.25 × 3.37 = ≈ 3.32	$\sigma_{t+6 t}^2 \approx 5.04^2$	$f(Y_{t+6} I_t) \rightarrow N(3.32, 5.04^2)$

Figure 7.12 U.S. Inflation Rate, Multistep Forecast

7.2.3 AR(p) Process

Figure 7.13 Number of Unemployed People Looking for Part-Time Work

Sample:	1989:01 200)4:06
ncluded	observation	s: 186

Autocorrelation	Partial Correlation		AC	PAC
		1	0.882	0.882
		3	0.851	0.176
		5	0.829	0.094
	ι μ ι	7	0.796	0.030
		8	0.775	-0.009
	· • ·	10	0.737	-0.072
		11 12	0.712	-0.084
		13	0.676	0.098
		14 15	0.638	-0.076
	1	16	0.586	-0.086
		17 18	0.553	-0.096
·	1	19	0.508	0.002
	ון ו	20	0.482	-0.041

7.3.1 Deterministic and Stochastic Seasonal Cycles

Figure 7.14 Deterministic Seasonality

A seasonal cycle is defined as a periodic fluctuation in the data associated with the calendar.

7.3.2 Seasonal ARMA Models

Figure 7.16 Seasonal AR(1) and AR(2), Time Series Plots and Autocorrelograms

In the seasonal context, the order of the process needs to be understood in light of the data seasonality.

For identifying the order of seasonal AR and MA models, we extrapolate what we know from nonseasonal AR and MA models.

González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.

21 0.028

0.004

0.009 -0.040

Figure 7.17 Monthly Clothing Sales in the United States. Time Series Plot and Autocorrelation Functions

Sample: 2003M01 2011M01 Included observations: 97

Figure 7.18 Seasonal MA(1) and MA(2), Time Series Plots and Autocorrelograms

$$Y_t = \mu + \theta_s \varepsilon_{t-s} + \theta_{2s} \varepsilon_{t-2s} + \theta_{3s} \varepsilon_{t-3s} + \cdots + \theta_{qs} \varepsilon_{t-qs} + \varepsilon_t$$

González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.

26

7.3.3 Combining ARMA and Seasonal ARMA Models

Purely seasonal ARMA:
$$Y_t = c + \phi_s Y_{t-s} + \phi_{2s} Y_{t-2s} + \dots + \phi_{ps} Y_{t-ps} + \theta_s \varepsilon_{t-s} + \theta_{2s} \varepsilon_{t-2s} + \theta_{3s} \varepsilon_{t-3s} + \dots + \theta_{qs} \varepsilon_{t-qs} + \varepsilon_t$$

Example:

Combined S-ARMA $(1,2)_4$ + non-seasonal ARMA(2,1):

$$(1 - \phi_1 L - \phi_2 L^2)(1 - \phi_4 L^4)Y_t = c + (1 + \theta_4 L^4 + \theta_8 L^8)(1 + \theta_1 L)\varepsilon_t$$

Data example

Figure 7.19 Monthly Changes of Private Residential Construction in U.S. (Millions of Dollars), Time Series Plot and Autocorrelograms

Autocorrelation	Partial Correlation		AC	PAC
		$\begin{array}{c}1&2&3&4&5\\&&&&9\\&&&&&\\1&1&2&3&4\\&&&&&\\1&1&2&3&4\\&&&&&\\1&1&2&2&2&3&4\\&&&&&\\2&2&2&3&4&5\\&&&&&&\\2&2&2&3&4&5\\&&&&&&\\2&2&2&3&4&5\\&&&&&&\\2&2&2&3&4&5\\&&&&&&\\2&2&2&3&4&5\\&&&&&&\\2&2&2&3&4&5\\&&&&&&\\2&2&2&3&4&5\\&&&&&&\\2&2&2&3&4&5\\&&&&&&\\2&2&2&2&4&5\\&&&&&&\\2&2&2&2&4&5\\&&&&&&\\2&2&2&2&4&5\\&&&&&&\\2&2&2&2&2&4\\&&&&&&\\2&2&2&2&2&4\\&&&&&&\\2&2&2&2&$	0.507 0.260 -0.009 -0.225 -0.365 -0.258 -0.0453 0.876 0.2453 0.876 0.2453 0.876 0.2453 0.876 0.225 -0.331 -0.215 -0.327 -0.321 -0.341 -0.251 -0.341 -0.046 0.198 0.412 0.746	0.507 0.004 -0.191 -0.209 -0.771 -0.571 -0.263 -0.176 -0.010 0.203 0.660 -0.362 0.660 -0.362 -0.115 0.098 0.108 0.100 -0.033 -0.015 -0.088 -0.015 -0.088 -0.066 -0.160
	ια 101	26 27	0.187 -0.051	-0.054 0.057

Sample: 2002M01 2011M01 Included observations: 108

It makes sense to propose: $ARMA(1,0) + S-ARMA(1,0)_{12}$

ARMA(1,0) + S-ARMA(1,0)₁₂

$$(1 - \phi_1 L)(1 - \phi_{12} L^{12})Y_t = c + \varepsilon_t$$

Or ARMA(13,0) with parameter restrictions

$$(1 - \phi_1 L - \phi_{12} L^{12} + \phi_1 \phi_{12} L^{13}) Y_t = c + \varepsilon_t$$

 TABLE 7.3 Monthly Changes in Residential Construction,

 Estimation Results of AR(1) and S-AR(1) Model

Dependent Variable: change CONST Method: Least Squares Sample (adjusted): 2003M03 2011M01 Included observations: 95 after adjustments Convergence achieved after 6 iterations								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
С	-593.2408	2399.622	-0.247223	0.8053				
AR(1)	0.439971	0.093551	4.703012	0.0000				
SAR(12)	0.923569	0.038771	23.82102	0.0000				
R-squared	0.894790	Mean depend	lent var -	128.3158				
Adjusted R-squared	0.892502	S.D. depende	ent var	3036.076				
S.E. of regression	995.4326	Akaike info	criterion	16.67530				
Sum squared resid	91161518	Schwarz crite	erion	16.75595				
Log likelihood	-789.0768	F-statistic		391.2194				
Durbin-Watson stat	2.115719	Prob(F-statis	tic)	0.000000				

Figure 7.20 Monthly Changes in Residential Construction, Multistep Forecast

