Probability Theory and Stochastic Processes LIST 4

Limit theorems and conditional expectation

- Let (Ω, \mathcal{F}, P) be a probability space.
 - (1) If X and Y are independent random variables, show that for any measurable functions f and g:
 - (a) f(X) and g(Y) are independent.
 - (b) E(f(X)g(Y)) = E(f(X)) E(g(Y)) if $E(|f(X)|), E(|g(Y)|) < +\infty$.
 - (2) Consider the Cauchy distribution and the corresponding characteristic function $\phi(t) = e^{|t|}$. Show that the weak law of large numbers does not hold for this distribution.
 - (3) Given a sequence X_n of iid random variables with uniform distribution on [0, 1], determine

$$\lim_{n \to +\infty} \sqrt[n]{X_1 \dots X_n}$$

with probability 1 (i.e. almost surely).

(4) * Given a sequence X_n of random variables such that $P(X_i = 2^i) = 2^{-i}$, $P(X_i = 0) = 1 - 2^{-i}$, $i \ge 1$, determine

$$\lim_{n \to +\infty} \frac{X_1 + \dots + X_n}{n}$$

with probability 1. *Hint:* Use the first Borel-Cantelli lemma. Notice that the strong law of large numbers does not hold because the sequence is not iid.

(5) Let $C \subset \Omega$, the σ -algebra

$$\mathcal{F} = \{\emptyset, \Omega, C, C^c\}$$

and the probability measures on \mathcal{F} given by

$$\mu(C) = \frac{1}{2}$$
 and $\lambda(C) = \frac{1}{4}$.

Consider also the trivial σ -algebra $\mathcal{A} = \{\emptyset, \Omega\} \subset \mathcal{F}$.

- (a) Show that $\lambda \ll \mu$.
- (b) Compute $f = \frac{d\lambda}{d\mu}$. Is it \mathcal{F} -measurable? Is it \mathcal{A} -measurable?
- (c) Compute $g = \frac{d\lambda}{d\mu}|_{\mathcal{A}}$. Is it \mathcal{A} -measurable?

(d) Prove that $g = E(f|\mathcal{A})$, i.e.

$$\int_A g \, d\mu = \int_A f \, d\mu, \quad A \in \mathcal{A}.$$

(6) Let $\Omega = [0, 1[, \mathcal{F} = \mathcal{B}([0, 1[) \text{ and } P = m \text{ where } m \text{ is the Lebes$ $gue measure on } [0, 1[. Consider the random variables <math>X(\omega) = \omega$ and

$$Y(\omega) = \begin{cases} 2\omega, & 0 \le \omega < \frac{1}{2} \\ 2\omega - 1, & \frac{1}{2} \le \omega < 1. \end{cases}$$

- (a) Find $\sigma(Y)$.
- (b) By the knowledge that E(X|Y) is $\sigma(Y)$ -measurable, show that

$$E(X|Y)(\omega) = E(X|Y)(\omega + 1/2), \quad 0 \le \omega < 1/2.$$

(c) Reduce the problem of determining E(X|Y) on [0,1[to finding the solution of

$$\int_{A} E(X|Y) dm = \frac{1}{2} \int_{A \cup (A+1/2)} X dm, \quad A \in \mathcal{B}([0, 1/2[),$$
and compute $E(X|Y).$

(7) Let $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}$ be σ -subalgebras of \mathcal{F} and X an integrable function. Show that

$$E(X|\mathcal{F}_1) = E(E(X|\mathcal{F}_2)|\mathcal{F}_1)$$
 a.e.

- (8) Let $B \in \mathcal{F}$ with P(B) > 0. Compute:
 - (a) $\sigma(\mathcal{X}_B)$.
 - (b) $E(X|\mathcal{X}_B)$ for any random variable X.
 - (c) $P(A|\mathcal{X}_B)$ where $A \in \mathcal{F}$.