Probability Theory and Stochastic Processes

LIST 5
 Markov chains

(1) Prove that the following propositions are equivalent ${ }^{1}$
(a) P is a stochastic $n \times n$ matrix (i.e. all its coefficients are in $[0,1]$ and their sum over each row is equal to 1).
(b) For any vector $v \geq 0$ in \mathbb{R}^{n} we have $P v \geq 0$ and $P(1, \ldots, 1)=$ $(1, \ldots, 1)$.
(c) For any probability vector $v \in \mathbb{R}^{n}$ (i.e. $v \geq 0$ and $\sum_{i=1}^{r} v_{i}=$ 1), we have that $v P$ is also a probability vector.
(2) Show that the product of two stochastic matrices is also a stochastic matrix.
(3) (Chapman-Kolmogorov equations) Consider a homogeneous Markov chain with transition matrix P. Show that the n-step transition matrix is P^{n}. Hint: Recall the following facts: $P(A \cap$ $B \mid C)=P(A \mid B \cap C) P(B \mid C)$ and $P(A \mid B)=\sum_{n} P\left(A \cap C_{n} \mid B\right)$ where C_{1}, C_{2}, \ldots is a sequence of disjoint sets whose union has probability 1.
(4) Consider a homogeneous Markov chain on the state space $S=\mathbb{N}$ given by the transition probabilities:

$$
\begin{aligned}
P\left(X_{1}=i \mid X_{0}=i\right)=r, & i \geq 2, \\
P\left(X_{1}=i-1 \mid X_{0}=i\right)=1-r, & i \geq 2, \\
P\left(X_{1}=j \mid X_{0}=1\right)=\frac{1}{2^{j}}, & j \geq 1 .
\end{aligned}
$$

Classify the states of the chain and find their mean recurence times:
(a) using the stationary distribution.
(b) * computing the probability of first return after n steps.
(5) Let $0<p<1$. Classify the states of the Markov chains given by the transition matrices below, and determine the mean recurrence times of each state.

[^0](a)
\[

\left[$$
\begin{array}{ccc}
1-2 p & 2 p & 0 \\
p & 1-2 p & p \\
0 & 2 p & 1-2 p
\end{array}
$$\right]
\]

(b)

$$
\left[\begin{array}{cccc}
0 & p & 0 & 1-p \\
1-p & 0 & p & 0 \\
0 & 1-p & 0 & p \\
p & 0 & 1-p & 0
\end{array}\right]
$$

[^0]: ${ }^{1}$ Given a vector $v \in \mathbb{R}^{n}$ we use the notation $v \geq 0$ to mean that each coordinate v_{i} of v is ≥ 0.

