Probability Theory and Stochastic Processes

Solutions

Jan 15, 2016

1. b) 0
2. 2
3. e^{-1}
4.

$$
E(X \mid Y)(\omega)= \begin{cases}\omega+\frac{1}{4}, & \omega<\frac{1}{2} \\ \omega-\frac{1}{4}, & \omega \geq \frac{1}{2}\end{cases}
$$

5. a) Recurrent non-null, period 1
b) Unique stationary distribution $\left(\frac{1}{a}, \ldots, \frac{1}{a}\right)$, mean recurrence time a for all states.
6. Yes

Feb 1, 2016

1. a) 0
b) $\left\{\emptyset, \Omega, X^{-1}(\{a\}), X^{-1}(\{b\})\right\}$
c) We don't know
2. 0
3. a) states 1,2 : transient period=2; states 3,4: recurrent positive period $=2$
b) $(0,0,1 / 2,1 / 2),(+\infty,+\infty, 2,2)$
4. a) not a martingale
b) $-\infty$

Jan 18, 2017

1. a)

$$
F(x)= \begin{cases}1, & x \geq \sqrt{2} \\ 0, & x<\sqrt{2}\end{cases}
$$

$\phi(t)=e^{i t \sqrt{2}}$. The distribution is the Dirac measure on \mathbb{R} at $\sqrt{2}$.
b) Any that is equal to X a.e. Ex: $Y(x)=\sqrt{2}$.
2. Dirac distribution at 0 .
3.
a) 1,2,3 transient; 4 positive recurrent
b) 1
c) $\pi=(0,0,0,1), \mu=(+\infty,+\infty,+\infty, 1)$
4.
a) not a martingale
b) $-\infty$

Feb 3, 2017

1. a)

$$
F(x)= \begin{cases}1, & x \geq 2 \\ x / 2, & 0 \leq x<2 \\ 0, & x<0\end{cases}
$$

$\phi(t)=\left(e^{2 i t}-1\right) /(2 i t), t \neq 0, \phi(0)=1$. The distribution is the Lebesgue measure on $[0,2]$.
b) Any that is equal to X a.e.
2. $1 / 2$
3. a) 1 transient, $2,3,4,5$ positive recurrent
b) $\operatorname{Per}(1)=1, \operatorname{Per}(2)=\operatorname{Per}(3)=\operatorname{Per}(4)=\operatorname{Per}(5)=2$
c) $(0,1 / 6,1 / 6,1 / 3,1 / 3),(+\infty, 6,6,3,3)$
4. a) Yes
b) $1,4 / 7,4 / 7$

Jan 17, 2018

1. a)

$$
F(x)= \begin{cases}1, & x \geq 0 \\ x+1, & -1 \leq x<0 \\ 0, & x<-1\end{cases}
$$

$\phi(t)=\left(1-e^{-i t}\right) /(i t), t \neq 0, \phi(0)=1$. The distribution is the Lebesgue measure on $[-1,0]$.
b) Any that is equal to X a.e.
2. b) $3 / 4$
3. a) 1 positive recurrent, $2,3,4$ transient. $\operatorname{Per}(1)=1=\operatorname{Per}(4)$, there are no periods for 2 and 3 .
b) $(1,0,0,0),(1,+\infty,+\infty,+\infty)$
c) 1
4. $E\left(X_{1}\right)$

Feb 2, 2018

1. a) No. E.g. $\Omega \notin \mathcal{A}$.
b) $\sigma(\mathcal{A})=\left\{A \subset \Omega: A\right.$ is countable or A^{c} is countable $\}$
2. a) 2,3 transient, 1,4 positive recurrent, $\operatorname{Per}(1)=\operatorname{Per}(2)=\operatorname{Per}(3)=\operatorname{Per}(4)=1$
b) Stationary distributions: $(a, 0,0,1-a)$ for any $0 \leq a \leq 1$; mean recurrence times: $(1,+\infty,+\infty, 1)$.
c) 1
3. $E\left(X_{1}\right)$

Jan 21, 2019

1. a) True. Let $A_{n}=\{f-g \geq 1 / n\} \in \mathcal{F}$ verifying $A_{n} \subset A_{n+1}$ and the inequality $\mu\left(A_{n}\right) \leq n \int_{A_{n}}(f-g) d \mu=0$. Then, $\mu(\{f-g>0\})=$ $\mu\left(\cup_{n} A_{n}\right)=\lim \mu\left(A_{n}\right)=0$. Same idea for $\mu(\{f-g<0\})=0$, so that $f=g$ a.e.
b) False. E.g. μ probability measure, $\mathcal{A}=\{\emptyset, \Omega\}$ and $\mathcal{F}=\sigma(\{C\})$ with $C \notin \mathcal{A}$ and $\mu(C)=1 / 2$. For $f=2 \mathcal{X}_{C}-1$ we have $\int_{A} f d \mu=0$, $A \in \mathcal{A}$, but $f \neq 0$ a.e.
2. a) $1 / 4$
b)

$$
P(Y \leq y)= \begin{cases}0, & x<0 \\ y^{2} / 2, & 0 \leq y<1 \\ 1 / 2, & 1 \leq y<\sqrt{2} \\ 1, & x \geq \sqrt{2}\end{cases}
$$

3. a) $\phi_{S_{n}}(t)=\left(p e^{-i t}+(1-p) e^{i t}\right)^{n}, \phi_{S_{n} / n}(t)=\left(p e^{-i t / n}+(1-p) e^{i t / n}\right)^{n}$. By the weak law of large numbers, the limit dist is $\delta_{1-2 p}$.
b) Martingale iff $p=1 / 2$.
c) $E(\tau)=+\infty$.
d) $p^{2}(1-p)^{2}$.
4. $T=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Feb 6, 2019

2. a) $5 / 12,11 / 4,31 / 16$
b)

$$
P(Y \leq y)= \begin{cases}0, & x<0 \\ y^{2} / 6, & 0 \leq y<\sqrt{3} \\ 1 / 2, & \sqrt{3} \leq y<2 \\ 1, & x \geq 2\end{cases}
$$

c) $3 \sqrt{3} / 5+4,27 / 8+32-(3 \sqrt{3} / 5+4)^{2}$
3. $8 / 3$
4. a) No
b) $0,10 /(1-p)$

Jan 9, 2020
1.
b) 0
2.
a) $E\left(Y_{n}\right)=n(\mu-1), E\left(2^{Y_{n}}\right)=e^{n(\mu-\log 2)}, P\left(Y_{2}=1 \mid X_{1}=0\right)=$ $\mu^{3} / 3!e^{-\mu}$
b) Y_{n} is a martingale iff $\mu=1$. $2^{Y_{n}}$ is a martingale iff $\mu=\log 2$
c) Notice that $P(\tau=+\infty)=P\left(\cap_{n}\{\tau>n\}\right)=\lim _{n \rightarrow+\infty} P(\tau>n)$. Moreover,

$$
\begin{aligned}
P(\tau>n) & \leq P\left(-1<Y_{i}<2,0 \leq i \leq n\right) \\
& \leq P\left(X_{1} \in\{0,1,2\}, \ldots, X_{n} \in\{0,1,2\}\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \in\{0,1,2\}\right) \\
& =\left[P\left(X_{1}=0\right)+P\left(X_{1}=1\right)+P\left(X_{1}=2\right)\right]^{n}=\left(\frac{5}{2 e}\right)^{n} \rightarrow 0 .
\end{aligned}
$$

So $P(\tau<+\infty)=1-P(\tau=+\infty)=1$. Since Y_{n} is a martingale and $\left|Y_{\tau \wedge n}\right| \leq 2$ (dominated), by the optional stopping theorem $E\left(Y_{\tau}\right)=$ $E\left(Y_{1}\right)=E\left(X_{1}\right)-1=0$.
3.
a) Aperiodic iff $a \neq 1$ or $b \neq 1$. There is an absorving state iff $a=0$ or $b=0$.
b) There are stationary distributions for any a, b. There is a unique stationary distribution iff $a \neq 0$ or $b \neq 0$.
4. All states are connected, i.e. between any two states there is a path connecting them. Ignore all loops. All states are still connected. There is a path between any two states. This path has N distinct states and distinct arrows. There are at most $N-1$ arrows.

Feb 4, 2020

1. $f(x)=0$
2. $\lim X_{n}=\mathcal{X}_{[0,1] \backslash \mathbb{Q}}, \lim E\left(X_{n}\right)=E\left(\lim X_{n}\right)=1$
3.

a) $R=2,3, T=1,4$, all aperiodic
b) unique stationary distribution $(0,1 / 2,1 / 2,0)$, mean recurrence times $(+\infty, 2,2,+\infty)$
c) 0

