Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM January 15, 2016

Time limit: 2 hours Each question: 2.5 points

(1) Consider a set Ω , a function $f: \Omega \to \Omega$ and

$$\mathcal{F} = \{ A \subset \Omega \colon f^{-1}(A) = A \}.$$

- (a) Show that (Ω, \mathcal{F}) is a measurable space.
- (b) Consider a measure μ on (Ω, \mathcal{F}) and $A, B \in \mathcal{F}$ disjoint sets. Find

$$\int_{f^{-1}(B)} \mathcal{X}_A \circ f \, d\mu,$$

where \mathcal{X}_A is the indicator function for the set A.

(2) Compute

$$\lim_{n \to +\infty} \int_0^1 \frac{1}{\sqrt{t}} e^{-t/n} \, dt.$$

(3) Given a sequence of i.i.d. random variables $X_1, X_2...$ with uniform distribution on [0, 1], determine

$$\lim_{n \to +\infty} \sqrt[n]{X_1 \dots X_n}$$

with probability 1.

(4) Let (Ω, \mathcal{B}, m) be a probability space, where $\Omega = [0, 1]$, \mathcal{B} is the Borel σ -algebra of Ω and m is the Lebesgue measure on Ω . Given the random variables $X(\omega) = \omega$ and

$$Y(\omega) = \begin{cases} 2\omega, & 0 \le \omega \le \frac{1}{2} \\ 2\omega - 1, & \frac{1}{2} < \omega \le 1, \end{cases}$$

compute E(X|Y).

(5) On the finite state space $S = \{1, 2, ..., a\}$ consider a homogeneous Markov chain X_n on S with probabilities

$$P(X_1 = j | X_0 = i) = \begin{cases} \frac{1}{2}, & j = i \\ \frac{1}{2}, & j = i+1 \text{ or } (i,j) = (a,1). \end{cases}$$

- (a) Classify the states of the chain and determine their periods.
- (b) If possible, find the stationary distributions and the mean recurrence time of each state.
- (6) Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{F}_n a filtration. Suppose that (X_n, \mathcal{F}_n) and (Y_n, \mathcal{F}_n) are martingales and T is a stopping time with respect to \mathcal{F}_n and $X_T = Y_T$. Is

$$Z_n = \begin{cases} X_n, & n < T \\ Y_n, & n \ge T \end{cases}$$

a martingale with respect to \mathcal{F}_n ?

Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM February 1, 2016

Time limit: 2 hours Each question: 2.5 points

- (1) Let (Ω, \mathcal{F}, P) be a probability space.
 - (a) Let $A, B \in \mathcal{F}$. If P(A) = 1, find $P(B) P(B \cap A)$.
 - (b) Consider a random variable X that can only take two values $a, b \in \mathbb{R}$. Write $\sigma(X)$.
 - (c) Consider a function $g: \Omega \to \mathbb{R}$ and σ -algebras $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}$ such that g is \mathcal{F}_2 -mensurable. Is g also \mathcal{F}_1 -mensurable?
- (2) Compute

$$\lim_{n \to +\infty} \int_0^n \sin(e^{-x}) e^{-nx} \, dx$$

(3) Consider a homogeneous Markov chain with transition matrix given by

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

- (a) Classify the states of the chain and determine their periods.
- (b) If possible, find the stationary distributions and the mean recurrence time of each state.

(4) Let (Ω, \mathcal{F}, P) be a probability space and X_1, X_2, \ldots a sequence of iid random variables with distribution

$$P(X_n = 1) = \frac{1}{2}$$
 and $P(X_n = -1) = \frac{1}{2}$.

Consider the stopping time

$$\tau = \min\{n \in \mathbb{N} \colon X_n = 1\}$$

with respect to the filtration $\sigma(X_1, \ldots, X_n)$.

- (a) Decide if $X_{\tau \wedge n}$ is a martingale, where $\tau \wedge n = \min\{\tau, n\}$.
- (b) Let $S_n = \sum_{i=1}^n 2^i X_i$. Compute $E(S_{\tau-1})$.

University of Lisbon – ISEG Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM January 18, 2017

Time limit: 2 hours Each question: 2.5 points

- (1) Consider the probability space $(\mathbb{R}, \mathcal{P}, \delta_a)$, where δ_a is the Dirac measure on \mathbb{R} at a = 2, and a random variable $X(x) = \sqrt{|x|}$.
 - (a) Find the distribution and characteristic functions of X.
 - (b) Write an example of a random variable Y with the same distribution of X.
- (2) For each $n \in \mathbb{N}$ consider a random variable X_n with distribution function

$$F_n(x) = \begin{cases} 0, & x \le 0\\ nx, & 0 < x \le \frac{1}{n}\\ 1, & x > \frac{1}{n}. \end{cases}$$

Find the limit in distribution of X_n as $n \to +\infty$.

(3) Consider a homogeneous Markov chain with transition matrix given by

$$P = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0\\ \frac{1}{2} & 0 & \frac{1}{2} & 0\\ 0 & \frac{1}{4} & 0 & \frac{3}{4}\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- (a) Classify the states of the chain.
- (b) Determine the period of each state.
- (c) If possible, find the stationary distributions and the mean recurrence time of each state.

(4) Let (Ω, \mathcal{F}, P) be a probability space and X_1, X_2, \ldots a sequence of iid random variables with distribution

$$P(X_n = 1) = \frac{1}{2}$$
 and $P(X_n = -1) = \frac{1}{2}$.

Consider the stopping time

$$\tau = \min\{n \in \mathbb{N} \colon X_n = 1\}$$

with respect to the filtration $\sigma(X_1, \ldots, X_n)$.

- (a) Decide if $X_{\tau \wedge n}$ is a martingale, where $\tau \wedge n = \min\{\tau, n\}$.
- (b) Let $S_n = \sum_{i=1}^n 2^i X_i$. Compute $E(S_{\tau-1})$.

Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM February 3, 2017

Time limit: 2 hours Each question: 2.5 points

- (1) Consider the probability space $(\mathbb{R}, \mathcal{B}, m)$, where m is the Lebesgue measure on [0, 1], and the random variable X(x) = 2x.
 - (a) Find the distribution and characteristic functions of X.
 - (b) Write an example of a random variable Y with the same distribution of X.
- (2) Let δ_a be the Dirac measure on \mathbb{R} at a. Consider the sequences

$$a_n = \frac{1 - (-1)^n}{2}, \quad n \in \mathbb{N}.$$

and

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{a_i}, \quad n \in \mathbb{N}.$$

Show that μ_n is a probability measure for each $n \in \mathbb{N}$ and compute

$$\lim_{n \to +\infty} \int \mathcal{X}_{\{0\}} \, d\mu_n$$

where $\mathcal{X}_{\{0\}}$ is the indicator function at 0.

(3) Consider a homogeneous Markov chain with transition matrix given by

$$P = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1\\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2}\\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

- (a) Classify the states of the chain.
- (b) Determine the period of each state.

- (c) If possible, find the stationary distributions and the mean recurrence time of each state.
- (4) Let (Ω, \mathcal{F}, P) be a probability space and X_1, X_2, \ldots a sequence of iid random variables with distribution

$$P(X_n = 1) = \frac{2}{3},$$

 $P(X_n = -1) = \frac{1}{3}.$

Consider the sum

$$S_n = \sum_{i=1}^n X_i.$$

- (a) Determine if $Y_n = 2^{-S_n}$ is a martingale with respect to the filtration $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.
- (b) Let τ be the stopping time given by

$$\tau = \min\{n \ge 1 \colon S_n \in \{-1, 2\}\}.$$

Compute the expected value of Y_{τ} , the probability of $Y_{\tau} = 1/4$ and the probability of $S_{\tau} = 2$.

Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM January 17, 2018

Time limit: 2 hours Each question: 2.5 points

(1) Consider the probability space $([0, 1], \mathcal{B}([0, 1]), P)$, where

$$P(A) = \int_{A} 2x \, dx, \quad A \in \mathcal{B}([0,1]),$$

- and the random variable $X(x) = x^2 1$.
- (a) Find the distribution of X and its characteristic function.
- (b) Write an example of a random variable Y with the same distribution of X.

(2) Given $a \in \mathbb{R}$, consider the Dirac measure on \mathbb{R} :

$$\delta_a(A) = \begin{cases} 1, & a \in A \\ 0, & a \notin A \end{cases}$$

for any $A \subset \mathbb{R}$, and $\mu = \frac{1}{2}(\delta_1 + \delta_2)$

(a) Show that $\mu = \frac{1}{2}(\delta_1 + \delta_2)$ is a probability measure and that

$$\int f \, d\mu = \frac{1}{2} \left(\int f \, d\delta_1 + \int f \, d\delta_2 \right)$$

for any function $f \colon \mathbb{R} \to \mathbb{R}$.

(b) Compute the expected value of X(x) = 1/x with respect to μ .

(3) Consider a homogeneous Markov chain with states $\{1, 2, 3, 4\}$ and transition matrix

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{1}{3} & 0 & 0 & \frac{2}{3} \end{bmatrix}.$$

- (a) Classify the states of the chain and determine their periods.
- (b) If possible, find the stationary distributions and the mean recurrence time of each state.
- (c) Compute

$$\lim_{n \to +\infty} P(X_n = 1 | X_0 = 2).$$

(4) Let X_n be a martingale with respect to the filtration \mathcal{F}_n and τ is a stopping time. Determine $E(X_{\tau \wedge n})$, where $\tau \wedge n = \min\{\tau, n\}$.

Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM February 2, 2018

Time limit: 2 hours Each question: 2.5 points

- (1) (a) Let Ω be an infinite set and \mathcal{A} the collection of all finite subsets of Ω . Is \mathcal{A} a σ -algebra?
 - (b) Let Ω be any set and $\mathcal{A} = \{\{x\} : x \in \Omega\}$. Determine the σ -algebra generated by \mathcal{A} .
- (2) Let (Ω, \mathcal{F}, P) be a probability space and X, Y independent random variables. Show that:
 - (a) E(XY) = E(X)E(Y).
 - (b) Var(X+Y) = Var(X) + Var(Y).
- (3) Consider a homogeneous Markov chain with states {1,2,3,4} and transition matrix

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- (a) Classify the states of the chain and determine their periods.
- (b) If possible, find the stationary distributions and the mean recurrence time of each state.
- (c) Compute

$$\lim_{n \to +\infty} P(X_n = 1 | X_0 = 2).$$

(4) Let X_n be a martingale with respect to the filtration \mathcal{F}_n and τ is a stopping time. Determine $E(X_{\tau \wedge n})$, where $\tau \wedge n = \min\{\tau, n\}$.

Department of Mathematics

Probability Theory and Stochastic Processes

EXAM January 21, 2019

Time limit: 2 hours Each question: 2.5 points

- (1) Consider a measure space $(\Omega, \mathcal{F}, \mu)$ and a σ -subalgebra $\mathcal{A} \subset \mathcal{F}$. Let f, g, h be \mathcal{F} -measurable functions and h be also \mathcal{A} -measurable. Are the following propositions true? If not, write examples that contradict the statements.
 - If $\int_B f d\mu = \int_B g d\mu$ for every $B \in \mathcal{F}$, then f = g a.e.
 - If $\int_A f d\mu = \int_A h d\mu$ for every $A \in \mathcal{A}$, then f = h a.e.
- (2) Given a random variable X with distribution function

$$F(x) = \begin{cases} 0, & x < 0\\ x/2, & 0 \le x < 1\\ 1/2, & 1 \le x < 2\\ 1, & x \ge 2 \end{cases}$$

compute:

- (a) $P(1/4 \le X^2 < 4)$
- (b) the distribution function of $Y = \sqrt{X}$.
- (3) For an iid sequence of random variable X_1, X_2, \ldots denote by S_n the sum of the *n* first terms, i.e.

$$S_n = \sum_{i=1}^n X_i.$$

Suppose that the distribution of each X_i is $P(X_i = -1) = p$ and $P(X_i = 1) = 1 - p$ where 0 .

(a) What are the characteristic functions of the random variables S_n , S_n/n ? Find also the limit distribution of S_n/n .

- (b) Decide if S_n is a martingale with respect to the filtration $\sigma(X_1, \ldots, X_n)$.
- (c) Find the expected value of the stopping time

$$\tau = \{ n \in \mathbb{N} \colon S_n = 1 \}.$$

- (d) Compute $P(\tau = 5 | X_2 = 1)$.
- (4) Write an example of a finite homogeneous Markov chain with two stationary distributions.

University of Lisbon – ISEG Department of Mathematics

Probability Theory and Stochastic Processes

EXAM February 6, 2019

Time limit: 2 hours Each question: 2.5 points

- (1) Let (Ω, \mathcal{F}, P) be a probability space and X, Y independent random variables. Show that:
 - (a) E(XY) = E(X)E(Y).
 - (b) Var(X+Y) = Var(X) + Var(Y).
- (2) Given a random variable X with distribution function

$$F(x) = \begin{cases} 0, & x < 0\\ x/6, & 0 \le x < 3\\ 1/2, & 3 \le x < 4\\ 1, & x \ge 4 \end{cases}$$

and $Y = \sqrt{X}$, compute:

- (a) $P(1/4 \le X^2 < 16)$, E(X) and Var(X).
- (b) the distribution function of Y.
- (c) E(XY) and Var(XY).
- (3) Consider a simplified weather model described in the following way: the probability of a rainy day being followed by a sunny day is 0.5, and the probability of a sunny day being followed by another day with sunshine is 0.7. If today is raining how long should I wait on average in order to have another day with rain?

(4) Let (Ω, \mathcal{F}, P) be a probability space and X_n a sequence of iid random variables with distribution given by

$$P(X_n = 0) = p,$$
 $P(X_n = 1) = 1 - p$

for some 0 . Consider the stochastic process

$$S_n = \sum_{i=1}^n X_i,$$

the filtration $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ and the stopping time

 $\tau = \min\{n \in \mathbb{N} \colon S_n = 10\}.$

- (a) Is S_n a martingale?
- (b) Determine $P(\tau = +\infty)$ and $E(\tau)$.

Department of Mathematics

Probability Theory and Stochastic Processes

EXAM January 9, 2020

Time limit: 2 hours Each question: 2.5 points

(1) Consider a set Ω , a function $f: \Omega \to \Omega$ and

$$\mathcal{F} = \{ A \subset \Omega \colon f^{-1}(A) = A \}.$$

- (a) Show that (Ω, \mathcal{F}) is a measurable space.
- (b) Consider a measure μ on (Ω, \mathcal{F}) and $A, B \in \mathcal{F}$ disjoint sets. Find

$$\int_{f^{-1}(B)} \mathcal{X}_A \circ f \, d\mu$$

where \mathcal{X}_A is the indicator function for the set A.

(2) Consider a probability space (Ω, \mathcal{F}, P) and a sequence of iid random variables X_n with Poisson distribution¹ given by

$$P(X_n = k) = \frac{\mu^{\kappa}}{k!} e^{-\mu}, \quad k \in \{0, 1, 2, \ldots\},\$$

where $\mu > 0$. Let $Y_0 = 0$ and

$$Y_n = Y_{n-1} + X_n - 1, \quad n \in \mathbb{N}.$$

- (a) Compute $E(Y_n)$, $E(2^{Y_n})$ and $P(Y_2 = 1 | X_1 = 0)$.
- (b) Determine if Y_n and 2^{Y_n} are martingales with respect to the natural filtration $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.
- (c) Let $\mu = 1$ and consider the stopping time

$$\tau = \min\{n \in \mathbb{N} \colon Y_n \in \{-1, 2\}\}.$$

Compute $P(\tau < +\infty)$ and $E(Y_{\tau})$.

¹Recall that for any $x \in \mathbb{R}$,

$$e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$$

(3) Consider the Markov chain with the following transition probabilities matrix

$$T = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix}.$$

- (a) For which values of *a* and *b* is the chain aperiodic? And to possess an absorving state?
- (b) For which values of a and b does the chain have at least one stationary distribution? And to have exactly one stationary distribution?
- (4) Prove that for an irreducible Markov chain with N states it is possible to go from any state to any other state in at most N-1steps.

University of Lisbon – ISEG Department of Mathematics

Probability Theory and Stochastic Processes

EXAM February 4, 2020

Time limit: 2 hours Each question: 2.5 points

- (1) Give an example of a function $f \colon \mathbb{R} \to \mathbb{R}$ that is measurable with respect to the σ -algebra $\mathcal{F} = \{\emptyset, \mathbb{R}, \mathbb{R}_0^+, \mathbb{R}^-\}.$
- (2) Given the probability space $([0,1], \mathcal{B}, m)$ where \mathcal{B} is the Borel σ -algebra on $[0,1] \subset \mathbb{R}$ and m is the Lebesgue measure, take the sequence of random variables $X_n \colon [0,1] \to \mathbb{R}$,

$$X_n(x) = \begin{cases} 0, & x \in \mathbb{Q} \\ 1 - \frac{nx^2}{n^2 + 1}, & \text{o.c.} \end{cases}$$

Compute the pointwise limit of X_n and the limit of $E(X_n)$.

(3) Consider a probability space (Ω, \mathcal{F}, P) and a sequence of iid random variables X_n with Poisson distribution¹ given by

$$P(X_n = k) = \frac{\mu^k}{k!} e^{-\mu}, \quad k \in \{0, 1, 2, \ldots\},\$$

where $\mu > 0$. Let $Y_0 = 0$ and

$$Y_n = Y_{n-1} + X_n - 1, \quad n \in \mathbb{N}.$$

- (a) Compute $E(Y_n)$, $E(2^{Y_n})$ and $P(Y_2 = 1|X_1 = 0)$.
- (b) Determine if Y_n and 2^{Y_n} are martingales with respect to the natural filtration $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.

¹Recall that for any $x \in \mathbb{R}$,

$$e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$$

(c) Let $\mu = 1$ and consider the stopping time

$$\tau = \min\{n \in \mathbb{N} \colon Y_n \in \{-1, 2\}\}.$$

Compute $P(\tau < +\infty)$ and $E(Y_{\tau})$.

(4) Consider a homogeneous finite Markov chain with the following transition probabilities matrix:

$$T = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{bmatrix}.$$

- (a) Classify the states of the chain and determine their periods.
- (b) If possible, find the stationary distributions and the mean recurrence time of each state.
- (c) Compute

$$\lim_{n \to +\infty} P(X_n = 1 | X_0 = 4).$$