Probability Theory and Stochastic Processes
 LIST 4
 Limit theorems and conditional expectation

Let (Ω, \mathcal{F}, P) be a probability space.
(1) If X and Y are independent random variables, show that for any measurable functions f and g :
(a) $f(X)$ and $g(Y)$ are independent.
(b) $E(f(X) g(Y))=E(f(X)) E(g(Y))$ if $E(|f(X)|), E(|g(Y)|)<$ $+\infty$.
(2) Consider the Cauchy distribution and the corresponding characteristic function $\phi(t)=e^{|t|}$. Show that the weak law of large numbers does not hold for this distribution.
(3) Given a sequence X_{n} of iid random variables with uniform distribution on $[0,1]$, determine

$$
\lim _{n \rightarrow+\infty} \sqrt[n]{X_{1} \ldots X_{n}}
$$

with probability 1 (i.e. almost surely).
(4) * Given a sequence X_{n} of random variables such that $P\left(X_{i}=\right.$ $\left.2^{i}\right)=2^{-i}, P\left(X_{i}=0\right)=1-2^{-i}, i \geq 1$, determine

$$
\lim _{n \rightarrow+\infty} \frac{X_{1}+\cdots+X_{n}}{n}
$$

with probability 1. Hint: Use the first Borel-Cantelli lemma. Notice that the strong law of large numbers does not hold because the sequence is not iid.
(5) Let $C \subset \Omega$, the σ-algebra

$$
\mathcal{F}=\left\{\emptyset, \Omega, C, C^{c}\right\}
$$

and the probability measures on \mathcal{F} given by

$$
\mu(C)=\frac{1}{2} \quad \text { and } \quad \lambda(C)=\frac{1}{4} .
$$

Consider also the trivial σ-algebra $\mathcal{A}=\{\emptyset, \Omega\} \subset \mathcal{F}$.
(a) Show that $\lambda \ll \mu$.
(b) Compute $f=\frac{d \lambda}{d \mu}$. Is it \mathcal{F}-measurable? Is it \mathcal{A}-measurable?
(c) Compute $g=\left.\frac{d \lambda}{d \mu}\right|_{\mathcal{A}}$. Is it \mathcal{A}-measurable?
(d) Prove that $g=E(f \mid \mathcal{A})$, i.e.

$$
\int_{A} g d \mu=\int_{A} f d \mu, \quad A \in \mathcal{A}
$$

(6) Let $\Omega=[0,1[, \mathcal{F}=\mathcal{B}([0,1[)$ and $P=m$ where m is the Lebesgue measure on $[0,1[$. Consider the random variables $X(\omega)=\omega$ and

$$
Y(\omega)= \begin{cases}2 \omega, & 0 \leq \omega<\frac{1}{2} \\ 2 \omega-1, & \frac{1}{2} \leq \omega<1\end{cases}
$$

(a) Find $\sigma(Y)$.
(b) By the knowledge that $E(X \mid Y)$ is $\sigma(Y)$-measurable, show that

$$
E(X \mid Y)(\omega)=E(X \mid Y)(\omega+1 / 2), \quad 0 \leq \omega<1 / 2
$$

(c) Reduce the problem of determining $E(X \mid Y)$ on $[0,1[$ to finding the solution of
$\int_{A} E(X \mid Y) d m=\frac{1}{2} \int_{A \cup(A+1 / 2)} X d m, \quad A \in \mathcal{B}([0,1 / 2[)$,
and compute $E(X \mid Y)$.
(7) Let $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}$ be σ-subalgebras of \mathcal{F} and X an integrable function. Show that

$$
E\left(X \mid \mathcal{F}_{1}\right)=E\left(E\left(X \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{1}\right) \text { a.e. }
$$

(8) Let $B \in \mathcal{F}$ with $P(B)>0$. Compute:
(a) $\sigma\left(\mathcal{X}_{B}\right)$.
(b) $E\left(X \mid \mathcal{X}_{B}\right)$ for any random variable X.
(c) $P\left(A \mid \mathcal{X}_{B}\right)$ where $A \in \mathcal{F}$.

