Probability Theory and Stochastic Processes

LIST 2

Measurable functions, Lebesgue integral

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space.

- (1) Show that the sum of measurable functions is also a measurable function.
- (2) Show that a function f is measurable iff f^+ and f^- are measurable. (Hint: $f^+ = \mathcal{X}_A f$ where $A = \{x \in \Omega : f(x) > 0\}$.)
- (3) Let f be a measurable function. Show that
 - (a) |f| is also measurable.
 - (b) $f^{-1}(\{a\}) = \{x : f(x) = a\}$ is a measurable set.
- (4) Let $\mathcal{A} \subset \mathcal{F}$ be σ -algebras. Are the following propositions true? If not, write examples that contradict the statements.
 - (a) If a function is A-measurable, then it is also \mathcal{F} -measurable.
 - (b) If a function is \mathcal{F} -measurable, then it is also \mathcal{A} -measurable.
- (5) Prove the implications in the following sequence of propositions:

uniform convergence \Rightarrow pointwise convergence \Rightarrow

 \Rightarrow convergence a.e. \Rightarrow convergence in measure

- (6) Let μ be the counting measure. Consider $A = \{a_1, a_2, a_3\} \in \mathcal{F}$ and a measurable function f.
 - (a) Is $\mathcal{X}_A f$ a simple function?
 - (b) Compute $\int_A f d\mu$.
- (7) (Markov inequality) Consider a measurable function $f \geq 0$. Show that for any $\lambda > 0$ we have

$$\mu\left(\left\{x \in \Omega \colon f(x) \ge \lambda\right\}\right) \le \frac{1}{\lambda} \int f \, d\mu.$$

(8) Given measures μ_1, μ_2 and $c_1, c_2 \ge 0$, let $\mu = c_1 \mu_1 + c_2 \mu_2$. Take any function f which is simultaneously μ_1 -integrable and μ_2 -integrable. Show that f is also μ -integrable and that

$$\int f \, d\mu = c_1 \int f \, d\mu_1 + c_2 \int f \, d\mu_2.$$

Hint: First prove it for simple functions and then use the monotone convergence theorem.

- (9) Let $\mathcal{A} \subset \mathcal{F}$ a σ -subalgebra, f, g are \mathcal{F} -measurable functions and h is A-measurable. Are the following propositions true? If not, write examples that contradict the statements.
 - (a) If $\int_B f d\mu = \int_B g d\mu$ for every $B \in \mathcal{F}$, then f = g a.e.
 - (b) If $\int_A f d\mu = \int_A h d\mu$ for every $A \in \mathcal{A}$, then f = h a.e.
- (10) Use the dominated convergence theorem to determine the limits (where δ_a stands for the Dirac delta measure at a):
 - (a) $\lim_{n \to +\infty} \int_0^\pi \frac{\sqrt[n]{x}}{1+x^2} d\delta_0(x)$
 - (b) $\lim_{n \to +\infty} \int_0^\pi \frac{\sqrt[n]{x}}{1+x^2} dx$
 - (c) $\lim_{n \to +\infty} \int_{-\infty}^{+\infty} e^{-|x|} \cos^n(x) dx$
 - (d) $\lim_{n \to +\infty} \int_0^{+\infty} \frac{r^n}{1+r^{n+2}} d\delta_1(r)$ (e) $\lim_{n \to +\infty} \int_0^{+\infty} \frac{r^n}{1+r^{n+2}} dr$