Sometimes we find time series with mixed AR and MA properties (ACF and PACF)

We then can use mixed models: ARMA(p,q)

$$Y_t = c + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$

These slides are based on: González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc. Slides adapted for this course. We thank Gloria González-Rivera and assume full responsibility for all errors due to our changes

1

MODELING THE SAN DIEGO HOUSE PRICE INDEX

8.1 The Data: Quarterly House Prices in San Diego MSA

Stationary transformation: growth rates

Figure 8.2 Autocorrelation Functions of San Diego Price Growth

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.487	0.487	32.524	0.000
·		2	0.486	0.326	65.135	0.000
I 📃	i 🔲 i	3	0.401	0.121	87.502	0.000
ı 📃	I I I I I I I I I I I I I I I I I I I	4	0.464	0.223	117.67	0.000
· 🗖		5	0.257	-0.140	127.02	0.000
· 🗖	1	6	0.276	0.000	137.85	0.000
· 🗖	I [] I	7	0.264	0.075	147.86	0.000
· 🗖	1 1	8	0.184	-0.092	152.77	0.000
ı 🗐 i	101	9	0.115	-0.040	154.69	0.000
ו 🛛 ו		10	0.049	-0.114	155.04	0.000
1) 1	101	11	0.011	-0.090	155.06	0.000
I 🖸 I	101	12	-0.064	-0.061	155.67	0.000
101	101	13	-0.073	-0.025	156.48	0.000
	101	14	-0.123	-0.041	158.77	0.000
	וםי	15	-0.156	-0.055	162.48	0.000

Sample: 1975:Q1 2008:Q4 Included observations: 134

No clear AR or MA pattern Certainly significant autocorrelation: Q-stat

Why not try a mixed ARMA model?

$$H_0: \rho_1 = \rho_2 = \dots = \rho_k = 0$$
$$Q_k = T(T+2) \sum_{j=1}^k \frac{\hat{\rho}_j^2}{T-j} \,\hat{\rho}_j^2 \longrightarrow \chi_k^2$$

8.2 Model Selection

Model 1.	MA(4) $Y_t = \mu + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3} + \theta_4 \varepsilon_{t-4} + \varepsilon_t$
Model 2.	AR(3) $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \phi_3 Y_{t-3} + \varepsilon_t$
Model 3.	AR(4) $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \phi_3 Y_{t-3} + \phi_4 Y_{t-4} + \varepsilon_t$
Model 4.	AR(5) $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \phi_3 Y_{t-3} + \phi_4 Y_{t-4} + \phi_5 Y_{t-5} + \varepsilon_t$
Model 5.	ARMA(2,2) $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \varepsilon_t$
Model 6.	ARMA(2,4) $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}$
	$+ \theta_4 \varepsilon_{t-4} + \varepsilon_t$

Box/Jenkins Identification/estimation procedure

Preliminary transformations Conjecture appropriate models

After estimating the models check:

- Admissibility of each model
 - is it causal/stationary?
 - is it invertible?
- Significance of the parameters
- Whiteness of the residuals
- Explanation power (R² or Residual S.E.)

Then, we should compare penalized goodness of fit measures: AIC, AICc, BIC, SIC, etc. A process is **covariance stationary (causal)** if it can be written as a linear function of past shocks:

$$X_t = \varepsilon_t + \varphi_1 \varepsilon_{t-1} + \varphi_2 \varepsilon_{t-2} + \varphi_3 \varepsilon_{t-3} + \dots$$

This happens *iif* all the roots ξ_i of the $\varphi(L)$ polynomial are outside the unit circle:

 $|\xi_i| > 1,$

i.e., *iff a*ll the modules of the inverse roots are smaller than 1: $|1/\xi_i| < 1$

(if $1/\xi = a + bi$, where $i = \sqrt{-1}$, $\sqrt{(a^2 + b^2)} < 1$)

A process is **invertible** if it can be written as a linear function of past observations (up to an unpredictable shock):

$$X_t = \varepsilon_t + \pi_1 X_{t-1} + \pi_2 X_{t-2} + \pi_3 X_{t-3} + \dots$$

This happens *iif* all the roots ξ_i of the $\pi(L)$ polynomial are outside the unit circle:

 $|\xi_i| > 1,$

I.e., *iff* the modules of the inverse roots are smaller than 1: $|1/\xi_i| < 1$

(if $1/\xi = a + bi$, where $i = \sqrt{-1}$, $\sqrt{(a^2 + b^2)} < 1$)

NB: An AR(*p*) is always *invertible*. A MA(*q*) is always *stationary*.

8.2.1 Estimation: AR, MA, and ARMA Models

Table 8.1 San Diego House Price Growth, Estimation Output

Dependent Variable: 9 Method: Least Square Sample (adjusted): 19 Included observations Convergence achieved Backcast: 1974Q2 19	SDG es 975Q2 2008Q s: 134 after ad d after 8 iterat 75Q1	3 justments ions			Dependent Variable: Method: Least Square Sample (adjusted): 19 Included observations Convergence achieved	SDG es 976Q2 2008Q s: 130 after ad d after 6 iterat	3 justments ions		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1) MA(2) MA(3) MA(4)	1.684979 0.353809 0.382798 0.234615 0.464352	0.503973 0.076941 0.082081 0.083348 0.077820	3.343391 4.598453 4.663663 2.814876 5.966982	0.0011 0.0000 0.0000 0.0056 0.0000	C AR(1) AR(2) AR(3) AR(4)	0.106935 0.238943 0.261707 0.111463 0.284998	2.627275 0.085584 0.088495 0.089509 0.088905	0.040702 2.791899 2.957323 1.245274 3.205644	0.9676 0.0061 0.0037 0.2154 0.0017
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.394084 0.375296 2.401874 744.2007 -305.0073 1.976946	Mean depend S.D. depende Akaike info o Schwarz crite F-statistic Prob(F-statis	lent var ent var criterion erion tic)	1.814237 3.038876 4.626975 4.735103 20.97518 0.000000	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.428518 0.410231 2.346440 688.2228 -292.7896 1.898907	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	dent var ent var criterion terion stic)	1.763910 3.055403 4.581378 4.691668 23.43241 0.000000
Inverted MA Roots	.41+.71i	.4171i5	958i	59+.58i	Inverted AR Roots	.96	0165i -	.01+.65i	71

MA(4)

AR(4)

Table 8.1 (continued)

ARMA(2,4)

Dependent Variable: SDG Method: Least Squares Sample (adjusted): 1975Q4 2008Q3 Included observations: 132 after adjustments Convergence achieved after 18 iterations Backcast: 1974Q4 1975Q3							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
С	0.886929	1.639675	0.540918	0.5895			
AR(1)	0.297013	0.196977	1.507853	0.1341			
AR(2)	0.580522	0.197836	2.934354	0.0040			
MA(1)	-0.007620	0.195334	-0.039012	0.9689			
MA(2)	-0.338640	0.151912	-2.229184	0.0276			
MA(3)	-0.060909	0.095536	-0.637555	0.5249			
MA(4)	0.265362	0.098566	2.692235	0.0081			
R-squared	0.431114	Mean depen	dent var	1.797793			
Adjusted R-squared	0.403807	S.D. depend	ent var	3.057434			
S.E. of regression	2.360752	Akaike info criterion 4.		4.607410			
Sum squared resid	696.6440	Schwarz criterion 4.7		4.760286			
Log likelihood	-297.0891	F-statistic		15.78793			
Durbin-Watson stat	2.025208	Prob(F-statis	stic)	0.000000			
Inverted AR Roots	.92	63					
Inverted MA Roots	.59+.38i	.5938i	58+.45i	5845i			

González-Rivera: Forecasting for Economics and Business,

Copyright © 2013 Pearson Education, Inc.

8.2.3 Are the Residuals White Noise?

Figure 8.3 San Diego House Price Growth, Correlograms of the Residuals

MA (4) Sample: 1975:Q2 2008:Q3 Included observations: 134 Q-stastistic probabilities adjusted for 4 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 1	I I I	1	0.004	0.004	0.0022	
ı 🛛 ı		2	0.044	0.044	0.2722	
I 🔲 I	ן ו	3	0.084	0.084	1.2591	
1 🗍 I		4	0.046	0.044	1.5514	
· 🗖		5	0.136	0.131	4.1799	0.041
· 🗖		6	0.142	0.137	7.0627	0.029
· 🗖		7	0.125	0.118	9.2956	0.026
1 🗍 I	I I	8	0.068	0.048	9.9701	0.041
111	וםי	9	-0.010	-0.045	9.9835	0.076
111	וםי (10	-0.009	-0.063	9.9960	0.125
1 1	[11	0.024	-0.035	10.081	0.184
1		12	-0.031	-0.089	10.224	0.250
111	וםי ו	13	-0.016	-0.070	10.262	0.330

AR (4)

Sample: 1976:Q2 2008:Q3

Included observations: 130

Q-stastistic probabilities adjusted for 4 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
i	ı j ı	1	0.043	0.043	0.2433	
111	1 🛛 1	2	0.036	0.034	0.4146	
1 1	1 1	3	0.001	-0.002	0.4147	
101	1 🛛 1	4	0.060	0.059	0.9077	
	1 [] 1	5	-0.106	-0.111	2.4405	0.118
1 1	1) 1	6	0.016	0.022	2.4738	0.290
	· 🗖	7	0.156	0.164	5.8619	0.119
- i)i	1) 1	8	0.030	0.010	5.9848	0.200
1 🛛 1	1 🛛 1	9	0.056	0.058	6.4337	0.266
1 1	1 🗍 1	10	-0.005	-0.025	6.4367	0.376
1 1 1	1 🚺 1	11	0.005	-0.016	6.4402	0.489
101	1 🛛 1	12	-0.069	-0.036	7.1398	0.522
10	101	13	-0.025	-0.029	7.2337	0.613

Figure 8.3 (continued)

ARMA (2,4) Sample: 1975:Q4 2008:Q3 Included observations: 132 Q-stastistic probabilities adjusted for 6 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	-0.019	-0.019	0.0473	
111	1 1	2	0.014	0.014	0.0742	
1 🛛 1	i 🗊 i	3	0.053	0.054	0.4642	
1 1	1	4	-0.004	-0.002	0.4666	
I 🛛 I	וםי	5	-0.061	-0.063	0.9849	
I 🚺 I	וםי	6	-0.047	-0.052	1.2887	
· 🗖		7	0.145	0.147	4.2595	0.039
ון ו	ון ו	8	0.048	0.064	4.5857	0.101
1 🗍 I	i 🛛 i 🗍 i	9	0.036	0.038	4.7753	0.189
1 1	111	10	0.021	-0.002	4.8385	0.304
1 1	ומי	11	-0.006	-0.019	4.8438	0.435
i ∎ i		12	-0.048	-0.037	5.1767	0.521
111	111	13	-0.020	-0.001	5.2384	0.631

Criteria to compare models with a different number of parameters

$$AIC = \frac{2m}{T} + \log \frac{\sum_{t} \hat{\varepsilon}_{t}^{2}}{T}$$

$$SIC = \frac{m}{T}\log T + \log \frac{\sum_{t} \hat{\varepsilon}_{t}^{2}}{T}$$

Table 8.2 Summary of Model Estimation and Evaluation

	<i>t</i> -statistics						
	MA(4)	AR(3)	AR(4)	AR(5)	ARMA(2,2)	ARMA(2,4)	
ϕ 's (<i>t</i> -ratio) θ 's (<i>t</i> -ratio)	$\begin{split} \hat{\theta}_1 &= 0.354 \ (4.6) \\ \hat{\theta}_2 &= 0.383 \ (4.7) \\ \hat{\theta}_3 &= 0.235 \ (2.8) \\ \hat{\theta}_4 &= 0.464 \ (5.9) \end{split}$	$\hat{\phi}_1 = 0.281 (3.2)$ $\hat{\phi}_2 = 0.345 (3.9)$ $\hat{\phi}_3 = 0.177 (1.9)$	$\begin{split} \hat{\phi}_1 &= 0.238 \ (2.8) \\ \hat{\phi}_2 &= 0.261 \ (2.9) \\ \hat{\phi}_3 &= 0.111 \ (1.2) \\ \hat{\phi}_4 &= 0.284 \ (3.2) \end{split}$	$\begin{split} \hat{\phi}_1 &= 0.282 \ (3.1) \\ \hat{\phi}_2 &= 0.270 \ (3.0) \\ \hat{\phi}_3 &= 0.135 \ (1.4) \\ \hat{\phi}_4 &= 0.307 \ (3.4) \\ \hat{\phi}_5 &= -0.13 \ (-1.4) \end{split}$	$\begin{aligned} \hat{\phi}_1 &= 0.134 \ (0.6) \\ \hat{\phi}_2 &= 0.777 \ (3.5) \\ \hat{\theta}_1 &= 0.137 \ (0.5) \\ \hat{\theta}_2 &= -0.415 \ (-1.9) \end{aligned}$	$ \begin{split} \hat{\phi}_1 &= 0.297 \ (1.5) \\ \hat{\phi}_2 &= 0.580 \ (2.9) \\ \hat{\theta}_1 &= -0.007 \ (-0.04) \\ \hat{\theta}_2 &= -0.338 \ (-2.2) \\ \hat{\theta}_3 &= -0.061 \ (-0.6) \\ \hat{\theta}_4 &= 0.265 \ (2.7) \end{split} $	
Covariance- stationary	yes	yes	yes	yes	yes	yes	
Invertibility	yes	yes	yes	yes	yes	yes	
White noise residuals <i>Q</i> -statistics (<i>p</i> -value)	no $Q_5 = 4.178 (0.04)$ $Q_8 = 9.970 (0.04)$	no $Q_4 = 10.722 (0.0)$ $Q_8 = 15.099 (0.01)$	yes $Q_5 = 2.440 (0.1)$ $Q_8 = 5.984 (0.2)$	yes $Q_6 = 0.704 (0.4)$ $Q_8 = 3.968 (0.2)$	no $Q_5 = 7.103 (0.01)$ $Q_8 = 11.004 (0.03)$	no $Q_7 = 4.259 (0.04)$ $Q_8 = 4.586 (0.10)$	
Residual variance $\hat{\sigma}_{e}^{2}$	5.769	6.003	5.505	5.489	5.784	5.573	
Adjusted <i>R</i> -squared	_	0.362	0.410	0.416	_	_	
AIC	4.627	4.660	4.581	4.586	4.630	4.607	
SIC	4.735	4.747	4.691	4.719	4.739	4.760	

González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.

h = 1	$f_{t,1} = c + \phi_1 Y_t + \phi_2 Y_{t-1} + \phi_3 Y_{t-2} + \phi_4 Y_{t-3}$	$\sigma_{t+1 t}^2 = \sigma_{\varepsilon}^2$
h=2	$f_{t,2} = c + \phi_1 f_{t,1} + \phi_2 Y_t + \phi_3 Y_{t-1} + \phi_4 Y_{t-2}$	$\sigma_{t+2 t}^2 = \sigma_e^2 (1 + \phi_1^2)$
h=3	$f_{t,3} = c + \phi_1 f_{t,2} + \phi_2 f_{t,1} + \phi_3 Y_t + \phi_4 Y_{t-1}$	$\sigma_{t+3 t}^2 = \sigma_{\varepsilon}^2 \{1 + \phi_1^2 + (\phi_1^2 + \phi_2)^2\}$

By straight substitution of the estimated parameters of the model and the four most recent values in the information set, we have:

h = 2008:4	$f_{t,1} = -4.79\%$	$\sigma_{t+1 t}^2 = 2.35^2$
h = 2009:1	$f_{t,2} = -5.10\%$	$\sigma_{t+2 t}^2 = 2.41^2$
h = 2009:2	$f_{t,3} = -5.21\%$	$\sigma_{t+3 t}^2 = 2.53^2$

8.3 The Forecast

Figure 8.4 San Diego House Price Growth: Multistep Forecast

Figure 8.5 Standard Normal Probability Density Function

