University of Lisbon - ISEG
Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM January 15, 2016
Time limit: 2 hours
Each question: 2.5 points
(1) Consider a set Ω, a function $f: \Omega \rightarrow \Omega$ and

$$
\mathcal{F}=\left\{A \subset \Omega: f^{-1}(A)=A\right\} .
$$

(a) Show that (Ω, \mathcal{F}) is a measurable space.
(b) Consider a measure μ on (Ω, \mathcal{F}) and $A, B \in \mathcal{F}$ disjoint sets. Find

$$
\int_{f^{-1}(B)} \mathcal{X}_{A} \circ f d \mu,
$$

where \mathcal{X}_{A} is the indicator function for the set A.
(2) Compute

$$
\lim _{n \rightarrow+\infty} \int_{0}^{1} \frac{1}{\sqrt{ } t} e^{-t / n} d t
$$

(3) Given a sequence of i.i.d. random variables $X_{1}, X_{2} \ldots$ with uniform distribution on $[0,1]$, determine

$$
\lim _{n \rightarrow+\infty} \sqrt[n]{X_{1} \ldots X_{n}}
$$

with probability 1.
(4) Let (Ω, \mathcal{B}, m) be a probability space, where $\Omega=[0,1], \mathcal{B}$ is the Borel σ-algebra of Ω and m is the Lebesgue measure on Ω. Given the random variables $X(\omega)=\omega$ and

$$
Y(\omega)= \begin{cases}2 \omega, & 0 \leq \omega \leq \frac{1}{2} \\ 2 \omega-1, & \frac{1}{2}<\omega \leq 1\end{cases}
$$

compute $E(X \mid Y)$.
(5) On the finite state space $S=\{1,2, \ldots, a\}$ consider a homogeneous Markov chain X_{n} on S with probabilities

$$
P\left(X_{1}=j \mid X_{0}=i\right)= \begin{cases}\frac{1}{2}, & j=i \\ \frac{1}{2}, & j=i+1 \text { or }(i, j)=(a, 1) .\end{cases}
$$

(a) Classify the states of the chain and determine their periods.
(b) If possible, find the stationary distributions and the mean recurrence time of each state.
(6) Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{F}_{n} a filtration. Suppose that $\left(X_{n}, \mathcal{F}_{n}\right)$ and $\left(Y_{n}, \mathcal{F}_{n}\right)$ are martingales and T is a stopping time with respect to \mathcal{F}_{n} and $X_{T}=Y_{T}$. Is

$$
Z_{n}= \begin{cases}X_{n}, & n<T \\ Y_{n}, & n \geq T\end{cases}
$$

a martingale with respect to \mathcal{F}_{n} ?

University of Lisbon - ISEG
Departament of Mathematics
Probability Theory and Stochastic Processes

EXAM February 1, 2016
Time limit: 2 hours
Each question: 2.5 points
(1) Let (Ω, \mathcal{F}, P) be a probability space.
(a) Let $A, B \in \mathcal{F}$. If $P(A)=1$, find $P(B)-P(B \cap A)$.
(b) Consider a random variable X that can only take two values $a, b \in \mathbb{R}$. Write $\sigma(X)$.
(c) Consider a function $g: \Omega \rightarrow \mathbb{R}$ and σ-algebras $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset$ \mathcal{F} such that g is \mathcal{F}_{2}-mensurable. Is g also \mathcal{F}_{1}-mensurable?
(2) Compute

$$
\lim _{n \rightarrow+\infty} \int_{0}^{n} \sin \left(e^{-x}\right) e^{-n x} d x
$$

(3) Consider a homogeneous Markov chain with transition matrix given by

$$
P=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(a) Classify the states of the chain and determine their periods.
(b) If possible, find the stationary distributions and the mean recurrence time of each state.
(4) Let (Ω, \mathcal{F}, P) be a probability space and X_{1}, X_{2}, \ldots a sequence of iid random variables with distribution

$$
P\left(X_{n}=1\right)=\frac{1}{2} \quad \text { and } \quad P\left(X_{n}=-1\right)=\frac{1}{2} .
$$

Consider the stopping time

$$
\tau=\min \left\{n \in \mathbb{N}: X_{n}=1\right\}
$$

with respect to the filtration $\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(a) Decide if $X_{\tau \wedge n}$ is a martingale, where $\tau \wedge n=\min \{\tau, n\}$.
(b) Let $S_{n}=\sum_{i=1}^{n} 2^{i} X_{i}$. Compute $E\left(S_{\tau-1}\right)$.

University of Lisbon - ISEG
Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM January 18, 2017

Time limit: 2 hours
Each question: 2.5 points
(1) Consider the probability space $\left(\mathbb{R}, \mathcal{P}, \delta_{a}\right)$, where δ_{a} is the Dirac measure on \mathbb{R} at $a=2$, and a random variable $X(x)=\sqrt{|x|}$.
(a) Find the distribution and characteristic functions of X.
(b) Write an example of a random variable Y with the same distribution of X.
(2) For each $n \in \mathbb{N}$ consider a random variable X_{n} with distribution function

$$
F_{n}(x)= \begin{cases}0, & x \leq 0 \\ n x, & 0<x \leq \frac{1}{n} \\ 1, & x>\frac{1}{n}\end{cases}
$$

Find the limit in distribution of X_{n} as $n \rightarrow+\infty$.
(3) Consider a homogeneous Markov chain with transition matrix given by

$$
P=\left[\begin{array}{cccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{4} & 0 & \frac{3}{4} \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

(a) Classify the states of the chain.
(b) Determine the period of each state.
(c) If possible, find the stationary distributions and the mean recurrence time of each state.
(4) Let (Ω, \mathcal{F}, P) be a probability space and X_{1}, X_{2}, \ldots a sequence of iid random variables with distribution

$$
P\left(X_{n}=1\right)=\frac{1}{2} \quad \text { and } \quad P\left(X_{n}=-1\right)=\frac{1}{2} .
$$

Consider the stopping time

$$
\tau=\min \left\{n \in \mathbb{N}: X_{n}=1\right\}
$$

with respect to the filtration $\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(a) Decide if $X_{\tau \wedge n}$ is a martingale, where $\tau \wedge n=\min \{\tau, n\}$.
(b) Let $S_{n}=\sum_{i=1}^{n} 2^{i} X_{i}$. Compute $E\left(S_{\tau-1}\right)$.

University of Lisbon - ISEG
Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM February 3, 2017

Time limit: 2 hours
Each question: 2.5 points
(1) Consider the probability space $(\mathbb{R}, \mathcal{B}, m)$, where m is the Lebesgue measure on $[0,1]$, and the random variable $X(x)=2 x$.
(a) Find the distribution and characteristic functions of X.
(b) Write an example of a random variable Y with the same distribution of X.
(2) Let δ_{a} be the Dirac measure on \mathbb{R} at a. Consider the sequences

$$
a_{n}=\frac{1-(-1)^{n}}{2}, \quad n \in \mathbb{N} .
$$

and

$$
\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}}, \quad n \in \mathbb{N}
$$

Show that μ_{n} is a probability measure for each $n \in \mathbb{N}$ and compute

$$
\lim _{n \rightarrow+\infty} \int \mathcal{X}_{\{0\}} d \mu_{n}
$$

where $\mathcal{X}_{\{0\}}$ is the indicator function at 0 .
(3) Consider a homogeneous Markov chain with transition matrix given by

$$
P=\left[\begin{array}{ccccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
$$

(a) Classify the states of the chain.
(b) Determine the period of each state.
(c) If possible, find the stationary distributions and the mean recurrence time of each state.
(4) Let (Ω, \mathcal{F}, P) be a probability space and X_{1}, X_{2}, \ldots a sequence of iid random variables with distribution

$$
\begin{aligned}
P\left(X_{n}=1\right) & =\frac{2}{3} \\
P\left(X_{n}=-1\right) & =\frac{1}{3}
\end{aligned}
$$

Consider the sum

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

(a) Determine if $Y_{n}=2^{-S_{n}}$ is a martingale with respect to the filtration $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(b) Let τ be the stopping time given by

$$
\tau=\min \left\{n \geq 1: S_{n} \in\{-1,2\}\right\}
$$

Compute the expected value of Y_{τ}, the probability of $Y_{\tau}=$ $1 / 4$ and the probability of $S_{\tau}=2$.

University of Lisbon - ISEG
Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM January 17, 2018

Time limit: 2 hours
Each question: 2.5 points
(1) Consider the probability space $([0,1], \mathcal{B}([0,1]), P)$, where

$$
P(A)=\int_{A} 2 x d x, \quad A \in \mathcal{B}([0,1])
$$

and the random variable $X(x)=x^{2}-1$.
(a) Find the distribution of X and its characteristic function.
(b) Write an example of a random variable Y with the same distribution of X.
(2) Given $a \in \mathbb{R}$, consider the Dirac measure on \mathbb{R} :

$$
\delta_{a}(A)= \begin{cases}1, & a \in A \\ 0, & a \notin A\end{cases}
$$

for any $A \subset \mathbb{R}$, and $\mu=\frac{1}{2}\left(\delta_{1}+\delta_{2}\right)$
(a) Show that $\mu=\frac{1}{2}\left(\delta_{1}+\delta_{2}\right)$ is a probability measure and that

$$
\int f d \mu=\frac{1}{2}\left(\int f d \delta_{1}+\int f d \delta_{2}\right)
$$

for any function $f: \mathbb{R} \rightarrow \mathbb{R}$.
(b) Compute the expected value of $X(x)=1 / x$ with respect to μ.
(3) Consider a homogeneous Markov chain with states $\{1,2,3,4\}$ and transition matrix

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1 \\
\frac{1}{3} & 0 & 0 & \frac{2}{3}
\end{array}\right] .
$$

(a) Classify the states of the chain and determine their periods.
(b) If possible, find the stationary distributions and the mean recurrence time of each state.
(c) Compute

$$
\lim _{n \rightarrow+\infty} P\left(X_{n}=1 \mid X_{0}=2\right) .
$$

(4) Let X_{n} be a martingale with respect to the filtration \mathcal{F}_{n} and τ is a stopping time. Determine $E\left(X_{\tau \wedge n}\right)$, where $\tau \wedge n=\min \{\tau, n\}$.

University of Lisbon - ISEG
Departament of Mathematics

Probability Theory and Stochastic Processes

EXAM February 2, 2018

Time limit: 2 hours
Each question: 2.5 points
(1) (a) Let Ω be an infinite set and \mathcal{A} the collection of all finite subsets of Ω. Is \mathcal{A} a σ-algebra?
(b) Let Ω be any set and $\mathcal{A}=\{\{x\}: x \in \Omega\}$. Determine the σ-algebra generated by \mathcal{A}.
(2) Let (Ω, \mathcal{F}, P) be a probability space and X, Y independent random variables. Show that:
(a) $E(X Y)=E(X) E(Y)$.
(b) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.
(3) Consider a homogeneous Markov chain with states $\{1,2,3,4\}$ and transition matrix

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

(a) Classify the states of the chain and determine their periods.
(b) If possible, find the stationary distributions and the mean recurrence time of each state.
(c) Compute

$$
\lim _{n \rightarrow+\infty} P\left(X_{n}=1 \mid X_{0}=2\right)
$$

(4) Let X_{n} be a martingale with respect to the filtration \mathcal{F}_{n} and τ is a stopping time. Determine $E\left(X_{\tau \wedge n}\right)$, where $\tau \wedge n=\min \{\tau, n\}$.

Probability Theory and Stochastic Processes

EXAM January 21, 2019

Time limit: 2 hours
Each question: 2.5 points
(1) Consider a measure space $(\Omega, \mathcal{F}, \mu)$ and a σ-subalgebra $\mathcal{A} \subset$ \mathcal{F}. Let f, g, h be \mathcal{F}-measurable functions and h be also \mathcal{A} measurable. Are the following propositions true? If not, write examples that contradict the statements.

- If $\int_{B} f d \mu=\int_{B} g d \mu$ for every $B \in \mathcal{F}$, then $f=g$ a.e.
- If $\int_{A} f d \mu=\int_{A} h d \mu$ for every $A \in \mathcal{A}$, then $f=h$ a.e.
(2) Given a random variable X with distribution function

$$
F(x)= \begin{cases}0, & x<0 \\ x / 2, & 0 \leq x<1 \\ 1 / 2, & 1 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

compute:
(a) $P\left(1 / 4 \leq X^{2}<4\right)$
(b) the distribution function of $Y=\sqrt{X}$.
(3) For an iid sequence of random variable X_{1}, X_{2}, \ldots denote by S_{n} the sum of the n first terms, i.e.

$$
S_{n}=\sum_{i=1}^{n} X_{i} .
$$

Suppose that the distribution of each X_{i} is $P\left(X_{i}=-1\right)=p$ and $P\left(X_{i}=1\right)=1-p$ where $0<p<1$.
(a) What are the characteristic functions of the random variables $S_{n}, S_{n} / n$? Find also the limit distribution of S_{n} / n.
(b) Decide if S_{n} is a martingale with respect to the filtration $\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(c) Find the expected value of the stopping time

$$
\tau=\left\{n \in \mathbb{N}: S_{n}=1\right\}
$$

(d) Compute $P\left(\tau=5 \mid X_{2}=1\right)$.
(4) Write an example of a finite homogeneous Markov chain with two stationary distributions.

Probability Theory and Stochastic Processes

EXAM February 6, 2019

Time limit: 2 hours
Each question: 2.5 points
(1) Let (Ω, \mathcal{F}, P) be a probability space and X, Y independent random variables. Show that:
(a) $E(X Y)=E(X) E(Y)$.
(b) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.
(2) Given a random variable X with distribution function

$$
F(x)= \begin{cases}0, & x<0 \\ x / 6, & 0 \leq x<3 \\ 1 / 2, & 3 \leq x<4 \\ 1, & x \geq 4\end{cases}
$$

and $Y=\sqrt{X}$, compute:
(a) $P\left(1 / 4 \leq X^{2}<16\right), E(X)$ and $\operatorname{Var}(X)$.
(b) the distribution function of Y.
(c) $E(X Y)$ and $\operatorname{Var}(X Y)$.
(3) Consider a simplified weather model described in the following way: the probability of a rainy day being followed by a sunny day is 0.5 , and the probability of a sunny day being followed by another day with sunshine is 0.7 . If today is raining how long should I wait on average in order to have another day with rain?
(4) Let (Ω, \mathcal{F}, P) be a probability space and X_{n} a sequence of iid random variables with distribution given by

$$
P\left(X_{n}=0\right)=p, \quad P\left(X_{n}=1\right)=1-p
$$

for some $0<p<1$. Consider the stochastic process

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

the filtration $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ and the stopping time

$$
\tau=\min \left\{n \in \mathbb{N}: S_{n}=10\right\} .
$$

(a) Is S_{n} a martingale?
(b) Determine $P(\tau=+\infty)$ and $E(\tau)$.

Probability Theory and Stochastic Processes

EXAM January 9, 2020

Time limit: 2 hours
Each question: 2.5 points
(1) Consider a set Ω, a function $f: \Omega \rightarrow \Omega$ and

$$
\mathcal{F}=\left\{A \subset \Omega: f^{-1}(A)=A\right\} .
$$

(a) Show that (Ω, \mathcal{F}) is a measurable space.
(b) Consider a measure μ on (Ω, \mathcal{F}) and $A, B \in \mathcal{F}$ disjoint sets. Find

$$
\int_{f^{-1}(B)} \mathcal{X}_{A} \circ f d \mu
$$

where \mathcal{X}_{A} is the indicator function for the set A.
(2) Consider a probability space (Ω, \mathcal{F}, P) and a sequence of iid random variables X_{n} with Poisson distribution ${ }^{1}$ given by

$$
P\left(X_{n}=k\right)=\frac{\mu^{k}}{k!} e^{-\mu}, \quad k \in\{0,1,2, \ldots\}
$$

where $\mu>0$. Let $Y_{0}=0$ and

$$
Y_{n}=Y_{n-1}+X_{n}-1, \quad n \in \mathbb{N} .
$$

(a) Compute $E\left(Y_{n}\right), E\left(2^{Y_{n}}\right)$ and $P\left(Y_{2}=1 \mid X_{1}=0\right)$.
(b) Determine if Y_{n} and $2^{Y_{n}}$ are martingales with respect to the natural filtration $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(c) Let $\mu=1$ and consider the stopping time

$$
\tau=\min \left\{n \in \mathbb{N}: Y_{n} \in\{-1,2\}\right\}
$$

Compute $P(\tau<+\infty)$ and $E\left(Y_{\tau}\right)$.

[^0](3) Consider the Markov chain with the following transition probabilities matrix
\[

T=\left[$$
\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}
$$\right]
\]

(a) For which values of a and b is the chain aperiodic? And to possess an absorving state?
(b) For which values of a and b does the chain have at least one stationary distribution? And to have exactly one stationary distribution?
(4) Prove that for an irreducible Markov chain with N states it is possible to go from any state to any other state in at most $N-1$ steps.

Probability Theory and Stochastic Processes

EXAM February 4, 2020

Time limit: 2 hours
Each question: 2.5 points
(1) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is measurable with respect to the σ-algebra $\mathcal{F}=\left\{\emptyset, \mathbb{R}, \mathbb{R}_{0}^{+}, \mathbb{R}^{-}\right\}$.
(2) Given the probability space $([0,1], \mathcal{B}, m)$ where \mathcal{B} is the Borel σ-algebra on $[0,1] \subset \mathbb{R}$ and m is the Lebesgue measure, take the sequence of random variables $X_{n}:[0,1] \rightarrow \mathbb{R}$,

$$
X_{n}(x)= \begin{cases}0, & x \in \mathbb{Q} \\ 1-\frac{n x^{2}}{n^{2}+1}, & \text { o.c. }\end{cases}
$$

Compute the pointwise limit of X_{n} and the limit of $E\left(X_{n}\right)$.
(3) Consider a probability space (Ω, \mathcal{F}, P) and a sequence of iid random variables X_{n} with Poisson distribution ${ }^{1}$ given by

$$
P\left(X_{n}=k\right)=\frac{\mu^{k}}{k!} e^{-\mu}, \quad k \in\{0,1,2, \ldots\}
$$

where $\mu>0$. Let $Y_{0}=0$ and

$$
Y_{n}=Y_{n-1}+X_{n}-1, \quad n \in \mathbb{N}
$$

(a) Compute $E\left(Y_{n}\right), E\left(2^{Y_{n}}\right)$ and $P\left(Y_{2}=1 \mid X_{1}=0\right)$.
(b) Determine if Y_{n} and $2^{Y_{n}}$ are martingales with respect to the natural filtration $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.

[^1](c) Let $\mu=1$ and consider the stopping time
$$
\tau=\min \left\{n \in \mathbb{N}: Y_{n} \in\{-1,2\}\right\}
$$

Compute $P(\tau<+\infty)$ and $E\left(Y_{\tau}\right)$.
(4) Consider a homogeneous finite Markov chain with the following transition probabilities matrix:

$$
T=\left[\begin{array}{cccc}
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right]
$$

(a) Classify the states of the chain and determine their periods.
(b) If possible, find the stationary distributions and the mean recurrence time of each state.
(c) Compute

$$
\lim _{n \rightarrow+\infty} P\left(X_{n}=1 \mid X_{0}=4\right) .
$$

[^0]: ${ }^{1}$ Recall that for any $x \in \mathbb{R}$,

 $$
 e^{x}=\sum_{k=0}^{+\infty} \frac{x^{k}}{k!}
 $$

[^1]: ${ }^{1}$ Recall that for any $x \in \mathbb{R}$,

 $$
 e^{x}=\sum_{k=0}^{+\infty} \frac{x^{k}}{k!}
 $$

