Probability Theory and Stochastic Processes

LIST 2

Measurable functions, Lebesgue integral

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space.
(1) Show that the sum of measurable functions is also a measurable function.
(2) Show that a function f is measurable iff f^{+}and f^{-}are measurable. (Hint: $f^{+}=\mathcal{X}_{A} f$ where $A=\{x \in \Omega: f(x)>0\}$.)
(3) Let f be a measurable function. Show that
(a) $|f|$ is also measurable.
(b) $f^{-1}(\{a\})=\{x: f(x)=a\}$ is a measurable set.
(4) Let $\mathcal{A} \subset \mathcal{F}$ be σ-algebras. Are the following propositions true? If not, write examples that contradict the statements.
(a) If a function is \mathcal{A}-measurable, then it is also \mathcal{F}-measurable.
(b) If a function is \mathcal{F}-measurable, then it is also \mathcal{A}-measurable.
(5) Prove the implications in the following sequence of propositions:
uniform convergence \Rightarrow pointwise convergence \Rightarrow
\Rightarrow convergence a.e. \Rightarrow convergence in measure
(6) Let μ be the counting measure. Consider $A=\left\{a_{1}, a_{2}, a_{3}\right\} \in \mathcal{F}$ and a measurable function f.
(a) Is $\mathcal{X}_{A} f$ a simple function?
(b) Compute $\int_{A} f d \mu$.
(7) (Markov inequality) Consider a measurable function $f \geq 0$. Show that for any $\lambda>0$ we have

$$
\mu(\{x \in \Omega: f(x) \geq \lambda\}) \leq \frac{1}{\lambda} \int f d \mu
$$

(8) Given measures μ_{1}, μ_{2} and $c_{1}, c_{2} \geq 0$, let $\mu=c_{1} \mu_{1}+c_{2} \mu_{2}$. Take any function f which is simultaneously μ_{1}-integrable and $\mu_{2^{-}}$ integrable. Show that f is also μ-integrable and that

$$
\int f d \mu=c_{1} \int \underset{1}{f d \mu_{1}+c_{2} \int f d \mu_{2} . . . ~}
$$

Hint: First prove it for simple functions and then use the monotone convergence theorem.
(9) Let $\mathcal{A} \subset \mathcal{F}$ a σ-subalgebra, f, g are \mathcal{F}-measurable functions and h is \mathcal{A}-measurable. Are the following propositions true? If not, write examples that contradict the statements.
(a) If $\int_{B} f d \mu=\int_{B} g d \mu$ for every $B \in \mathcal{F}$, then $f=g$ a.e.
(b) If $\int_{A} f d \mu=\int_{A} h d \mu$ for every $A \in \mathcal{A}$, then $f=h$ a.e.
(10) Use the dominated convergence theorem to determine the limits (where δ_{a} stands for the Dirac delta measure at a):
(a) $\lim _{n \rightarrow+\infty} \int_{0}^{\pi} \frac{\sqrt[n]{x}}{1+x^{2}} d \delta_{0}(x)$
(b) $\lim _{n \rightarrow+\infty} \int_{0}^{\pi} \frac{\sqrt[n]{x}}{1+x^{2}} d x$
(c) $\lim _{n \rightarrow+\infty} \int_{-\infty}^{+\infty} e^{-|x|} \cos ^{n}(x) d x$
(d) $\lim _{n \rightarrow+\infty} \int_{0}^{+\infty} \frac{r^{n}}{1+r^{n+2}} d \delta_{1}(r)$
(e) $\lim _{n \rightarrow+\infty} \int_{0}^{+\infty} \frac{r^{n}}{1+r^{n+2}} d r$

