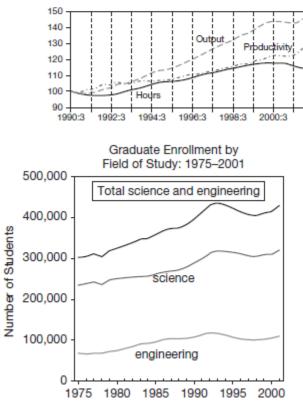
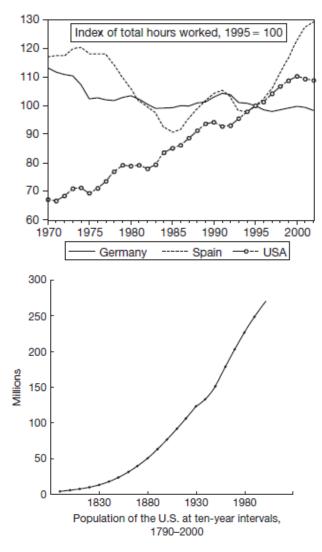
CHAPTER 10 FORECASTING THE LONG TERM: DETERMINISTIC AND STOCHASTIC TRENDS

Figure 10.1 Economic Time Series with Trends

"A trend is a relatively smooth, mostly unidirectional, pattern in the data that arises from the accumulation of information over time." Quarterly productivity, output, and hours of all persons in the nonfarm business sector, 1990:3–2002:2

Index, 3rd quarter 1990 = 100



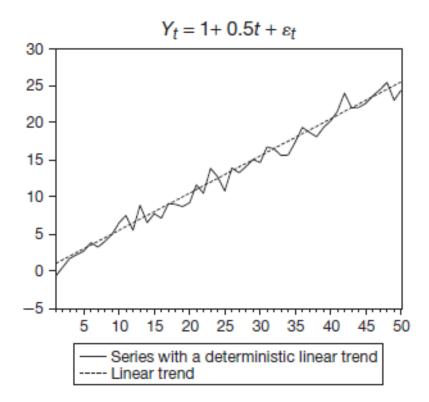


1

These slides are based on: González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc. Slides adapted for this course. We thank Gloria González-Rivera and assume full responsibility for all errors due to our changes

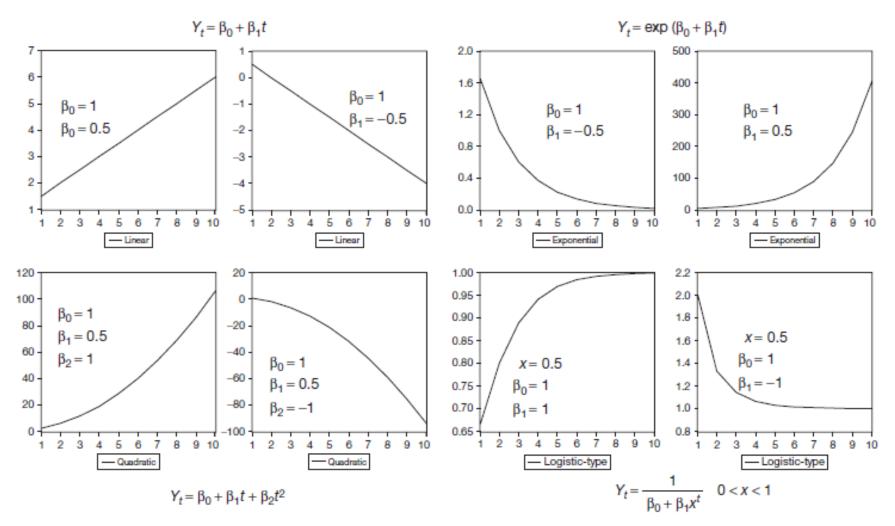
10.1 Deterministic Trends

Figure 10.2 Time Series with Linear Deterministic Trend

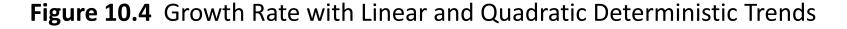


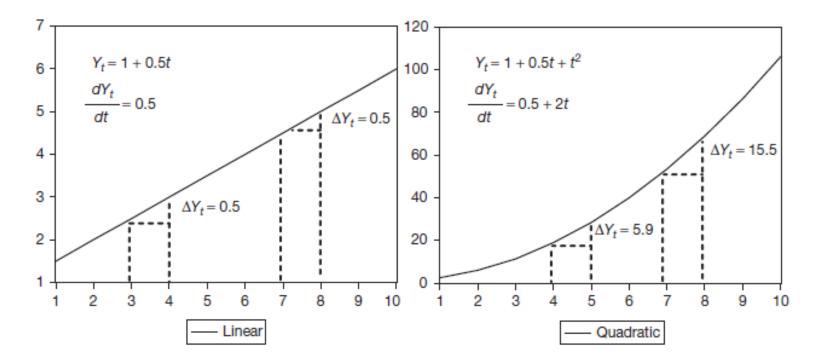
10.1.1 Trend Shapes

Figure 10.3 Common Deterministic Trends



González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.





Geometric growth: $P_t = P_0 (1 + r)^t$

Exponential growth: $P_t = P_0 e^{r^*t}$

$(r \approx r^*)$

González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc. For a simple linear trend series with uncorrelated noise:

$$Y_t = \beta_0 + \beta_1 t + \varepsilon_t$$

Unconditional mean

$$E(Y_t) = E(\beta_0 + \beta_1 t + \varepsilon_t) = \beta_0 + \beta_1 t + E(\varepsilon_t) = \beta_0 + \beta_1 t \equiv \mu_t$$

Unconditional variance

$$\sigma_Y^2 = E(Y_t - \mu_t)^2 = E(Y_t - \beta_0 - \beta_1 t)^2 = E(\varepsilon_t)^2 = \sigma_\varepsilon^2 \equiv \gamma_0$$

Autocovariance of order k

$$\gamma_k \equiv E(Y_t - \mu_t)(Y_{t-k} - \mu_{t-k}) = E(Y_t - \beta_0 - \beta_1 t)(Y_{t-k} - \beta_0 - \beta_1 (t-k))$$

= $E(\varepsilon_t \varepsilon_{t-k}) = 0$

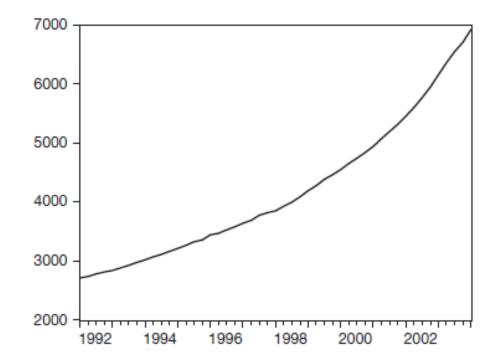
Autocorrelation of order k

$$\rho_k = \frac{\gamma_k}{\gamma_0} = \frac{0}{\sigma_e^2} = 0$$

In this example, we see why these models are called **trend stationary**: because they are stationary around a deterministic trend

10.1.3 Optimal Forecasting

Figure 10.5 Home Mortgage Outstanding Debt (Billions of Dollars)



Trend model	Adjusted <i>R</i> -squared	AIC	SIC
$Y_t = \beta_0 + \beta_1 t$	0.9358	14.292	14.369
$Y_t = \beta_0 + \beta_1 t + \beta_2 t^2$	0.9945	11.847	11.963
$Y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3$	0.9994	9.520	9.674
$Y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4$	0.9997	8.827	9.020
$Y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5$	0.9997	8 861	9.093
$Y_t = \beta_0 \exp(\beta_1 t + \beta_2 t^2)$		10.382	10.498
$Y_t = \beta_0 \exp(\beta_1 t + \beta_2 t^2 + \beta_3 t^3)$		9.933	10.087
$Y_t = \beta_0 \exp(\beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4)$		9.114	9.307
$Y_t = \beta_0 \exp(\beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5)$		8.855	9.087
$\log Y_t = \beta_0 + \beta_1 t + \beta_2 t^2$	0.9986	-6.343	-6.227
$\log Y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3$	0.9997	-7.874	-7.719
$\log Y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4$	0.9997	-7.906	-7.713
$\log Y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5$	0.9997	-7.974	-7.743
$\log Y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6$	0.9997	-7.977	-7.707

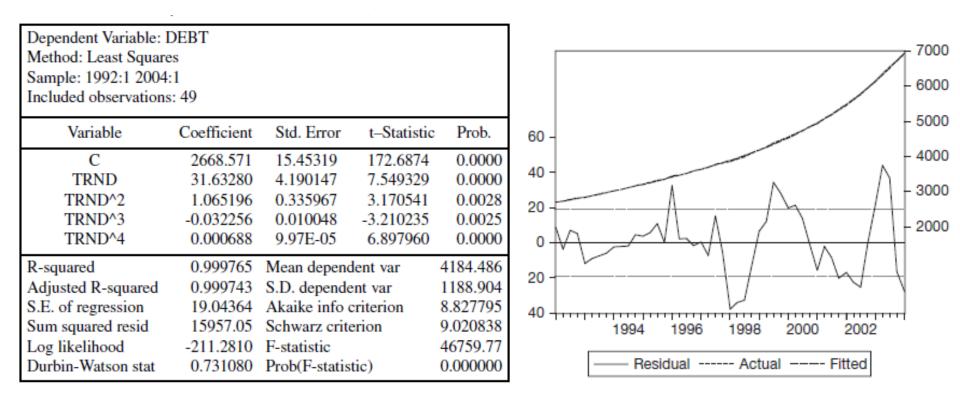
Table 10.1 Deterministic Trend Specifications

The best fit may not translate in best forecasts

We should apply the *parsimony principle* – <u>Occam's</u> (1287–1347) <u>razor</u>

<u>Ptolemy</u> (90–168) stated, "We consider it a good principle to explain the phenomena by the simplest hypothesis possible."

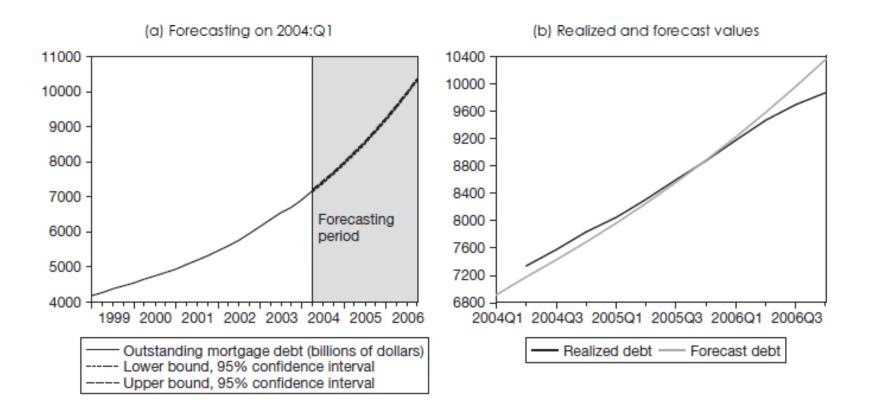
Table 10.2 Least Squares Estimation of a Polynomial Trend



Durbin-Watson: $d = 0.73 < 1 \approx d_{L,a}$, we suspect residual autocorrelation

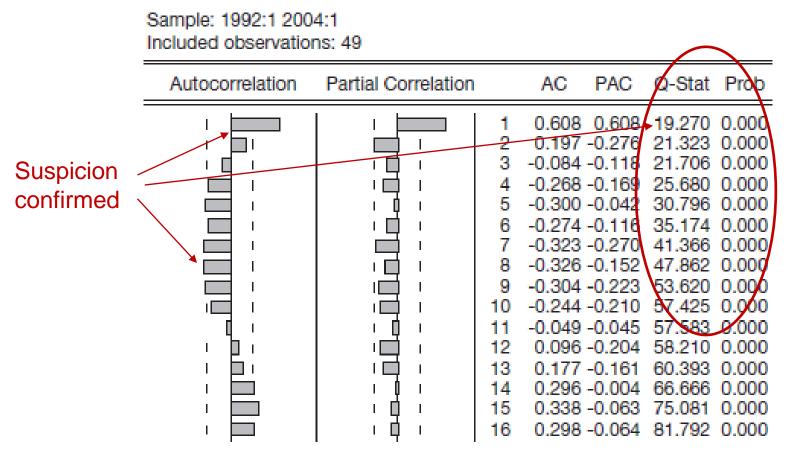
González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.

Figure 10.6 Forecast of Outstanding Mortgage Debt Based on Table 10.2



Recall: Durbin-Watson $d = 0.73 < 1 \approx d_{L,\alpha}$, we suspect residual autocorrelation

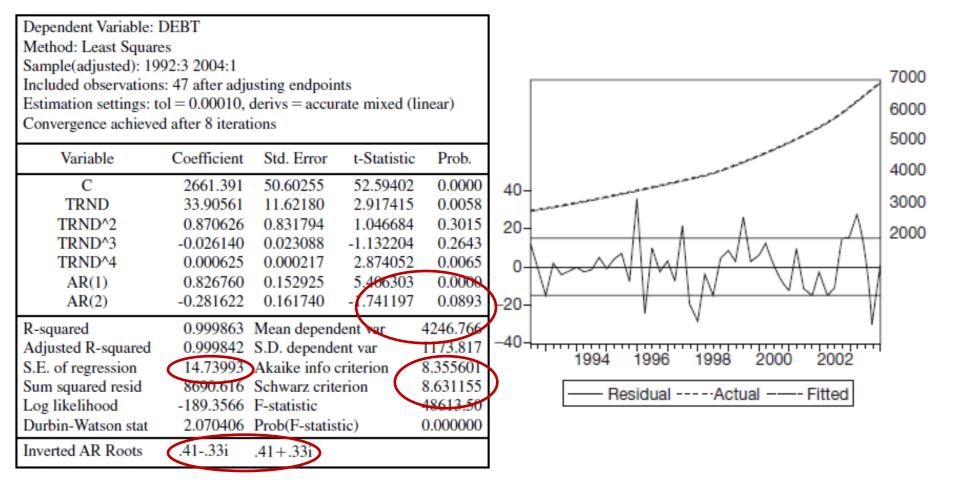
Figure 10.7 Correlograms of the Residuals of the Fourth Polynomial Trend Model



González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.

Table 10.3 Least Squares Estimation of Trend and AR Model

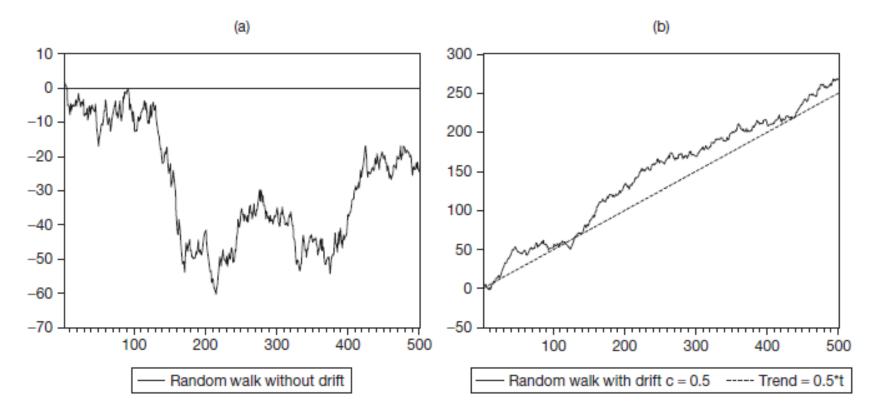
Modelo misto é melhor



10.2 Stochastic Trends

Random walk without drift such as $Y_t = Y_{t-1} + \varepsilon_t$. Random walk with drift such as $Y_t = c + Y_{t-1} + \varepsilon_t$, where *c* is a drift.

Figure 10.8 Random Walk without Drift and with Drift



González-Rivera: Forecasting for Economics and Business,

Copyright © 2013 Pearson Education, Inc.

 $E(\varepsilon_t) = 0, \ E(\varepsilon_t)^2 = \sigma_{\varepsilon}^2, \text{ and } E(\varepsilon_{t-i}\varepsilon_{t-j}) = 0 \quad i \neq j$

Random walk without drift $(Y_0 = 0)$: $Y_t = Y_{t-1} + \varepsilon_t = \varepsilon_t + \varepsilon_{t-1} + \varepsilon_{t-2} + \cdots + \varepsilon_1$

Unconditional mean $\mu \equiv E(Y_t) = E(\varepsilon_t + \varepsilon_{t-1} + \dots + \varepsilon_1) = 0$ Unconditional variance $\sigma_Y^2 = E(Y_t - \mu)^2 = E(\varepsilon_t + \varepsilon_{t-1} + \dots + \varepsilon_1)^2 = t\sigma_\varepsilon^2$ Autocovariance of order k $\gamma_{t,t-k} \equiv E(Y_t - \mu)(Y_{t-k} - \mu)$ $= E(\varepsilon_t + \varepsilon_{t-1} + \dots + \varepsilon_{t-k} + \dots + \varepsilon_1)(\varepsilon_{t-k} + \varepsilon_{t-k-1} + \dots + \varepsilon_1)$ $= (t - k)\sigma_\varepsilon^2$

Autocorrelation of order k

$$\rho_{t,t-k} = \frac{\gamma_{t,t-k}}{\sigma_{Y_t}\sigma_{Y_{t-k}}} = \frac{(t-k)\sigma_{\varepsilon}^2}{\sqrt{t\sigma_{\varepsilon}^2}\sqrt{(t-k)\sigma_{\varepsilon}^2}} = \sqrt{\frac{t-k}{t}} \to 1$$

Random walk with drift $(Y_0 = 0)$:

 $Y_t = c + Y_{t-1} + \varepsilon_t = ct + \varepsilon_t + \varepsilon_{t-1} + \varepsilon_{t-2} + \cdots + \varepsilon_1$

Unconditional mean

 $\mu_t \equiv E(Y_t) = E(ct + \varepsilon_t + \varepsilon_{t-1} + \cdots + \varepsilon_1) = ct$

Unconditional variance

 $\sigma_Y^2 = E(Y_t - \mu_t)^2 = E(Y_t - ct)^2 = E(\varepsilon_t + \varepsilon_{t-1} + \cdots + \varepsilon_1)^2 = t\sigma_{\varepsilon}^2$ Autocovariance of order k

$$\gamma_{t,t-k} \equiv E(Y_t - \mu_t) \left(Y_{t-k} - \mu_{t-k} \right) = E(\varepsilon_t + \varepsilon_{t-1} + \dots + \varepsilon_{t-k} + \dots + \varepsilon_1)$$
$$(\varepsilon_{t-k} + \varepsilon_{t-k-1} + \dots + \varepsilon_1) = (t-k)\sigma_{\varepsilon}^2$$

Autocorrelation of order k

$$\rho_{t,t-k} = \frac{\gamma_{t,t-k}}{\sigma_{Y_t}\sigma_{Y_{t-k}}} = \frac{(t-k)\sigma_{\varepsilon}^2}{\sqrt{t\sigma_{\varepsilon}^2}\sqrt{(t-k)\sigma_{\varepsilon}^2}} = \sqrt{\frac{t-k}{t}} \to 1 \quad \text{for } t \text{ large}$$

RWs are not covariance stationary

10.2.2 Stationarity Properties

Figure 10.9 Autocorrelograms of Random Walks

Sample: 2,500

	Included observation	ns: 499					
	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
(a) Random Walk Without Drift (Figure 10.8a)			1 2 3 4 5 6 7 8 9 10 11 12	0.980 0.970 0.960 0.951 0.942 0.934 0.925 0.917 0.909 0.901	-0.014 0.020 -0.029 0.024 0.027 0.023 0.004 0.001 -0.036 0.042	492.08 975.14 1449.7 1915.4 2372.9 2822.8 3265.7 3701.7 4131.1 4553.2 4968.9 5378.5	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sample: 2 500 Included observations: 499

González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.

(b) Random Walk with Drift (Figure 10.8b) 10.2.2.1 Testing for Unit Root

Recall: RW $Y_t = Y_t + \varepsilon_t$ is an "AR(1)" with $\phi = 1$

As this "AR(1)" is not stationary, we need a different test for

 $\begin{cases} H_0: \phi = 1\\ H_1: \phi < 1 \end{cases}$

but it's distribution is non-standard.

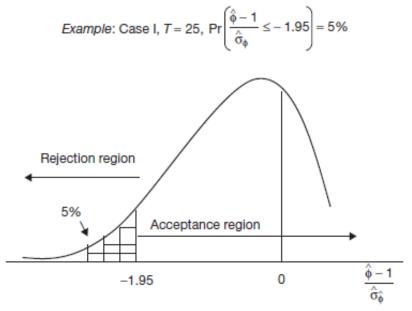
We have to use the tabulated **Dickey-Fuller test**.

We have three cases:

- I mean zero no trend
- II nonzero mean no trend

III - trend

Table 10.4 Dickey-Fuller Critical Values for a 5% Critical Region



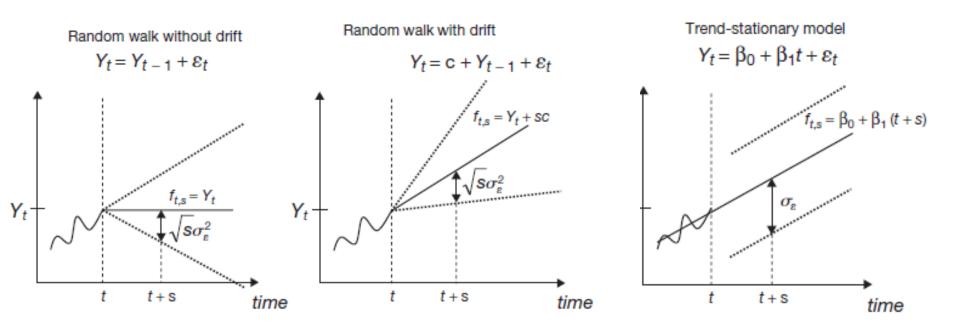
	Case I	Case II	Case III
Sample size T	$H_0: Y_t = Y_{t-1} + \varepsilon_t$ $H_1: Y_t = \phi Y_{t-1} + \varepsilon_t$	$H_0: Y_t = Y_{t-1} + \varepsilon_t$ $H_1: Y_t = c + \phi Y_{t-1} + \varepsilon_t$	$H_0: Y_t = c + Y_{t-1} + \varepsilon_t$ $H_1: Y_t = c + \alpha t + \phi Y_{t-1} + \varepsilon_t$
25	-1.95	-3.00	-3.60
50	-1.95	-2.93	-3.50
100	-1.95	-2.89	-3.45
250	-1.95	-2.88	-3.43
500	-1.95	-2.87	-3.42
∞	-1.95	-2.86	-3.41

Table 10.5 Unit Root Testing Procedure

	OLS-Estimated model (standard error of $\hat{\phi}$)	Ratio: $\frac{\hat{\phi}-1}{\hat{\sigma}_{\hat{\phi}}}$	Dickey- Fuller critical value at 5% level (Table 10.4)	Decision
Fig 10.8a				
Case I $H_0: Y_t = Y_{t-1} + \varepsilon_t$ $H_1: Y_t = \phi Y_{t-1} + \varepsilon_t$	$Y_t = 0.9988Y_{t-1} + \hat{\varepsilon}_t$ (0.0025)	$\frac{0.9988 - 1}{0.0025} = -0.4341$	-1.95	-1.95 < -0.43 fail to reject $H_0 \Rightarrow$ unit root
Case II $H_0: Y_t = Y_{t-1} + \varepsilon_t$ $H_1: Y_t = c + \phi Y_{t-1} + \varepsilon_t$	$Y_t = -0.325 + \\+ 0.9905Y_{t-1} + \hat{\varepsilon}_t \\(0.0051)$	$\frac{0.9905 - 1}{0.0051} = -1.8530$	-2.87	-2.87 < -1.85 fail to reject $H_0 \Rightarrow$ unit root
Fig. 10.8b				
Case III $H_0: Y_t = c + Y_{t-1} + \varepsilon_t$ $H_1: Y_t = c + \alpha t + \phi Y_{t-1} + \varepsilon_t$	$Y_t = 0.9167 + 0.0082t + 0.9830Y_{t-1} + \hat{\varepsilon}_t$ (0.0077)	$\frac{0.9830 - 1}{0.0077} = -2.1853$	-3.42	-3.42 < -2.18 fail to reject $H_0 \Rightarrow$ unit root

10.2.3 Optimal Forecast

Figure 10.10 Differences in the Forecasts of Random Walk and Trend-Stationary Processes



- 1. Unit roots imply the need for differencing
- 2. We may need to difference d times d = 1, 2, ...
- 3. Instead of a WN we could have an ARMA noise

This means that we can generalize the model to an **ARIMA**(*p*,*d*,*q*):

$$\Phi_p(L)\Delta^d Y_t = \theta_q(L)\varepsilon_t$$

In order to account for such a structure we use the so-called

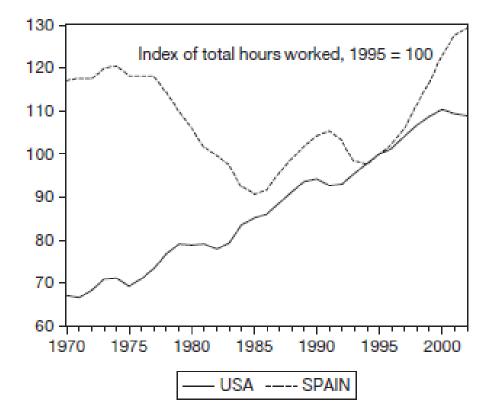
Augmented Dickey-Fuller (ADF) Test

We simply need to augment the regression with the lagged differences necessary to destroy autocorrelation:

$$\Delta Y_t = c + \beta Y_{t-1} + \alpha_1 \Delta Y_{t-1} + \alpha_2 \Delta Y_{t-2} + \alpha_3 \Delta Y_{t-3} + \cdots + \varepsilon_t$$

An example:

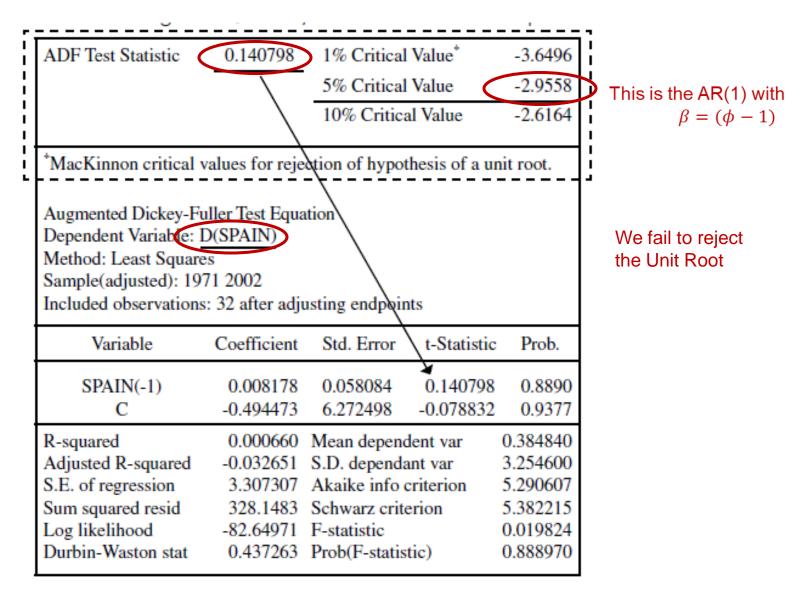
Figure 10.11 Index of Total Hours Worked in United States and Spain



It seems wise to test for a UR with intercept (Type II)

González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.

 Table 10.6
 Augmented Dickey-Fuller Unit Root Test on Spain



But the residuals are not yet white

Figure 10.12 Correlogram of Residuals

Sample: 1971 2002 Included observations: 32									
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob			
		1 2 3 4 5 6 7 8 9 10	0.315 0.115 -0.067 -0.156 -0.182 -0.086 0.073	0.160 -0.340 0.041 -0.076 0.058 0.265 0.065	21.279 29.881 33.613 34.125 34.303 35.324 36.761 37.097 37.350 37.921	0.000 0.000			

How many differencing should be needed?

Table 10.7 Augmented Dickey-Fuller Unit Root Test on Spain

ADF Test Statistic -2.153659 1% Critical Value* -3.6576 5% Critical Value -2.9591 10% Critical Value -2.6181 We fail to reject the Unit Root												
Augmented Dickey-Fuller Test Equation Dependent Variable: D(SPAIN) Method: Least Squares Sample(adjusted): 1972 2002 Included observations: 31 after adjusting endpoints					We can assure residuals are and proceed estimation Correlogram of F	e wł d to :	nite the					
Variable	Coefficient	Std. Error	t-Statistic	e Prob.		: 1972 2002 d observation	ns: 31					
SPAIN(-1) D(SPAIN(-1)) C	-0.079919 0.864257 8.661998	0.037109 0.115315 3.982150	-2.153659 7.494743 2.175206	0.0000	Autoc			1	AC 0.129 -0.272	PAC 0.129 -0.293	Q-Stat 0.5661 3.1666	Prob 0.452 0.205
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.643824 1.974467 109.1586 -63.49872		ent var criterion erion	0.384577 3.308399 4.290240 4.429013 28.11405 0.000000				3 4 5 7 8 9 10	0.148 0.060 -0.114 -0.070 -0.221 -0.128 0.239 -0.022	0.257 -0.119 0.022 -0.115 -0.260 -0.044 0.188 -0.112		

Table 10.8 Least Squares Estimation of $\Delta Y_t = \alpha_1 \Delta Y_{t-1} + \varepsilon_t$

This is the ARIMA(1,1,0)

Dependent Variable: D(SPAIN) Method: Least Squares Sample(adjusted): 1972 2002 Included observations: 31 after adjusting endpoints Convergence achieved after 2 iterations							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
AR(1)	0.789202	0.113642	6.944641	0.0000			
R-squared	0.611151	Mean depen	dent var	0 384577			
Adjusted R-squared	0.611151	S.D. depend	ent var	3.308399			
S.E. of regression	2.063043	Akaike info	criterion	4.317967			
Sum squared resid	127.6844	Schwarz crit	terion	4.364225			
Log likelihood	-65.92849	Durbin-Wat	son stat	1.532094			
Inverted AR Roots	.79						

Table 10.9 Four-Step-Ahead Forecast of Index of Total Hours Worked in Spain

$$\sigma_{t+1|t}^2 = \sigma_{\varepsilon}^2$$

$$e_{t,2}^2 = e_{t,2} + e_{t,1}^* = \varepsilon_{t+2} + \phi \varepsilon_{t+1} + \varepsilon_{t+1} = \varepsilon_{t+2} + (\phi + 1)\varepsilon_{t+1}$$

$$\sigma_{t+2|t}^2 = \sigma_{\varepsilon}^2 (1 + (\phi + 1)^2)$$
Forecasts for differences
Forecasts for levels
$$t = 2002 \quad \Delta Y_{2002} = 1.88 \quad Y_{2002} = 129.35$$
Forecasting
$$f_{2002,s} = \phi^s \Delta Y_{2002} \quad \sigma_{t+s|2002} \quad f_{2002,s}^* = f_{2002,s} + f_{2002,s-1}^* \quad \sigma_{t+s|2002}^*$$

$$s = 1 \ 2003 \quad 1.48 \quad 2.07 \quad 130.83 \quad 2.07$$

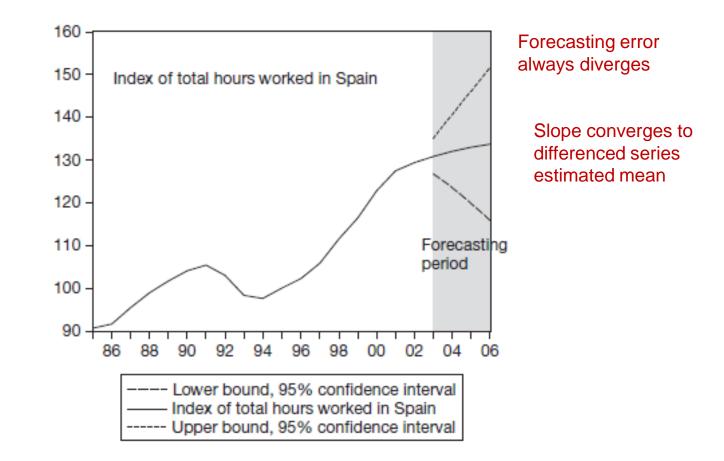
$$s = 1 \ 2003 \quad 1.48 \quad 2.07 \quad 130.83 \quad 2.07$$

$$s = 2 \ 2004 \quad 1.17 \quad 2.64 \quad 132.01 \quad 4.25$$

$$s = 3 \ 2005 \quad 0.92 \quad 2.93 \quad 132.93 \quad 6.56$$

$$s = 4 \ 2006 \quad 0.73 \quad 3.10 \quad 133.66 \quad 8.90$$

Figure 10.13 Forecast of Index Total Hours Worked in Spain with 95% Confidence Bands



González-Rivera: Forecasting for Economics and Business, Copyright © 2013 Pearson Education, Inc.