Notes on Measure, Probability and Stochastic Processes

João Lopes Dias

Departamento de Matemática, ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal

Email address: jldias@iseg.ulisboa.pt

December 15, 2020.

Contents

Chapter 1. Introduction 1

1. Classical definitions of probability 1
2. Mathematical expectation 4
Part 1. Measure theory 7
Chapter 2. Measure and probability 9
3. Algebras 9
4. Monotone classes 13
5. Product algebras 15
6. Measures 16
7. Examples 24
Chapter 3. Measurable functions 29
8. Definition 29
9. Simple functions 31
10. Extended real-valued functions 32
11. Convergence of sequences of measurable functions 33
12. Induced measure 35
13. Generation of σ-algebras by functions 36
Chapter 4. Lebesgue integral 37
14. Definition 37
15. Properties 41
16. Examples 43
17. Convergence theorems 45
18. Fubini theorem 52
19. Signed measures 55
20. Relations between signed measures 57
21. Radon-Nikodym theorem 58
Part 2. Probability 63
Chapter 5. Distributions 65
22. Definition 65
23. Simple examples 67
24. Distribution functions 68
25. Classification of distributions 70
26. Convergence in distribution 73
27. Characteristic functions 76
Chapter 6. Independence 83
28. Independent events 83
29. Independent random variables 84
30. Independent σ-algebras 86
Chapter 7. Conditional expectation 87
31. Conditional expectation 87
32. Conditional probability 92
Part 3. Stochastic processes 95
Chapter 8. General stochastic processes 97
Chapter 9. Sums of iid processes: Limit theorems 99
33. Distribution of sums 99
34. Law of large numbers 101
35. Central limit theorem 102
Chapter 10. Markov chains 105
36. The Markov property 105
37. Distributions 106
38. Homogeneous Markov chains 109
39. Recurrence 112
40. Classification of states 113
41. Decomposition of chains 117
42. Stationary distributions 120
43. Limit distributions 124
Chapter 11. Martingales 129
44. The martingale strategy 129
45. General definition of a martingale 131
46. Examples 132
47. Stopping times 133
48. Stochastic processes with stopping times 134
Appendix A. Things that you should know before starting 137
49. Notions of mathematical logic 137
50. Set theory notions 140
51. Function theory notions 143
52. Topological notions in \mathbb{R} 147
53. Notions of differentiable calculus on \mathbb{R} 152
54. Greek alphabet 154
Bibliography 155

CHAPTER 1

Introduction

These are the lecture notes for the course "Probability Theory and Stochastic Processes" of the Master in Mathematical Finance (since 2016/2017) at ISEG-University of Lisbon. It is required good knowledge of calculus and basic probability. I would like to thank comments, corrections and suggestions given by several people, in particular by Pedro Matias and my colleague Telmo Peixe.

1. Classical definitions of probability

Science is about observing given phenomena, recording data, analysing it and explaining particular features and behaviours using theoretical models. This may be a rough description of what really means to make science, but highlights the fact that experimentation is a crucial part of obtaining knowledge.

Most experiments are of random nature. That is, their results are not possible to predict, often due to the huge number of variables that underlie the process under scrutiny. One needs to repeat the experiment and observe its different outcomes. A collection of possible outcomes is called an event. Our main goal is to quantify the likelihood of each event.

These general ideas can be illustrated by the experiment of throwing dice. We can get six possible outcomes depending on too many different factors, so that it becomes impossible to predict the result. Consider the event corresponding to an even number of dots, i.e. 2,4 or 6 dots. How can we measure the probability of this event to occur when we throw the dice once? If the dice are fair (unbiased), intuition tells us that it is equal to $\frac{1}{2}$.

The way one usually thinks of probability is summarised in the following relation:

$$
\text { Probability("event") }=\frac{\text { number of favourable cases }}{\text { number of possible cases }}
$$

assuming that all cases are equally possible. This is the classical definition of probability, called the Laplace law.

Example 1.1. Tossing of a perfect coin in order to get either heads or tails. The number of possible cases is 2 . So,
Prob("heads") = 1/2
$\operatorname{Prob}($ "heads at least once in two experiments") $=3 / 4$.

Example 1.2.

P ("winning the Euromillions with one bet" $)=\frac{1}{C_{5}^{50} C_{2}^{12}} \simeq 7 \times 10^{-9}$.
The Laplace law has the following important consequences:
(1) For any event $S, 0 \leq P(S) \leq 1$.
(2) If $P(S)=1$, then S is a safe event. If $P(S)=0, S$ is an impossible event.
(3) $P(\operatorname{not} S)=1-P(S)$.
(4) If A and B are disjoint events, then $P(A$ or $B)=P(A)+P(B)$.
(5) If A and B are independent, then $P(A$ and $B)=P(A) P(B)$.

The first mathematical formulation of the probability concept appeared in 17th century France. A gambler called Antoine Gombauld realized empirically that he was able to make money by betting on getting at least a 6 in 4 dice throwings. Later he thought that betting on getting at least a pair of 6's by throwing two dice 24 times was also advantangeous. As that did not turn out to be the case, he wrote to Pascal for help. Pascal and Fermat exchanged letters in 1654 discussing this problem, and that is the first written account of probability theory, later formalized and further expanded by Laplace.

According to Laplace law, Gombauld's first problem can be described mathematically as follows. Since

$$
P(\text { not get } 6 \text { in one atempt })=\frac{5}{6}
$$

and each dice is independent of the others, then

$$
P(\text { not get } 6 \text { in } 4 \text { attempts })=\left(\frac{5}{6}\right)^{4} \simeq 0.482 \text {. }
$$

Therefore, in the long run Gombauld was able to make a profit ${ }^{1}$:

$$
P(\text { get } 6 \text { in } 4 \text { attempts })=1-\left(\frac{5}{6}\right)^{4} \simeq 0.518>\frac{1}{2}
$$

However, for the second game,

$$
P(\text { no pair of } 6 \text { 's out of } 2 \text { dice })=\frac{35}{36}
$$

[^0]and
$$
P(\text { no pair of } 6 \text { 's out of } 2 \text { dice in } 24 \text { attempts })=\left(\frac{35}{36}\right)^{24} \simeq 0,508
$$

This time he did not have an advantage as
$P($ pair of 6 's out of 2 dice in 24 attempts $) \simeq 1-0,508=0,492<\frac{1}{2}$.
Laplace law is far from what one could consider as a useful definition of probability. For instance, we would like to examine also "biased" experiments, that is, with unequally possible outcomes. A way to deal with this question is defining probability by the frequency that some event occurs when repeating the experiment many times under the same conditions. So,

$$
\mathrm{P}(\text { "event" })=\lim _{n \rightarrow+\infty} \frac{\text { number of favourable cases in } n \text { experiments }}{n} .
$$

Example 1.3. In 2015 there was 85500 births in Portugal and 43685 were boys. So,

$$
\mathrm{P}(\text { "it's a boy!" }) \simeq 0.51
$$

A limitation of this second definition of probability occurs if one considers infinitely many possible outcomes. There might be situations were the probability of every event is zero!

Modern probability is based in measure theory, bringing a fundamental mathematical rigour and an abrangent concept (although very abstract as we will see). This course is an introduction to this subject.

Exercise 1.4. Gamblers A and B throw a dice each. What is the probability of A getting more dots than B ? $(5 / 12)$

Exercise 1.5. A professor chooses an integer number between 1 and N, where N is the number of students in the lecture room. By alphabetic order each of the N students try to guess the hidden number. The first student at guessing it wins 2 extra points in the final exam. Is this fair for the students named Xavier and Zacarias? What is the probability for each of the students (ordered alphabetically) to win? (all $\frac{1}{N}$, fair).

Exercise 1.6. A gambler bets money on a roulette either even or odd. By winning he receives the same ammount that he bet. Otherwise he looses the betting money. His strategy is to bet $\frac{1}{N}$ of the total money at each moment in time, starting with $€ M$. Is this a good strategy?

2. Mathematical expectation

Knowing the probability of every event concerning some experiment gives us a lot of information. In particular, it gives a way to compute the best prediction, namely the weighted average. Let X be the value of a measurement taken at the outcome of the experiment, a so called random variable. Suppose that X can only attain a finite number of values, say a_{1}, \ldots, a_{n}, and we know that the probability of each event $X=a_{i}$ is given by $P\left(X=a_{i}\right)$ for all $i=1, \ldots, n$. Then, the weighted average of all possible values of X given their likelihoods of realization is naturally given by

$$
E(X)=a_{1} P\left(X=a_{1}\right)+\cdots+a_{n} P\left(X=a_{n}\right) .
$$

If all results are equally probable, $P\left(X=a_{i}\right)=\frac{1}{n}$, then $E(X)$ is just the arithmetical average.

The weighted average above is better known as the expected value of X. Other names include expectation, mathematical expectation, average, mean value, mean or first moment. It is the best option when making decisions and for that it is a fundamental concept in probability theory.

Example 1.7. Throw dice 1 and dice 2 and count the number of dots denoting them by X_{1} and X_{2}, respectively. Their sum $S_{2}=$ $X_{1}+X_{2}$ can be any integer number between 2 and 12 . However, their probabilities are not equal. For instance, $S_{2}=2$ corresponds to a unique configuration of one dot in each dice, i.e. $X_{1}=X_{2}=1$. On the other hand, $S_{2}=3$ can be achieved by two different configurations: $X_{1}=1, X_{2}=2$ or $X_{1}=2, X_{2}=1$. Since the dice are independent,

$$
P\left(X_{1}=a_{1}, X_{2}=a_{2}\right)=P\left(X_{1}=a_{1}\right) P\left(X_{2}=a_{2}\right)=\frac{1}{36},
$$

one can easily compute that

$$
P\left(S_{2}=n\right)= \begin{cases}\frac{n-1}{36}, & 2 \leq n \leq 7 \\ \frac{12-n+1}{36}, & 8 \leq n \leq 12\end{cases}
$$

and $E\left(S_{2}\right)=7$.
Example 1.8. Toss two fair coins. If we get two heads we win $€ 4$, two tails $€ 1$, otherwise we loose $€ 3$. Moreover, P (two heads) $=$ $P($ two heads $)=\frac{1}{4}$ and also $P($ one head one tail $)=\frac{1}{2}$. Let X be the gain for a given outcome, i.e. X (two heads $)=4, X($ two tails $)=1$ and $X($ one head one tail $)=-3$. The profit expectation for this game is therefore

$$
E(X)=4 P(X=4)+1 P(X=1)-3 P(X=-3) .
$$

The probabilities above correspond to the probabilities of the corresponding events so that
$E(X)=4 P$ (two heads $)+1 P($ two tails $)-3 P($ one head one tail $)=-0.25$. It is expected that one gets a loss in this game on average, so the decision should be not to play it. This is an unfair game, one would need to have a zero expectation for the game to be fair.

The definition above of mathematical expectation is of course limited to the case X having a finite number of values. As we will see in the next chapters, the way to generalize this notion to infinite sets is by interpreting it as the integral of X with respect to the probability measure.

Exercise 1.9. Consider the throwing of three dice. A gambler wins $€ 3$ if all dice are 6 's, € 2 if two dice are 6 's, € 1 if only one dice is a 6 , and looses $€ 1$ otherwise. Is this a fair game?

Part 1

Measure theory

CHAPTER 2

Measure and probability

1. Algebras

Given an experiment we consider Ω to be the set of all possible outcomes. This is the probabilistic interpretation that we want to associate to Ω, but in the point of view of the more general measure theory, Ω is just any given set.

The collection of all the subsets of Ω is denoted by

$$
\mathcal{P}(\Omega)=\{A: A \subset \Omega\} .
$$

It is also called the set of the parts of Ω. When there is no ambiguity, we will simply write \mathcal{P}. We say that $A^{c}=\Omega \backslash A$ is the complement of $A \in \mathcal{P}$ in Ω.

As we will see later, a proper definition of the measure of a set requires several properties. In some cases, that will restrict the elements of \mathcal{P} that are measurable. It turns out that the measurable ones just need to verify the following conditions.

A collection $\mathcal{A} \subset \mathcal{P}$ is an algebra of Ω iff
(1) $\emptyset \in \mathcal{A}$,
(2) If $A \in \mathcal{A}$, then $A^{c} \in \mathcal{A}$,
(3) If $A_{1}, A_{2} \in \mathcal{A}$, then $A_{1} \cup A_{2} \in \mathcal{A}$.

An algebra \mathcal{F} of Ω is called a σ-algebra of Ω iff given $A_{1}, A_{2}, \cdots \in \mathcal{F}$ we have

$$
\bigcup_{n=1}^{+\infty} A_{n} \in \mathcal{F}
$$

Remark 2.1. We can easily verify by induction that any finite union of elements of an algebra is still in the algebra. What makes a σ-algebra different is that the infinite countable union of elements is still in the σ-algebra.

Example 2.2. Consider the set \mathcal{A} of all the finite union of intervals in \mathbb{R}, including \mathbb{R} and \emptyset. Notice that the complementary of an interval is a finite union of intervals. Therefore, \mathcal{A} is an algebra. However, the countable union of the sets $\left.A_{n}=\right] n, n+1[\in \mathcal{A}, n \in \mathbb{N}$, is no longer finite. That is, \mathcal{A} is not a σ-algebra.

Remark 2.3. Any finite algebra \mathcal{A} (i.e. it contains only a finite number of subsets of Ω) is immediately a σ-algebra. Indeed, any infinite union of sets is in fact finite.

The elements of a σ-algebra \mathcal{F} of Ω are called measurable sets. In probability theory they are also known as events. The pair (Ω, \mathcal{F}) is called a measurable space.

Exercise 2.4. Decide if \mathcal{F} is a σ-algebra of Ω where:
(1) $\mathcal{F}=\{\emptyset, \Omega\}$.
(2) $\mathcal{F}=\mathcal{P}(\Omega)$.
(3) $\mathcal{F}=\{\emptyset,\{1,2\},\{3,4,5,6\}, \Omega\}, \Omega=\{1,2,3,4,5,6\}$.
(4) $\mathcal{F}=\left\{\emptyset,\{0\}, \mathbb{R}^{-}, \mathbb{R}_{0}^{-}, \mathbb{R}^{+}, \mathbb{R}_{0}^{+}, \mathbb{R} \backslash\{0\}, \mathbb{R}\right\}, \Omega=\mathbb{R}$.

Proposition 2.5. Let $\mathcal{F} \subset \mathcal{P}$ such that it contains the complementary set of all its elements. For $A_{1}, A_{2}, \cdots \in \mathcal{F}$,

$$
\bigcup_{n=1}^{+\infty} A_{n}^{c} \in \mathcal{F} \quad \text { iff } \quad \bigcap_{n=1}^{+\infty} A_{n} \in \mathcal{F}
$$

Proof. (\Rightarrow) Using Morgan's laws,

$$
\bigcap_{n=1}^{+\infty} A_{n}=\left(\bigcup_{n=1}^{+\infty} A_{n}^{c}\right)^{c} \in \mathcal{F}
$$

because the complements are always in \mathcal{F}.
(\Leftarrow) Same idea.
Therefore, the definitions of algebra and σ-algebra can be changed to require intersections instead of unions.

Exercise 2.6. Let Ω be a finite set with $\# \Omega=n$. Compute $\# \mathcal{P}(\Omega)$. Hint: Find a bijection between \mathcal{P} and $\left\{v \in \mathbb{R}^{n}: v_{i} \in\{0,1\}\right\}$.

Exercise 2.7. Let Ω be an infinite set, i.e. $\# \Omega=+\infty$. Consider the collection of all finite subsets of Ω :

$$
\mathcal{C}=\{A \in \mathcal{P}(\Omega): \# A<+\infty\}
$$

Is $\mathcal{C} \cup\{\Omega\}$ an algebra? Is it a σ-algebra?
Exercise 2.8. Let $\Omega=[-1,1] \subset \mathbb{R}$. Determine if the following collection of sets is a σ-algebra:

$$
\mathcal{F}=\{A \in \mathcal{B}(\Omega): x \in A \Rightarrow-x \in A\} .
$$

Exercise 2.9. Let (Ω, \mathcal{F}) be a measurable space. Consider two disjoint sets $A, B \subset \Omega$ and assume that $A \in \mathcal{F}$. Show that $A \cup B \in \mathcal{F}$ is equivalent to $B \in \mathcal{F}$?
1.1. Generation of σ-algebras. In many situations one requires some sets to be measurable due to their relevance to the problem we are studying. If the collection of those sets is not already a σ-algebra, we need to take a larger one that is. That will be called the σ-algebra generated by the original collection, which we define below.

Take I to be any set (of indices).
THEOREM 2.10. If \mathcal{F}_{α} is a σ-algebra, $\alpha \in I$, then $\mathcal{F}=\bigcap_{\alpha \in I} \mathcal{F}_{\alpha}$ is also a σ-algebra.

Proof.
(1) As for any α we have $\emptyset \in \mathcal{F}_{\alpha}$, then $\emptyset \in \mathcal{F}$.
(2) Let $A \in \mathcal{F}$. So, $A \in \mathcal{F}_{\alpha}$ for any α. Thus, $A^{c} \in \mathcal{F}_{\alpha}$ and $A^{c} \in \mathcal{F}$.
(3) If $A_{n} \in \mathcal{F}$, we have $A_{n} \in \mathcal{F}_{\alpha}$ for any α. So, $\bigcup_{n} A_{n} \in \mathcal{F}_{\alpha}$ and $\bigcup_{n} A_{n} \in \mathcal{F}$.

Exercise 2.11. Is the union of σ-algebras also a σ-algebra?
Consider now the collection of all σ-algebras:

$$
\Sigma=\{\text { all } \sigma \text {-algebras of } \Omega\} .
$$

So, e.g. $\mathcal{P} \in \Sigma$ and $\{\emptyset, \Omega\} \in \Sigma$. In addition, let $\mathcal{I} \subset \mathcal{P}$ be a collection of subsets of Ω, i.e. $\mathcal{I} \subset \mathcal{P}$, not necessarily a σ-algebra. Define the subset of Σ given by the σ-algebras that contain \mathcal{I} :

$$
\Sigma_{\mathcal{I}}=\{\mathcal{F} \in \Sigma: \mathcal{I} \subset \mathcal{F}\}
$$

The σ-algebra generated by \mathcal{I} is the intersection of all σ-algebras containing \mathcal{I},

$$
\sigma(\mathcal{I})=\bigcap_{\mathcal{F} \in \Sigma_{\mathcal{I}}} \mathcal{F}
$$

Hence, $\sigma(\mathcal{I})$ is the smallest σ-algebra containing \mathcal{I} (i.e. it is a subset of any σ-algebra containing \mathcal{I}).

Example 2.12.
(1) Let $A \subset \Omega$ and $\mathcal{I}=\{A\}$. Any σ-algebra containing \mathcal{I} has to include the sets \emptyset, Ω, A and A^{c}. Since these sets form already a σ-algebra, we have

$$
\sigma(\mathcal{I})=\left\{\emptyset, \Omega, A, A^{c}\right\} .
$$

(2) Consider two disjoint sets $A, B \subset \Omega$ and $\mathcal{I}=\{A, B\}$. The generated σ-algebra is

$$
\sigma(\mathcal{I})=\left\{\emptyset, \Omega, A, B, A^{c}, B^{c}, A \cup B,(A \cup B)^{c}\right\} .
$$

(3) Consider now two different sets $A, B \subset \Omega$ such that $A \cap B \neq \emptyset$, and $\mathcal{I}=\{A, B\}$. Then,
$\sigma(\mathcal{I})=\left\{\emptyset, \Omega, A, B, A^{c}, B^{c}\right.$, $A \cup B, A \cup B^{c}, A^{c} \cup B,(A \cup B)^{c},\left(A \cup B^{c}\right)^{c},\left(A^{c} \cup B\right)^{c}$, $B^{c} \cup\left(A \cup B^{c}\right)^{c},\left(B^{c} \cup\left(A \cup B^{c}\right)^{c}\right)^{c}$,
$\left.\left(\left(A \cup B^{c}\right)^{c}\right) \cup\left(\left(A^{c} \cup B\right)^{c}\right),\left(\left(\left(A \cup B^{c}\right)^{c}\right) \cup\left(\left(A^{c} \cup B\right)^{c}\right)\right)^{c}\right\}$ $=\left\{\emptyset, \Omega, A, B, A^{c}, B^{c}\right.$, $A \cup B, A \cup B^{c}, A^{c} \cup B, A^{c} \cap B^{c}, B \backslash A, A \backslash B$, $(A \cap B)^{c}, A \cap B$, $\left.(A \cup B) \backslash(A \cap B),\left(A^{c} \cap B^{c}\right) \cup(A \cap B)\right\}$.

Exercise 2.13. Show that
(1) If $\mathcal{I}_{1} \subset \mathcal{I}_{2} \subset \mathcal{P}$, then $\sigma\left(\mathcal{I}_{1}\right) \subset \sigma\left(\mathcal{I}_{2}\right)$.
(2) $\sigma(\sigma(\mathcal{I}))=\sigma(\mathcal{I})$ for any $\mathcal{I} \subset \mathcal{P}$.

Exercise 2.14. Consider a finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$. Prove that $\mathcal{I}=\left\{\left\{\omega_{1}\right\}, \ldots,\left\{\omega_{n}\right\}\right\}$ generates $\mathcal{P}(\Omega)$.

Exercise 2.15. Determine $\sigma(\mathcal{C})$, where

$$
\mathcal{C}=\{\{x\}: x \in \Omega\} .
$$

What is the smallest algebra that contains \mathcal{C}.
1.2. Borel sets. A specially important collection of subsets of \mathbb{R} in applications is

$$
\mathcal{I}=\{]-\infty, x] \subset \mathbb{R}: x \in \mathbb{R}\}
$$

It is not an algebra since it does not contain even the emptyset. Another collection could be obtained by considering complements and intersections of pairs of sets in \mathcal{I}. That is,

$$
\left.\left.\mathcal{I}^{\prime}=\{] a, b\right] \subset \mathbb{R}:-\infty \leq a \leq b \leq+\infty\right\}
$$

Here we are using the following conventions

$$
] a,+\infty]=] a,+\infty[\quad \text { and } \quad] a, a]=\emptyset
$$

so that \emptyset and \mathbb{R} are also in the collection. The complement of $] a, b] \in \mathcal{I}^{\prime}$ is still not in \mathcal{I}^{\prime}, but is the union of two sets there:

$$
] a, b]^{c}=\right]-\infty, a\right] \cup\right] b,+\infty\right] .
$$

So, the smallest algebra that contains \mathcal{I} corresponds to the collection of finite unions of sets in \mathcal{I}^{\prime},

$$
\mathcal{A}(\mathbb{R})=\left\{\bigcup_{n=1}^{N} I_{n} \subset \mathbb{R}: I_{1}, \ldots, I_{N} \in \mathcal{I}^{\prime}, N \in \mathbb{N}\right\}
$$

called the Borel algebra of \mathbb{R}. Clearly, $\mathcal{I} \subset \mathcal{I}^{\prime} \subset \mathcal{A}(\mathbb{R})$.

We define the Borel σ-algebra as

$$
\mathcal{B}(\mathbb{R})=\sigma(\mathcal{I})=\sigma\left(\mathcal{I}^{\prime}\right)=\sigma(\mathcal{A}(\mathbb{R}))
$$

The elements of $\mathcal{B}(\mathbb{R})$ are called the Borel sets. We will often simplify the notation by writing \mathcal{B}.

When Ω is a subset of \mathbb{R} we can also define the Borel algebra and the σ-algebra on Ω. It is enough to take

$$
\mathcal{A}(\Omega)=\{A \cap \Omega: A \in \mathcal{A}(\mathbb{R})\} \quad \text { and } \quad \mathcal{B}(\Omega)=\{A \cap \Omega: A \in \mathcal{B}(\mathbb{R})\}
$$

EXERCISE 2.16. Check that $\mathcal{A}(\Omega)$ and $\mathcal{B}(\Omega)$ are an algebra and a σ-algebra of Ω, respectively.

Exercise 2.17. Show that:
(1) $\mathcal{B}(\mathbb{R}) \neq \mathcal{A}(\mathbb{R})$.
(2) Any singular set $\{a\}$ with $a \in \mathbb{R}$, is a Borel set.
(3) Any countable set is a Borel set.
(4) Any open set is a Borel set. Hint: Any open set can be written as a countable union of pairwise disjoint open intervals.

2. Monotone classes

We write

$$
A_{n} \uparrow A
$$

to represent a sequence of sets $A_{1}, A_{2}, \cdots \subset \Omega$ that is increasing, i.e.

$$
A_{1} \subset A_{2} \subset \ldots,
$$

and converges to the set

$$
A=\bigcup_{n=1}^{+\infty} A_{n} .
$$

Similarly,

$$
A_{n} \downarrow A
$$

corresponds to a sequence of sets A_{1}, A_{2}, \ldots that is decreasing, i.e.

$$
\cdots \subset A_{2} \subset A_{1},
$$

and converging to

$$
A=\bigcap_{n=1}^{+\infty} A_{n}
$$

Notice that in both cases, if the sets A_{n} are measurable, then A is also measurable.

Example 2.18. Consider a sequence $B_{1}, B_{2}, \cdots \subset \Omega$.
(1) Then

$$
A_{n}=\bigcap_{k=n}^{+\infty} B_{k}
$$

is increasing and

$$
A_{n} \uparrow \bigcup_{n=1}^{+\infty} \bigcap_{k=n}^{+\infty} B_{k}
$$

(2) On the other hand,

$$
A_{n}=\bigcup_{k=n}^{+\infty} B_{k}
$$

is decreasing and

$$
A_{n} \downarrow \bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} B_{k}
$$

Notice that this limit set corresponds to the points that belong to an infinite number of B_{n} 's. It is sometimes written as

$$
\left\{\omega \in \Omega: \omega \in B_{n} \text { infinitely often }\right\}=\left\{B_{n} \text { i.o. }\right\}
$$

A collection $\mathcal{A} \subset \mathcal{P}$ is a monotone class iff
(1) if $A_{1}, A_{2}, \cdots \in \mathcal{A}$ such that $A_{n} \uparrow A$, then $A \in \mathcal{A}$,
(2) if $A_{1}, A_{2}, \cdots \in \mathcal{A}$ such that $A_{n} \downarrow A$, then $A \in \mathcal{A}$.

Theorem 2.19. Suppose that \mathcal{A} is an algebra. Then, \mathcal{A} is a σ algebra iff it is a monotone class.

Proof.
(\Rightarrow) If $A_{1}, A_{2}, \cdots \in \mathcal{A}$ such that $A_{n} \uparrow A$ or $A_{n} \downarrow A$, then $A \in \mathcal{A}$ by the properties of a σ-algebra.
(\Leftarrow) Let $A_{1}, A_{2}, \cdots \in \mathcal{A}$. Take

$$
B_{n}=\bigcup_{i=1}^{n} A_{i}, \quad n \in \mathbb{N}
$$

Hence, $B_{n} \in \mathcal{A}$ for all n since \mathcal{A} is an algebra. Moreover, $B_{n} \subset B_{n+1}$ and $B_{n} \uparrow \cup_{n} A_{n} \in \mathcal{A}$ because \mathcal{A} is a monotone class.

Theorem 2.20. If \mathcal{A} is an algebra, then the smallest monotone class containing \mathcal{A} is $\sigma(\mathcal{A})$.

Exercise 2.21. Prove it.

3. Product algebras

Let $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ be two measurable spaces. We want to find a natural algebra and σ-algebra of the product space

$$
\Omega=\Omega_{1} \times \Omega_{2}
$$

A particular type of subsets of Ω, called measurable rectangles, is given by the product of a set $A \in \mathcal{F}_{1}$ by another $B \in \mathcal{F}_{2}$, i.e.

$$
\begin{aligned}
A \times B & =\left\{\left(x_{1}, x_{2}\right) \in \Omega: x_{1} \in A, x_{2} \in B\right\} \\
& =\left\{x_{1} \in A\right\} \cap\left\{x_{2} \in B\right\} \\
& =\left(A \times \Omega_{2}\right) \cap\left(\Omega_{1} \times B\right),
\end{aligned}
$$

where we have simplified notation in the obvious way. Consider the following collection of finite unions of measurable rectangles

$$
\begin{equation*}
\mathcal{A}=\left\{\bigcup_{i=1}^{N} A_{i} \times B_{i} \subset \Omega: A_{i} \in \mathcal{F}_{1}, B_{i} \in \mathcal{F}_{2}, N \in \mathbb{N}\right\} \tag{2.1}
\end{equation*}
$$

We denote it by $\mathcal{A}=\mathcal{F}_{1} \times \mathcal{F}_{2}$.
Proposition 2.22. \mathcal{A} is an algebra (called the product algebra).
Proof. Notice that $\emptyset \times \emptyset$ is the empty set of Ω and is in \mathcal{A}.
The complement of $A \times B$ in Ω is

$$
\begin{aligned}
(A \times B)^{c} & =\left\{x_{1} \notin A \text { or } x_{2} \notin B\right\} \\
& =\left\{x_{1} \notin A\right\} \cup\left\{x_{2} \notin B\right\} \\
& =\left(A^{c} \times \Omega_{2}\right) \cup\left(\Omega_{1} \times B^{c}\right)
\end{aligned}
$$

which is in \mathcal{A}. Moreover, the intersection between two measurable rectangles is given by

$$
\begin{aligned}
\left(A_{1} \times B_{1}\right) \cap\left(A_{2} \times B_{2}\right) & =\left\{x_{1} \in A_{1}, x_{2} \in B_{1}, x_{1} \in A_{2}, x_{2} \in B_{2}\right\} \\
& =\left\{x_{1} \in A_{1} \cap A_{2}, x_{2} \in B_{1} \cap B_{2}\right\} \\
& =\left(A_{1} \cap A_{2}\right) \times\left(B_{1} \cap B_{2}\right),
\end{aligned}
$$

again in \mathcal{A}. So, the complement of a finite union of measurable rectangles is the intersection of the complements, which is thus in \mathcal{A}.

Exercise 2.23. Show that any element in \mathcal{A} can be written as a finite union of disjoint measurable rectangles.

The product σ-algebra is defined as

$$
\mathcal{F}=\sigma(\mathcal{A})
$$

Example 2.24. A well-known example is the Borel σ-algebra $\mathcal{B}\left(\mathbb{R}^{d}\right)$ of \mathbb{R}^{d}, corresponding to the product

$$
\mathcal{B}\left(\mathbb{R}^{d}\right)=\sigma(\mathcal{B}(\mathbb{R}) \times \cdots \times \mathcal{B}(\mathbb{R}))
$$

In particular it includes all open sets of \mathbb{R}^{d}.

4. Measures

Consider an algebra \mathcal{A} of a set Ω and a function

$$
\mu: \mathcal{A} \rightarrow \overline{\mathbb{R}}
$$

that for each set in \mathcal{A} attributes a real number or $\pm \infty$, i.e. in

$$
\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}
$$

We say that μ is additive if for any two disjoint sets $A_{1}, A_{2} \in \mathcal{A}$ we have

$$
\mu\left(A_{1} \cup A_{2}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)
$$

By induction the same property holds for a finite union of pairwise disjoint sets, and we call it finite additivity.

Moreover, μ is σ-additive if for any sequence of pairwise disjoint sets $A_{1}, A_{2}, \cdots \in \mathcal{A}$ such that $\bigcup_{n=1}^{+\infty} A_{n} \in \mathcal{A}^{1}$ we have

$$
\mu\left(\bigcup_{n=1}^{+\infty} A_{n}\right)=\sum_{n=1}^{+\infty} \mu\left(A_{n}\right) .
$$

In case it is only possible to prove the inequality \leq instead of the equality, μ is said to be σ-subadditive.

Remark 2.25. If the algebra \mathcal{A} is finite, then σ-additive means additive.

ExERCISE 2.26. Let $\mu: \mathcal{P}(\Omega) \rightarrow \mathbb{R}$ that satisfies

$$
\mu(\emptyset)=0, \quad \mu(\Omega)=2, \quad \mu(A)=1, \quad A \in \mathcal{P}(\Omega) \backslash\{\emptyset, \Omega\} .
$$

Determine if μ is σ-additive.
The function μ is called a measure on \mathcal{A} iff
(1) $\mu(A) \geq 0$ or $\mu(A)=+\infty$ for any $A \in \mathcal{A}$,
(2) $\mu(\emptyset)=0$,
(3) μ is σ-additive ${ }^{2}$.

[^1]Remark 2.27 . We use the arithmetic in $\overline{\mathbb{R}}$ by setting

$$
(+\infty)+(+\infty)=+\infty \quad \text { and } \quad a+\infty=+\infty
$$

for any $a \in \mathbb{R}$. Moreover, we write $a<+\infty$ to mean that a is a finite number.

We say that $P: \mathcal{A} \rightarrow \mathbb{R}$ is a probability measure iff
(1) P is a measure,
(2) $P(\Omega)=1$.

Remark 2.28. A (non-trivial) finite measure, i.e. satisfying $0<$ $\mu(\Omega)<+\infty$, can be made into a probability measure P by a normalization:

$$
P(A)=\frac{\mu(A)}{\mu(\Omega)}, \quad A \in \mathcal{A}
$$

Given a measure μ on an algebra \mathcal{A}, a set $A \in \mathcal{A}$ is said to have full measure if $\mu\left(A^{c}\right)=0$. In the case of probability measure we also say that this set (event) has full probability.

Exercise 2.29. (Counting measure) Show that the function that counts the number of elements of a set $A \in \mathcal{P}(\Omega)$:

$$
\mu(A)= \begin{cases}\# A, & \# A<+\infty \\ +\infty, & \text { otherwise }\end{cases}
$$

is a measure. Find the sets with full measure μ.
Exercise 2.30. Let μ_{n} be a measure and $a_{n} \geq 0$ for all $n \in \mathbb{N}$. Prove that

$$
\mu=\sum_{n=1}^{+\infty} a_{n} \mu_{n}
$$

is also a measure. Furthermore, show that if μ_{n} is a probability measure for all n and $\sum_{n} a_{n}=1$, then μ is also a probability measure.
4.1. Properties. If \mathcal{F} is a σ-algebra of Ω, μ a measure on \mathcal{F} and P a probability measure on \mathcal{F}, we say that $(\Omega, \mathcal{F}, \mu)$ is a measure space and (Ω, \mathcal{F}, P) is a probability space.

Proposition 2.31. Consider a measure space $(\Omega, \mathcal{F}, \mu)$ and $A, B \in$ \mathcal{F}. Then,
(1) $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B)$.
(2) If $A \subset B$, then $\mu(A) \leq \mu(B)$.
(3) If $A \subset B$ and $\mu(A)<+\infty$, then $\mu(B \backslash A)=\mu(B)-\mu(A)$.

Proof. Notice that

$$
A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)
$$

is the union of disjoint sets. Moreover, $A=(A \backslash B) \cup(A \cap B)$ and $B=(B \backslash A) \cup(A \cap B)$.
(1) We have then $\mu(A \cup B)+\mu(A \cap B)=\mu(A \backslash B)+\mu(A \cap B)+$ $\mu(B \backslash A)+\mu(A \cap B)=\mu(A)+\mu(B)$.
(2) If $A \subset B$, then $B=A \cup(B \backslash A)$ and $\mu(B)=\mu(A)+\mu(B \backslash A) \geq$ $\mu(A)$.
(3) If $\mu(A)<+\infty$, then $\mu(B \backslash A)=\mu(B)-\mu(A)$. Observe that if $\mu(A)=+\infty$, then $\mu(B)=+\infty$. Hence, it would not be possible to determine $\mu(B \backslash A)$.

Exercise 2.32. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Show that for any sequence of measurable sets $A_{1}, A_{2}, \cdots \in \mathcal{F}$ we have

$$
\mu\left(\bigcup_{n \geq 1} A_{n}\right) \leq \sum_{n \geq 1} \mu\left(A_{n}\right) .
$$

A proposition is said to be valid μ-almost everywhere (μ-a.e.), if it holds on a set of full measure μ.

Exercise 2.33. Consider two sets each one having full measure. Show that their intersection also has full measure.

THEOREM 2.34 (Continuity property). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $A_{1}, A_{2}, \cdots \in \mathcal{F}$.
(1) If $A_{n} \uparrow A$, then

$$
\mu(A)=\lim _{n \rightarrow+\infty} \mu\left(A_{n}\right)
$$

(2) If $A_{n} \downarrow A$ and $\mu\left(A_{1}\right)<+\infty$, then

$$
\mu(A)=\lim _{n \rightarrow+\infty} \mu\left(A_{n}\right)
$$

Proof.
(1) If there is i such that $\mu\left(A_{i}\right)=+\infty$, then $\mu\left(A_{n}\right)=+\infty$ for $n \geq i$. So, $\lim _{n} \mu\left(A_{n}\right)=+\infty$. On the other hand, as $A_{i} \subset$ $\bigcup_{n} A_{n}$, we have $\mu\left(\bigcup_{n} A_{n}\right)=+\infty$. It remains to consider the case where $\mu\left(A_{n}\right)<+\infty$ for any n. Let $A_{0}=\emptyset$ and $B_{n}=$ $A_{n} \backslash A_{n-1}, n \geq 1$, a sequence of pairwise disjoint sets. Then,

$$
\begin{align*}
& \bigcup_{n} A_{n}=\bigcup_{n} B_{n} \text { and } \mu\left(B_{n}\right)=\mu\left(A_{n}\right)-\mu\left(A_{n-1}\right) . \text { Finally, } \\
& \qquad \begin{aligned}
\mu\left(\bigcup_{n} A_{n}\right) & =\mu\left(\bigcup_{n} B_{n}\right) \\
& =\lim _{n \rightarrow+\infty} \sum_{i=1}^{n}\left(\mu\left(A_{i}\right)-\mu\left(A_{i-1}\right)\right) \\
& =\lim _{n \rightarrow+\infty} \mu\left(A_{n}\right)
\end{aligned}
\end{align*}
$$

(2) Since $\mu\left(A_{1}\right)<+\infty$ any subset of A_{1} also has finite measure. Notice that

$$
\bigcap_{n} A_{n}=\left(\bigcup_{n} A_{n}^{c}\right)^{c}=A_{1} \backslash \bigcup_{n} C_{n}
$$

where $C_{n}=A_{n}^{c} \cap A_{1}$. We also have $C_{k} \subset C_{k+1}$. Hence, by the previous case,

$$
\begin{align*}
\mu\left(\bigcap_{n} A_{n}\right) & =\mu\left(A_{1}\right)-\mu\left(\bigcup_{n} C_{n}\right) \\
& =\lim _{n \rightarrow+\infty}\left(\mu\left(A_{1}\right)-\mu\left(C_{n}\right)\right) \tag{2.3}\\
& =\lim _{n \rightarrow+\infty} \mu\left(A_{n}\right) .
\end{align*}
$$

Example 2.35. Consider the counting measure μ. Let

$$
A_{n}=\{n, n+1, \ldots\}
$$

Therefore, $A=\bigcap_{n=1}^{+\infty} A_{n}=\emptyset$ and $A_{n+1} \subset A_{n}$. However, $\mu\left(A_{n}\right)=+\infty$ does not converge to $\mu(A)=0$. Notice that the previous theorem does not apply because $\mu\left(A_{1}\right)=+\infty$.

The next theorem gives us a way to construct probability measures on an algebra.

Theorem 2.36. Let \mathcal{A} be an algebra of a set Ω and $P: \mathcal{A} \rightarrow \mathbb{R}_{0}^{+}$. Then, P is a probability measure on \mathcal{A} iff
(1) $P(\Omega)=1$,
(2) $P(A \cup B)=P(A)+P(B)$ for every disjoint pair $A, B \in \mathcal{A}$,
(3) $\lim _{n \rightarrow+\infty} P\left(A_{n}\right)=0$ for all $A_{1}, A_{2} \cdots \in \mathcal{A}$ such that $A_{n} \downarrow \emptyset$.

Exercise 2.37. *Prove it.
Exercise 2.38. Let (Ω, \mathcal{F}, P) probability space, $A_{1}, A_{2}, \cdots \in \mathcal{F}$ and B is the set of points in Ω that belong to an infinite number of
A_{n} 's (recall Example 2.18):

$$
B=\bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_{k}
$$

Show that:
(1) (First Borel-Cantelli lemma) If

$$
\sum_{n=1}^{+\infty} P\left(A_{n}\right)<+\infty
$$

then $P(B)=0$.
(2) *(Second Borel-Cantelli lemma) If

$$
\sum_{n=1}^{+\infty} P\left(A_{n}\right)=+\infty
$$

and

$$
P\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} P\left(A_{i}\right),
$$

for every $n \in \mathbb{N}$ (i.e. the events are mutually independent; see section 2), then $P(B)=1$.
4.2. *Carathéodory extension theorem. In the definition of σ-additivity it is not very convenient to check whether we are choosing only sets A_{1}, A_{2}, \ldots in the algebra \mathcal{A} such that their union is still in \mathcal{A}. That would be guaranteed by considering a σ-algebra instead of an algebra.

Theorem 2.41 below assures the extension of the measure to a σ algebra containing \mathcal{A}. So, we only need to construct a measure on an algebra in order to have it well defined on a larger σ-algebra. Before stating the theorem, we need several definitions.

Let μ be a measure on an algebra \mathcal{A} of Ω. We say that a sequence of sets $A_{1}, A_{2}, \cdots \in \mathcal{A}$ is a cover of $A \in \mathcal{P}$ if

$$
A \subset \bigcup_{j} A_{j}
$$

Exercise 2.39. Given a cover of a set, can we construct another cover consisting of only disjoint sets?

Consider the function $\mu^{*}: \mathcal{P} \rightarrow \overline{\mathbb{R}}$ given by

$$
\mu^{*}(A)=\inf _{A_{1}, A_{2}, \ldots \operatorname{cover} A} \sum_{j} \mu\left(A_{j}\right), \quad A \in \mathcal{P}
$$

where the infimum is taken over all covers $A_{1}, A_{2}, \cdots \in \mathcal{A}$ of A. Notice that $\mu^{*}(A) \geq 0$ or $\mu^{*}(A)=+\infty$. Also, $\mu^{*}(\emptyset)=0$ as the empty set
covers itself. Notice that μ^{*} is monotonous on \mathcal{P}, i.e. $\mu^{*}(C) \leq \mu^{*}(D)$ whenever $C \subset D$. This is because a cover of D is also a cover of C. To show that μ^{*} is a measure, it is enough to determine its σ-additivity.

Exercise 2.40. Show that if $A \in \mathcal{A}$ then $\mu^{*}(A)=\mu(A)$.
Consider now the collection of subsets of Ω defined as
$\mathcal{M}=\left\{A \in \mathcal{P}: \mu^{*}(B)=\mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)\right.$ for all $\left.B \in \mathcal{P}\right\}$.
Theorem 2.41 (Carathéodory extension).
(1) \mathcal{M} is a σ-algebra and $\mathcal{A} \subset \sigma(\mathcal{A}) \subset \mathcal{M}$.
(2) μ^{*} is a measure on \mathcal{M} and

$$
\mu^{*}(A)=\mu(A), \quad A \in \mathcal{A}
$$

(i.e. μ^{*} extends μ to \mathcal{M}).
(3) If μ is finite, then μ^{*} is its unique extension to $\sigma(\mathcal{A})$ and it is also finite.

The remaining part of this section is devoted to the proof of the above theorem.

Lemma 2.42. μ^{*} is σ-subadditive on \mathcal{P}.
Proof. Take $A_{1}, A_{2}, \cdots \in \mathcal{P}$ pairwise disjoint and $\varepsilon>0$. For each $A_{n}, n \in \mathbb{N}$, consider the cover $A_{n, 1}, A_{n, 2}, \cdots \in \mathcal{A}$ such that

$$
\sum_{j} \mu\left(A_{n, j}\right)<\mu^{*}\left(A_{n}\right)+\frac{\varepsilon}{2^{n}} .
$$

Then, because $\cup_{n} A_{n}$ is covered by the sets $A_{n, j}$,

$$
\begin{aligned}
\mu^{*}\left(\bigcup_{n} A_{n}\right) & \leq \sum_{n, j} \mu\left(A_{n, j}\right) \\
& <\sum_{n} \mu^{*}\left(A_{n}\right)+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, μ^{*} is σ-subadditive.
From the σ-subadditivity we know that for any $A, B \in \mathcal{P}$ we have

$$
\mu^{*}(B) \leq \mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)
$$

An element A of \mathcal{M} has to verify the other inequality:

$$
\mu^{*}(B) \geq \mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)
$$

for every $B \in \mathcal{P}$.
Lemma 2.43. μ^{*} is finitely additive on \mathcal{M}.

Proof. Let $A_{1}, A_{2} \in \mathcal{M}$ disjoint. Then,
$\mu^{*}\left(A_{1} \cup A_{2}\right)=\mu^{*}\left(\left(A_{1} \cup A_{2}\right) \cap A_{1}\right)+\mu^{*}\left(\left(A_{1} \cup A_{2}\right) \cap A_{1}^{c}\right)=\mu^{*}\left(A_{1}\right)+\mu^{*}\left(A_{2}\right)$.
By induction we obtain the finite additivity on \mathcal{M}.
Lemma 2.44. \mathcal{M} is a σ-algebra.
Proof. Let $B \in \mathcal{P}$. From $\mu^{*}(B \cap \emptyset)+\mu^{*}(B \cap \Omega)=\mu^{*}(\emptyset)+\mu^{*}(B)=$ $\mu^{*}(B)$ we obtain that $\emptyset \in \mathcal{M}$. If $A \in \mathcal{M}$ it is clear that A^{c} is also in \mathcal{M}.

Now, let $A_{1}, A_{2} \in \mathcal{M}$. Their union is also in \mathcal{M} because

$$
\begin{aligned}
\mu^{*}\left(B \cap\left(A_{1} \cup A_{2}\right)\right) & =\mu^{*}\left(\left(B \cap A_{1}\right) \cup\left(B \cap A_{2} \cap A_{1}^{c}\right)\right) \\
& \leq \mu^{*}\left(B \cap A_{1}\right)+\mu^{*}\left(B \cap A_{2} \cap A_{1}^{c}\right)
\end{aligned}
$$

and

$$
\mu^{*}\left(B \cap\left(A_{1} \cup A_{2}\right)^{c}\right)=\mu^{*}\left(B \cap A_{1}^{c} \cap A_{2}^{c}\right),
$$

whose sum gives

$$
\begin{aligned}
\mu^{*}\left(B \cap\left(A_{1} \cup A_{2}\right)\right)+\mu^{*}\left(B \cap\left(A_{1} \cup A_{2}\right)^{c}\right) & \leq \mu^{*}\left(B \cap A_{1}\right)+\mu^{*}\left(B \cap A_{1}^{c}\right) \\
& =\mu^{*}(B),
\end{aligned}
$$

where we have used the fact that A_{1}, A_{2} are in \mathcal{M}.
By induction any finite union of sets in \mathcal{M} is also in \mathcal{M}. It remains to deal with the countable union case. Suppose that $A_{1}, A_{2}, \cdots \in \mathcal{M}$ and write

$$
F_{1}=A_{1}, \quad F_{n}=A_{n} \backslash\left(\bigcup_{k=1}^{n-1} A_{k}\right), \quad n \geq 2
$$

which are pairwise disjoint and satisfy

$$
\bigcup_{n} F_{n}=\bigcup_{n} A_{n} .
$$

Moreover, since each F_{n} is a finite union of sets in \mathcal{M}, then both F_{n} and $\cup_{n=1}^{N} F_{n}$ are in \mathcal{M} for any $N \in \mathbb{N}$.

Finally,

$$
\begin{aligned}
\mu^{*}(B) & =\mu^{*}\left(B \cap \bigcup_{n=1}^{N} F_{n}\right)+\mu^{*}\left(B \cap\left(\bigcup_{n=1}^{N} F_{n}\right)^{c}\right) \\
& \geq \sum_{n=1}^{N} \mu^{*}\left(B \cap F_{n}\right)+\mu^{*}\left(B \cap\left(\bigcup_{n=1}^{+\infty} F_{n}\right)^{c}\right)
\end{aligned}
$$

where we have used the finite additivity of μ^{*} on \mathcal{M} along with the facts that

$$
\left(\bigcup_{n=1}^{+\infty} F_{n}\right)^{c} \subset\left(\bigcup_{n=1}^{N} F_{n}\right)^{c}
$$

and μ^{*} is monotonous. Taking the limit $N \rightarrow+\infty$ and the σ-subadditivity of μ^{*} on \mathcal{P}, we obtain

$$
\begin{aligned}
\mu^{*}(B) & \geq \sum_{n=1}^{+\infty} \mu^{*}\left(B \cap F_{n}\right)+\mu^{*}\left(B \cap\left(\bigcup_{n=1}^{+\infty} F_{n}\right)^{c}\right) \\
& \geq \mu^{*}\left(B \cap \bigcup_{n=1}^{+\infty} F_{n}\right)+\mu^{*}\left(B \cap\left(\bigcup_{n=1}^{+\infty} F_{n}\right)^{c}\right),
\end{aligned}
$$

proving that \mathcal{M} is a σ-algebra.
Lemma 2.45. $\mathcal{A} \subset \sigma(\mathcal{A}) \subset \mathcal{M}$.
Proof. Let $A \in \mathcal{A}$. Given any $\varepsilon>0$ and $B \in \mathcal{P}$ consider $A_{1}, A_{2}, \cdots \in \mathcal{A}$ covering B such that

$$
\mu^{*}(B) \leq \sum_{n} \mu\left(A_{n}\right)<\mu^{*}(B)+\varepsilon .
$$

On the other hand, the sets $A_{1} \cap A, A_{2} \cap A, \cdots \in \mathcal{A}$ cover $B \cap A$ and $A_{1} \cap A^{c}, A_{2} \cap A^{c}, \cdots \in \mathcal{A}$ cover $B \cap A^{c}$. From $\sum_{n} \mu\left(A_{n}\right)=\sum_{n} \mu\left(A_{n} \cap\right.$ $A)+\mu\left(A_{n} \cap A^{c}\right) \geq \mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)$ we obtain

$$
\mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)<\mu^{*}(B)+\varepsilon
$$

Since ε is arbitrary and from the σ-subadditivity of μ^{*} we have

$$
\mu^{*}(B)=\mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)
$$

So, $A \in \mathcal{M}$ and $\mathcal{A} \subset \mathcal{M}$.
Finally, as \mathcal{M} is a σ-algebra that contains \mathcal{A} it also contains $\sigma(\mathcal{A})$.

Lemma 2.46. μ^{*} is σ-additive on \mathcal{M}.
Proof. Let $A_{1}, A_{2}, \cdots \in \mathcal{M}$ pairwise disjoint. By the finite additivity and the monotonicity of μ^{*} on \mathcal{M} we have

$$
\sum_{n=1}^{N} \mu^{*}\left(A_{n}\right)=\mu^{*}\left(\bigcup_{n=1}^{N} A_{n}\right) \leq \mu^{*}\left(\bigcup_{n=1}^{+\infty} A_{n}\right) .
$$

Taking the limit $N \rightarrow+\infty$ we obtain

$$
\sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right) \leq \mu^{*}\left(\bigcup_{n=1}^{+\infty} A_{n}\right)
$$

As μ^{*} is σ-subadditive on \mathcal{M}, it is also σ-additive.
From Exercise 2.40 we know that μ^{*} agrees with μ for any $A \in \mathcal{A}$. In particular, $\mu^{*}(\Omega)=\mu(\Omega)$. So, if μ is finite, then μ^{*} is also finite. The uniqueness of the extension comes from the following lemma.

Lemma 2.47. Let μ be finite. If μ_{1}^{*} and μ_{2}^{*} are extensions of μ to \mathcal{M}, then $\mu_{1}^{*}=\mu_{2}^{*}$ on $\sigma(\mathcal{A})$.

Proof. The collection where one has a unique extension is

$$
\mathcal{F}=\left\{A \in \mathcal{M}: \mu_{1}^{*}(A)=\mu_{2}^{*}(A)\right\}
$$

Taking an increasing sequence $A_{1} \subset A_{2} \subset \ldots$ in \mathcal{F} we have

$$
\begin{aligned}
\mu_{1}^{*}\left(\bigcup_{n} A_{n}\right) & =\mu_{1}^{*}\left(\bigcup_{n} A_{n} \backslash A_{n-1}\right) \\
& =\sum_{n} \mu_{1}^{*}\left(A_{n} \backslash A_{n-1}\right) \\
& =\sum_{n} \mu_{2}^{*}\left(A_{n} \backslash A_{n-1}\right) \\
& =\mu_{2}^{*}\left(\bigcup_{n} A_{n}\right),
\end{aligned}
$$

where $A_{0}=\emptyset$. Thus, $A_{n} \uparrow \bigcup_{n} A_{n} \in \mathcal{F}$. Similarly, for a decreasing sequence we also obtain $A_{n} \downarrow \bigcap_{n} A_{n} \in \mathcal{F}$. Thus, \mathcal{F} is a monotone class. According to Theorem 2.20, since \mathcal{F} contains the algebra \mathcal{A} it also contains $\sigma(\mathcal{A})$.

5. Examples

5.1. Dirac measure. Let $a \in \Omega$ and $\delta_{a}: \mathcal{P}(\Omega) \rightarrow \mathbb{R}$ given by

$$
\delta_{a}(A)= \begin{cases}1, & a \in A \\ 0, & \text { other cases }\end{cases}
$$

If A_{1}, A_{2}, \ldots are pairwise disjoint subsets of Ω, then only one of the following alternatives can hold:
(1) There exists a unique j such that $a \in A_{j}$. So, $\delta_{a}\left(\bigcup_{n} A_{n}\right)=$ $1=\delta_{a}\left(A_{j}\right)=\sum_{n} \delta_{a}\left(A_{n}\right)$.
(2) For all n we have that $a \notin A_{n}$. Therefore, $\delta_{a}\left(\bigcup_{n} A_{n}\right)=0=$ $\sum_{n} \delta_{a}\left(A_{n}\right)$.
This implies that δ_{a} is σ-additive. Since $\delta_{a}(\Omega)=1, \delta_{a}$ is a probability measure called Dirac measure ${ }^{3}$ at a.

Exercise 2.48. Is

$$
P=\sum_{n=1}^{+\infty} \frac{1}{2^{n}} \delta_{1 / n}
$$

a probability measure on $\mathcal{P}(\mathbb{R})$?

[^2]5.2. Lebesgue measure. Consider the Borel algebra $\mathcal{A}=\mathcal{A}(\mathbb{R})$ on \mathbb{R} and a function $m: \mathcal{A} \rightarrow \overline{\mathbb{R}}$. For a sequence of disjoint intervals $\left.] a_{n}, b_{n}\right]$ with $-\infty \leq a_{n} \leq b_{n} \leq+\infty, n \in \mathbb{N}$, such that their union is in \mathcal{A}, we define
$$
\left.\left.m\left(\bigcup_{n=1}^{+\infty}\right] a_{n}, b_{n}\right]\right)=\sum_{n=1}^{+\infty}\left(b_{n}-a_{n}\right)
$$
corresponding to the sum of the lengths of the intervals. This is the σ additivity. Moreover, $m(\emptyset)=m(] a, a])=0$ and $m(A) \geq 0$ or $m(A)=$ $+\infty$ for any $A \in \mathcal{A}$. Therefore, m is a measure on the algebra \mathcal{A}, which is called Lebesgue measure. By the Carathéodory extension theorem (Theorem 2.41) there is an extension of m to the Borel σ-algebra $\mathcal{B}=$ $\sigma(\mathcal{A})$ also denoted by $m: \mathcal{B} \rightarrow \overline{\mathbb{R}}$.

Remark 2.49. There is a larger σ-algebra to where we can extend m. It is called the Lebesgue σ-algebra \mathcal{M} and includes all sets $\Lambda \subset \mathbb{R}$ such that there are Borelian sets $A, B \in \mathcal{B}$ satisfying $A \subset \Lambda \subset B$ and $m(B \backslash A)=0$. Clearly, $\mathcal{B} \subset \mathcal{M}$. We set $m(\Lambda)=m(A)=m(B)$.

Taking a bounded interval $\Omega=[a, b] \subset \mathbb{R}$, with $-\infty<a<b<+\infty$, one can define m as above in $\mathcal{A}(\Omega)$. Its extension to $\mathcal{B}(\Omega)$ is unique by the Carathéodory extension theorem since $m(\Omega)=b-a$ is finite. If $b-a=1$ we have in fact that the Lebesgue measure in $[a, b]$ is a probability measure.

Example 2.50. Given $a \in \mathbb{R}$ the set $\{a\}$ is the complement of an open set, so it is a Borel set. Its Lebesgue measure is easily computed using Theorem 2.34. Indeed, $A_{n} \downarrow\{a\}$, where

$$
\left.\left.A_{n}=\right] a-\frac{1}{n}, a\right]
$$

and $m(] a-1 / n, a])=1 / n$. So, $m(\{a\})=0$.
Example 2.51. Consider any countable set $A=\left\{a_{1}, a_{2}, \ldots\right\} \subset \mathbb{R}$. It is a Borel set since it is the countable union of the unit sets ${ }^{4}\left\{a_{n}\right\} \in \mathcal{B}$. These sets are disjoint, so

$$
m(A)=\sum_{n=1}^{+\infty} m\left(\left\{a_{n}\right\}\right)=0
$$

Therefore, any countable set has zero Lebesgue measure. This includes \mathbb{N}, \mathbb{Z}, and \mathbb{Q}.

Exercise 2.52. Compute the Lebesgue measure of the following Borel sets: $[a, b],[a, b[]-,\infty, a[]-,\infty, a],[b,+\infty[$ and $] b,+\infty[$.

[^3]We have seen that countable sets have zero Lebesgue measure. On the other hand, intervals are uncountable and have positive measure. However not all uncountable sets have positive measure, as the following non-intuitive example shows.

Example 2.53 (Middle third Cantor set). Consider $A_{0}=[0,1]$. Remove the middle third and obtain $A_{1}=[0,1 / 3] \cup[2 / 3,1]$. Repeat this procedure removing the middle third of each of the two disjoint intervals of A_{1} in order to get

$$
A_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1] .
$$

and so on. At step n we get A_{n} as the disjoint union of 2^{n} intervals, each with measure $1 / 3^{n}$, so that $m\left(A_{n}\right)=(2 / 3)^{n} \rightarrow 0$. It is also clear that $A_{n+1} \subset A_{n}$ and $A_{n} \downarrow A$ where

$$
A=\bigcap_{n=0}^{+\infty} A_{n} .
$$

So, A is a Borel set and $m(A)=0$. Notice that A is not empty, as for instance it includes 0 . In fact, A is uncountable. To prove this we just need to find a bijection between A and $[0,1]$. For that we use base 3 representation of numbers ${ }^{5}$ in $[0,1]$. Observe that

$$
A_{1}=\left\{x \in[0,1]: x=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{3}, a_{1} \neq 1\right\} .
$$

Moreover,

$$
A_{n}=\left\{x \in[0,1]: x=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{3}, a_{1} \neq 1, \ldots, a_{n} \neq 1\right\}
$$

and

$$
A=\left\{x \in[0,1]: x=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{3}, a_{i} \neq 1, i \in \mathbb{N}\right\} .
$$

So, elements of A are characterized as the points that have no 1's in their base 3 expansion ${ }^{6}$. Finally we choose the bijection $h: A \rightarrow[0,1]$ given by

$$
h\left(\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{3}\right)=\left(0 . b_{1} b_{2} b_{3} \ldots\right)_{2}
$$

where $b_{i}=a_{i} / 2 \in\{0,1\}$.
5.3. Product measure. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be measure spaces. Consider the product space $\Omega=\Omega_{1} \times \Omega_{2}$ with the product σ-algebra $\mathcal{F}=\sigma(\mathcal{A})$, where \mathcal{A} is the product algebra introduced in (2.1).

[^4]We start by defining the product measure $\mu=\mu_{1} \times \mu_{2}$ as the measure on Ω that satisfies

$$
\mu\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right)
$$

for any measurable rectangle $A_{1} \times A_{2} \in \mathcal{F}_{1} \times \mathcal{F}_{2}$. For other sets in \mathcal{A}, i.e. finite union of measurable rectangles, we define μ as to make it σ-additive.

Exercise 2.54.
(1) Prove that if $A \in \mathcal{A}$ can be written as the finite disjoint union of measurable rectangles in two different ways, i.e. we can find measurable rectangles $A_{i} \times B_{i}, i=1, \ldots, N$, and also $A_{i}^{\prime} \times B_{i}^{\prime}$, $i=1, \ldots, N^{\prime}$, such that

$$
A=\bigcup_{i} A_{i} \times B_{i}=\bigcup_{i} A_{i}^{\prime} \times B_{i}^{\prime}
$$

then

$$
\sum_{i} \mu\left(A_{i} \times B_{i}\right)=\sum_{i} \mu\left(A_{i}^{\prime} \times B_{i}^{\prime}\right) .
$$

So, $\mu(A)$ is well-defined.
(2) Show that μ can be extended to every measurable set in the product σ-algebra \mathcal{F}.
5.4. Non-unique extensions. The Carathéodory extension theorem guarantees an extension to $\sigma(\mathcal{A})$ of a measure initially defined on an algebra \mathcal{A}. If the measure is not finite $(\mu(\Omega)=+\infty)$, then there might be more than one extension, say μ_{1}^{*} and μ_{2}^{*}. They both agree with μ for sets in \mathcal{A} but are different in some sets in $\sigma(\mathcal{A}) \backslash \mathcal{A}$. Here are two examples.

Consider the algebra $\mathcal{A}=\mathcal{A}(\mathbb{R})$ and the measure $\mu: \mathcal{A} \rightarrow \overline{\mathbb{R}}$ given by

$$
\mu(A)= \begin{cases}0, & A=\emptyset \\ +\infty, & \text { o.c. }\end{cases}
$$

Two extensions of μ to $\mathcal{B}=\sigma(\mathcal{A})$ are

$$
\mu_{1}(A)=\left\{\begin{array}{ll}
0, & A=\emptyset \\
+\infty, & \text { o.c. }
\end{array} \quad \text { and } \quad \mu_{2}(A)=\# A,\right.
$$

for any $A \in \mathcal{B}$. Notice that μ_{1} is the one given by the construction in the proof of the Carathéodory extension theorem.

Another example is the following. Let $\Omega=[0,1] \times[0,1]$ and the product algebra $\mathcal{A}=\mathcal{B}([0,1]) \times \mathcal{P}([0,1])$. Define the product measure
$\mu=m \times \nu$ on \mathcal{A} where ν is the counting measure. Thus, two extensions of μ are

$$
\mu_{1}(A)=\sum_{y:(x, y) \in A} m\left(A_{y}\right) \quad \text { and } \quad \mu_{2}(A)=\int_{0}^{1} n_{A}(x) d x
$$

for any $A \in \sigma(\mathcal{A})$, where

$$
A_{x}=\{y \in[0,1]:(x, y) \in A\}, \quad A_{y}=\{x \in[0,1]:(x, y) \in A\}
$$

and $n_{A}(x)=\# A_{x}$. In particular, $D=\{(x, x) \in \Omega: x \in[0,1]\}$ is in $\sigma(\mathcal{A})$ but not in \mathcal{A}, and

$$
\mu_{1}(D)=0 \quad \text { and } \quad \mu_{2}(D)=1
$$

The extension given by construction in the proof of the Carathéodory extension theorem is

$$
\mu_{3}(A)= \begin{cases}m \times \nu(A), & \cup_{x} A_{x} \text { is countable and } m\left(\cup_{y} A_{y}\right)=0 \\ +\infty, & \text { o.c. }\end{cases}
$$

with $\mu_{3}(D)=+\infty$.

CHAPTER 3

Measurable functions

1. Definition

Let $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ be measurable spaces and consider a function between those spaces $f: \Omega_{1} \rightarrow \Omega_{2}$. We say that f is $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ measurable iff

$$
f^{-1}(B) \in \mathcal{F}_{1}, \quad B \in \mathcal{F}_{2}
$$

That is, the pre-image of a measurable set is also measurable (with respect to the respective σ-algebras). This definition will be mainly useful in order to determine the measure of a set in \mathcal{F}_{2} by looking at the measure of its pre-image in \mathcal{F}_{1}. Whenever there is no ambiguity, namely the σ-algebras are known and fixed, we will simply say that the function is measurable.

Remark 3.1. Notice that the pre-image can be seen as a function between the collection of subsets, $f^{-1}: \mathcal{P}\left(\Omega_{2}\right) \rightarrow \mathcal{P}\left(\Omega_{1}\right)$. So, f is measurable iff the image under f^{-1} of \mathcal{F}_{2} is contained in \mathcal{F}_{1}, i.e.

$$
f^{-1}\left(\mathcal{F}_{2}\right) \subset \mathcal{F}_{1}
$$

Exercise 3.2. Show the following propositions:
(1) If f is $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$-measurable, it is also $\left(\mathcal{F}, \mathcal{F}_{2}\right)$-measurable for any σ-algebra $\mathcal{F} \supset \mathcal{F}_{1}$.
(2) If f is $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$-measurable, it is also $\left(\mathcal{F}_{1}, \mathcal{F}\right)$-measurable for any σ-algebra $\mathcal{F} \subset \mathcal{F}_{2}$.

We do not need to check the conditon of measurability for every measurable set in \mathcal{F}_{2}. In fact, it is only required for a collection that generates \mathcal{F}_{2}.

Proposition 3.3. Let $\mathcal{I} \subset \mathcal{P}\left(\Omega_{2}\right)$. Then, f is $\left(\mathcal{F}_{1}, \sigma(\mathcal{I})\right)$-measurable iff $f^{-1}(\mathcal{I}) \subset \mathcal{F}_{1}$.

Proof.
$(1)(\Rightarrow)$ Since any $I \in \mathcal{I}$ also belongs to $\sigma(\mathcal{I})$, if f is measurable then $f^{-1}(I)$ is in \mathcal{F}_{1}.
(2) (\Leftarrow) Let

$$
\mathcal{F}=\left\{B \in \sigma(\mathcal{I}): f^{-1}(B) \in \mathcal{F}_{1}\right\} .
$$

Notice that \mathcal{F} is a σ-algebra because

- $f^{-1}(\emptyset)=\emptyset \in \mathcal{F}_{1}$, so $\emptyset \in \mathcal{F}$.
- If $B \in \mathcal{F}$, then $f^{-1}\left(B^{c}\right)=f^{-1}(B)^{c} \in \mathcal{F}_{1}$. Hence, B^{c} is also in \mathcal{F}.
- Let $B_{1}, B_{2}, \cdots \in \mathcal{F}$. Then,

$$
f^{-1}\left(\bigcup_{n=1}^{+\infty} B_{n}\right)=\bigcup_{n=1}^{+\infty} f^{-1}\left(B_{n}\right) \in \mathcal{F}_{1} .
$$

So, $\bigcup_{n=1}^{+\infty} B_{n}$ is also in \mathcal{F}.
Since $\mathcal{I} \subset \mathcal{F}$ we have $\sigma(\mathcal{I}) \subset \mathcal{F} \subset \sigma(\mathcal{I})$. That is, $\mathcal{F}=\sigma(\mathcal{I})$.

We will be particularly interested in the case of scalar functions, i.e. with values in \mathbb{R}. Fix the Borel σ-algebra \mathcal{B} on \mathbb{R}. Recall that \mathcal{B} can be generated by the collection $\mathcal{I}=\{]-\infty, x]: x \in \mathbb{R}\}$. So, from Proposition 3.3 we say that $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable iff

$$
\left.\left.f^{-1}(]-\infty, x\right]\right) \in \mathcal{F}, \quad x \in \mathbb{R}
$$

In probability theory, these functions are called random variables.
Remark 3.4. The following notation is widely used (especially in probability theory) to represent the pre-image of a set in \mathcal{I} :

$$
\left.\left.\{f \leq x\}=\{\omega \in \Omega: f(\omega) \leq x\}=f^{-1}(]-\infty, x\right]\right)
$$

Example 3.5. Consider the constant function $f(\omega)=a, \omega \in \Omega$, where $a \in \mathbb{R}$. Then,

$$
\left.\left.f^{-1}(]-\infty, x\right]\right)= \begin{cases}\Omega, & x \geq a \\ \emptyset, & x<a\end{cases}
$$

So, $\left.\left.f^{-1}(]-\infty, x\right]\right)$ belongs to any σ-algebra of Ω. Therefore, a constant function is always measurable regardless of the σ-algebra considered.

Example 3.6. Let $A \subset \Omega$. The indicator function of A is defined by

$$
\mathcal{X}_{A}(\omega)= \begin{cases}1, & \omega \in A \\ 0, & \omega \in A^{c} .\end{cases}
$$

Therefore,

$$
\left.\left.\mathcal{X}_{A}^{-1}(]-\infty, x\right]\right)= \begin{cases}\Omega, & x \geq 1 \\ A^{c}, & 0 \leq x<1 \\ \emptyset, & x<0\end{cases}
$$

So, \mathcal{X}_{A} is \mathcal{F}-measurable iff $A \in \mathcal{F}$.
Exercise 3.7. Show that:
(1) $\mathcal{X}_{f^{-1}(A)}=\mathcal{X}_{A} \circ f$ for any $A \subset \Omega_{2}$ and $f: \Omega_{1} \rightarrow \Omega_{2}$.
(2) $\mathcal{X}_{A \cap B}=\mathcal{X}_{A} \mathcal{X}_{B}$ for $A, B \subset \Omega$.
(3) $\mathcal{X}_{A \cup B}=\mathcal{X}_{A}+\mathcal{X}_{B}-\mathcal{X}_{A} \mathcal{X}_{B}$ for $A, B \subset \Omega$.

Example 3.8. Recall that $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a continuous function iff the pre-image of any open set is open. Since open sets are Borel sets, it follows that any continuous function is $\mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable.

Proposition 3.9. Let $f, g: \Omega \rightarrow \mathbb{R}$ be measurable functions. Then, their sum $f+g$ and product $f g$ are also measurable.

Proof. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function and $h: \Omega \rightarrow \mathbb{R}$ given by

$$
h(x)=F(f(x), g(x)) .
$$

Since F is continuous, we have that $F^{-1}(]-\infty, a[)$ is open. Thus, for any $a \in \mathbb{R}$ we can write $F^{-1}(]-\infty, a[)=\bigcup_{n} I_{n} \times J_{n}$, where I_{n} and J_{n} are open intervals. So,

$$
h^{-1}(]-\infty, a[)=\bigcup_{n} f^{-1}\left(I_{n}\right) \cap g^{-1}\left(J_{n}\right) \in \mathcal{F}
$$

That is, h is measurable. We complete the proof by applying this to $F(u, v)=u+v$ and $F(u, v)=u v$.

Proposition 3.10. Let $f: \Omega_{1} \rightarrow \Omega_{2}$ and $g: \Omega_{2} \rightarrow \Omega_{3}$ be measurable functions. Then, $g \circ f$ is also measurable.

Proof. Prove it.

2. Simple functions

A finite collection of disjoint subsets of Ω is a disjoint cover of Ω if their union is Ω. A function $\varphi: \Omega \rightarrow \mathbb{R}$ is a simple function on a disjoint cover A_{1}, \ldots, A_{N} of Ω if there are different numbers $c_{1}, \ldots, c_{N} \in \mathbb{R}$ such that

$$
\varphi=\sum_{j=1}^{N} c_{j} \mathcal{X}_{A_{j}}
$$

It is called simple if it is simple in some disjoint cover of Ω. That is, a simple function is constant on each set A_{j} of a finite collection that covers Ω : $\varphi\left(A_{j}\right)=c_{j}$. Hence φ has only a finite number of possible values.

Remark 3.11. Being simple on a disjoint cover uniquely determines the representation of the function. By not requiring the numbers c_{j} to be different, one would have different representations due to the fact that $\mathcal{X}_{A}=\mathcal{X}_{A \backslash B}+\mathcal{X}_{B}$.

Proposition 3.12. A function $\varphi: \Omega \rightarrow \mathbb{R}$ is simple on A_{1}, \ldots, A_{N} iff it is $\sigma\left(\left\{A_{1}, \ldots, A_{N}\right\}\right)$-measurable.

Proof.
(\Rightarrow) For $x \in \mathbb{R}$, take the set $J(x)=\left\{j: c_{j} \leq x\right\} \subset\{1, \ldots, N\}$. Hence,

$$
\left.\left.\varphi^{-1}(]-\infty, x\right]\right)=\bigcup_{j \in J(x)} \varphi^{-1}\left(c_{j}\right)=\bigcup_{j \in J(x)} A_{j} .
$$

So, φ is $\sigma\left(\left\{A_{1}, \ldots, A_{N}\right\}\right)$-measurable.
(\Leftarrow) Suppose that φ is not simple on A_{1}, \ldots, A_{N}. So, for some j it is not constant on A_{j} (and so A_{j} has more than one element). Then, there are $\omega_{1}, \omega_{2} \in A_{j}$ and $x \in \mathbb{R}$ such that

$$
\varphi\left(\omega_{1}\right)<x<\varphi\left(\omega_{2}\right)
$$

Hence, ω_{1} is in $\left.\left.\varphi^{-1}(]-\infty, x\right]\right)$ but ω_{2} is not. This means that this set can not be any of A_{1}, \ldots, A_{N}, their complements or their unions. Therefore, φ is not $\sigma\left(\left\{A_{1}, \ldots, A_{N}\right\}\right)$-measurable.

Remark 3.13. From the above proposition it follows that a function is constant (i.e. a simple function on the unique set Ω) iff it is measurable with respect to the trivial σ-algebra (thus to any other). See Example 3.5.

Exercise 3.14. Consider simple functions φ and φ^{\prime}. Determine if the functions $|\varphi|, \varphi+\varphi^{\prime}$ and $\varphi \varphi^{\prime}$ are also simple.

3. Extended real-valued functions

In many applications it is convenient to consider the case of functions with values in

$$
\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}
$$

For such cases it is enough to consider the Borel σ-algebra of $\overline{\mathbb{R}}$. That is defined as

$$
\mathcal{B}(\overline{\mathbb{R}})=\sigma(\{[-\infty, a]: a \in \mathbb{R}\})
$$

Exercise 3.15. Show that $\mathcal{B}(\overline{\mathbb{R}})$ can also be generated by intervals of the following types: $[-\infty, a[,[a,+\infty]] a,,+\infty]$.

Let (Ω, \mathcal{F}) be a measurable space. We say that $f: \Omega \rightarrow \overline{\mathbb{R}}$ is \mathcal{F} measurable (a random variable) iff it is ($\mathcal{F}, \mathcal{B}(\overline{\mathbb{R}})$)-measurable. From Proposition 3.3 this is equivalent to check that $f^{-1}([-\infty, a]) \in \mathcal{F}$ for every $a \in \mathbb{R}$.

Given a sequence of measurable functions $f_{n}: \Omega \rightarrow \mathbb{R}$, we define the infimum function as

$$
f(\omega)=\inf _{n \in \mathbb{N}} f_{n}(\omega) .
$$

It is a well-defined function from Ω to $[-\infty,+\infty[\subset \overline{\mathbb{R}}$. Similarly, the supremum function $\sup _{n} f_{n}$ has values in $\left.]-\infty,+\infty\right]$.

Recall the definitions of liminf and limsup for a sequence of functions:

$$
\begin{align*}
\liminf _{n \rightarrow+\infty} f_{n} & =\sup _{n \in \mathbb{N}} \inf _{k \geq n} f_{k}, \tag{3.1}\\
\limsup _{n \rightarrow+\infty} f_{n} & =\inf _{n \in \mathbb{N}} \sup _{k \geq n} f_{k} \tag{3.2}
\end{align*}
$$

These are also functions with values in $\overline{\mathbb{R}}$. Moreover, the sequence f_{n} converges if they are finite and equal. That value is the limit of f_{n} $\left(\lim f_{n}\right)$, as will be discussed in the next section.

Proposition 3.16. For any sequence of measurable functions f_{n}, the functions $\inf _{n} f_{n}, \sup _{n} f_{n}, \liminf _{n \rightarrow+\infty} f_{n}$ and $\lim \sup _{n \rightarrow+\infty} f_{n}$ are also measurable.

Exercise 3.17. Prove it.

4. Convergence of sequences of measurable functions

Consider countably many measurable functions $f_{n}: \Omega \rightarrow \mathbb{R}$ ordered by $n \in \mathbb{N}$. This defines a sequence of measurable functions f_{1}, f_{2}, \ldots. We denote such a sequence by its general term f_{n}. There are several notions of its convergence:

- f_{n} converges pointwisely ${ }^{1}$ to f (i.e. $f_{n} \rightarrow f$) iff

$$
\lim _{n \rightarrow+\infty} f_{n}(\omega)=f(\omega) \text { for every } \omega \in \Omega
$$

We also say that f is the limit of f_{n}.

- f_{n} converges uniformly to f (i.e. $f_{n} \xrightarrow{u} f$) iff

$$
\lim _{n \rightarrow+\infty} \sup _{\omega \in \Omega}\left|f_{n}(\omega)-f(\omega)\right|=0
$$

- f_{n} converges almost everywhere to f (i.e. $f_{n} \xrightarrow{\text { a.e. }} f$) iff there is $A \in \mathcal{F}$ such that $\mu(A)=0$ and

$$
\lim _{n \rightarrow+\infty} f_{n}(\omega)=f(\omega) \quad \text { for every } \omega \in A^{c}
$$

- f_{n} converges in measure to f (i.e. $f_{n} \xrightarrow{\mu} f$) iff for every $\varepsilon>0$

$$
\lim _{n \rightarrow+\infty} \mu\left(\left\{\omega \in \Omega:\left|f_{n}(\omega)-f(\omega)\right| \geq \varepsilon\right\}\right)=0
$$

Remark 3.18. In the case of a probability measure we refer to convergence almost everywhere (a.e.) as almost surely (a.s.), and convergence in measure as convergence in probability.

[^5]Exercise 3.19. Let $([0,1], \mathcal{B}([0,1]), m)$ the Lebesgue measure space and $f_{n}(x)=x^{n}, x \in[0,1], n \in \mathbb{N}$. Determine the convergence of f_{n}.

EXERCISE 3.20. Determine the convergence of $\mathcal{X}_{A_{n}}$ when
(1) $A_{n} \uparrow A$
(2) $A_{n} \downarrow A$
(3) the sets A_{1}, A_{2}, \ldots are pairwise disjoint.

A function $f: \Omega \rightarrow \mathbb{R}$ is called bounded if there is $M>0$ such that for every $\omega \in \Omega$ we have $|f(\omega)| \leq M$.

We use the notation

$$
f_{n} \nearrow f
$$

to mean that $f_{n} \rightarrow f$ and $f_{n}(\omega) \leq f(\omega)$ for every $n \in \mathbb{N}$ and $\omega \in \Omega$.

Proposition 3.21.

(1) For every measurable function f there is a sequence of simple functions φ_{n} such that $\varphi_{n} \nearrow f$.
(2) For every bounded measurable function f there is a sequence of simple functions φ_{n} such that $\varphi_{n} \nearrow f$ and the convergence is uniform.

Proof.

(1) Consider the simple functions

$$
\varphi_{n}=\sum_{j=0}^{n 2^{n+1}-1}\left(-n+\frac{j}{2^{n}}\right) \mathcal{X}_{A_{n, j}}+n \mathcal{X}_{f-1([n,+\infty[)}-n \mathcal{X}_{f-1(]-\infty,-n[)}
$$

where

$$
A_{n, j}=f^{-1}\left(\left[-n+\frac{j}{2^{n}},-n+\frac{j+1}{2^{n}}[) .\right.\right.
$$

Notice that for any $\omega \in A_{n, j}$ we have

$$
-n+\frac{j}{2^{n}} \leq f(\omega)<-n+\frac{j+1}{2^{n}}
$$

and

$$
\varphi_{n}(\omega)=-n+\frac{j}{2^{n}} .
$$

So,

$$
f(\omega)-\frac{1}{2^{n}}<\varphi_{n}(\omega) \leq f(\omega)
$$

Therefore, $\varphi_{n} \rightarrow f$ for every $\omega \in \Omega$ since for n sufficiently large ω belongs to some $A_{n, j}$.
(2) Assume that $|f(\omega)| \leq M$ for every $\omega \in \Omega$. Given $n \in \mathbb{N}$, let

$$
c_{j}=-M+\frac{2(j-1) M}{n}, \quad j=1, \ldots, n
$$

Define the intervals $I_{j}=\left[c_{j}, c_{j}+2 M / n[\right.$ for $j=1, \ldots, n-1$ and $I_{n}=\left[c_{n}, M\right]$. Clearly, these n intervals are pairwise disjoint and their union is $[-M, M]$. Take also $A_{j}=f^{-1}\left(I_{j}\right)$ which are pairwise disjoint measurable sets and cover Ω, and the sequence of simple functions

$$
\varphi_{n}=\sum_{j=1}^{n} c_{j} \mathcal{X}_{A_{j}} .
$$

On each A_{j} the function f is valued in I_{j}, and it is always $2 M / n$ close to c_{j} (corresponding to the length of I_{j}). Then,

$$
\sup _{\omega \in \Omega}\left|\varphi_{n}(\omega)-f(\omega)\right| \leq \frac{2 M}{n} .
$$

As $n \rightarrow+\infty$ we obtain $\varphi_{n} \xrightarrow{u} f$.

Exercise 3.22. Show that if the limit of a sequence of measurable functions exists, it is also measurable.

5. Induced measure

Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ be a measure space, $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ a measurable space and $f: \Omega_{1} \rightarrow \Omega_{2}$ a measurable function. Notice that $\mu_{1} \circ f^{-1}$ defines a function $\mathcal{F}_{2} \rightarrow \mathbb{R}$ since $f^{-1}: \mathcal{F}_{2} \rightarrow \mathcal{F}_{1}$ and $\mu_{1}: \mathcal{F}_{1} \rightarrow \mathbb{R}$.

Proposition 3.23. The function

$$
\mu_{2}=\mu_{1} \circ f^{-1}
$$

is a measure on \mathcal{F}_{2} called the induced measure. Moreover, if μ_{1} is a probability measure, then μ_{2} is also a probability measure.

Exercise 3.24. Prove it.
Remark 3.25.
(1) The induced measure $\mu_{1} \circ f^{-1}$ is sometimes called push-forward measure and denoted by $f_{*} \mu_{1}$.
(2) In probability theory the induced probability measure is also known as distribution of f. If $\Omega_{2}=\mathbb{R}$ and $\mathcal{F}_{2}=\mathcal{B}(\mathbb{R})$ it is known as well as probability distribution. We will always refer to it as distribution.

Exercise 3.26. Consider the measure space $\left(\Omega, \mathcal{P}, \delta_{a}\right)$ where δ_{a} is the Dirac measure at $a \in \Omega$. If $f: \Omega \rightarrow \mathbb{R}$ is measurable, what is its induced measure (distribution)?

Exercise 3.27. Compute $m \circ f^{-1}$ where $f(x)=2 x, x \in \mathbb{R}$, and m is the Lebesgue measure on \mathbb{R}.

6. Generation of σ-algebras by functions

Consider a function $f: \Omega \rightarrow \mathbb{R}$. The smallest σ-algebra of Ω for which f is measurable is

$$
\sigma(f)=\sigma\left(\left\{f^{-1}(B) \in \mathcal{F}: B \in \mathcal{B}\right\}\right)
$$

It is called the σ-algebra generated by f. Notice that f will be also measurable for any other σ-algebra containing $\sigma(f)$.

When we have a finite set of functions f_{1}, \ldots, f_{n}, the smallest σ algebra for which all these functions are measurable is

$$
\sigma\left(f_{1}, \ldots, f_{n}\right)=\sigma\left(\left\{f_{i}^{-1}(B) \in \mathcal{F}: B \in \mathcal{B}, i=1, \ldots, n\right\}\right)
$$

We also refer to it as the σ-algebra generated by f_{1}, \ldots, f_{n}.
Example 3.28. Let $A \subset \Omega$ and take the indicator function \mathcal{X}_{A}. Then,

$$
\sigma\left(\mathcal{X}_{A}\right)=\sigma\left(\left\{\emptyset, \Omega, A^{c}\right\}\right)=\left\{\emptyset, \Omega, A, A^{c}\right\}=\sigma(\{A\}) .
$$

Similarly, for $A_{1}, \ldots, A_{n} \subset \Omega$,

$$
\sigma\left(\mathcal{X}_{A_{1}}, \ldots, \mathcal{X}_{A_{n}}\right)=\sigma\left(\left\{A_{1}, \ldots, A_{n}\right\}\right)
$$

What can be said about simple functions?
Exercise 3.29. Decide if the following propositions are true:
(1) $\left.\sigma(f)=\sigma\left(\left\{f^{-1}(]-\infty, x\right]: x \in \mathbb{R}\right\}\right)$.
(2) $\sigma(f+g)=\sigma(f, g)$.

Exercise 3.30. Show that:
(1) For every $1 \leq i \leq n$ we have $\sigma\left(f_{i}\right) \subset \sigma\left(f_{1}, \ldots, f_{n}\right)$.
(2) For every $1 \leq i_{1}, \ldots, i_{k} \leq n$ we have $\sigma\left(f_{i_{1}}, \ldots, f_{i_{k}}\right) \subset \sigma\left(f_{1}, \ldots, f_{n}\right)$.

CHAPTER 4

Lebesgue integral

In this chapter we define the Lebesgue integral of a measurable function f on a measurable set A with respect to a measure μ. This is a huge generalization of the Riemann integral in \mathbb{R} introduced in first year undergraduate calculus courses. There, the functions have antiderivatives, sets are intervals and there is no mention of the measure, although it is the Lebesgue measure that is being used (the length of the intervals).

Roughly speaking, the Lebesgue integral is a "sum" of the values of f at all points in A times a weight given by the measure μ. For probability measures it can be thought as the weighted average of f on A.

In the following, in order to simplify the language, we will drop the name Lebesgue when referring to the integral. Moreover, given functions $f: \Omega \rightarrow \mathbb{R}$ and $g: \Omega \rightarrow \mathbb{R}$ we write $f \leq g$ to mean that $f(\omega) \leq g(\omega)$ for every $\omega \in \Omega$. Similarly for $f \geq g, f<g$ and $f>g$.

1. Definition

We will define the integral first for non-negative simple functions, then for non-negative measurable functions, making use of the fact that measurable functions are limits of simple functions (Proposition 3.21). Finally, we construct it for a subset of measurable functions called integrable functions.
1.1. Integral of non-negative simple functions. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\varphi: \Omega \rightarrow \mathbb{R}$ a non-negative simple function ($\varphi \geq 0$) of the form

$$
\varphi=\sum_{j=1}^{N} c_{j} \mathcal{X}_{A_{j}},
$$

where $c_{j} \geq 0, A_{j} \in \mathcal{F}$ and $N \in \mathbb{N}$. The integral of a simple function φ with respect to the measure μ is

$$
\int \varphi d \mu=\sum_{j=1}^{N} c_{j} \mu\left(A_{j}\right) .
$$

It is a number in $[0,+\infty]$.
Remark 4.1.
(1) If $c_{j}=0$ and $\mu\left(A_{j}\right)=+\infty$ we set $c_{j} \mu\left(A_{j}\right)=0$. So, $\int 0 d \mu=0$ for any measure μ.
(2) Consider the simple function $\varphi(x)=c_{1} \mathcal{X}_{A}+c_{2} \mathcal{X}_{A^{c}}$ where $\mu(A)=\mu\left(A^{c}\right)=+\infty$. If we had allowed $c_{1}>0$ and $c_{2}<0$, then there would be an indetermination $c_{1} \mu(A)+c_{2} \mu\left(A^{c}\right)=$ $+\infty-\infty$. This is why in the definition of the above integral we restrict to non-negative simple functions.
(3) We frequently use the following notation so that the variable of integration is explicitly written:

$$
\int \varphi d \mu=\int \varphi(x) d \mu(x)
$$

Exercise 4.2. Show that the definition of the integral does not depend on the representation of the simple function. In other words, even if there is no requirement that the numbers c_{j} are different, the integral is always the same.

Proposition 4.3. Let $\varphi, \varphi^{\prime} \geq 0$ be simple functions and $a, a^{\prime} \geq 0$. Then,

$$
\begin{equation*}
\int\left(a \varphi+a^{\prime} \varphi^{\prime}\right) d \mu=a \int \varphi d \mu+a^{\prime} \int \varphi^{\prime} d \mu \tag{1}
\end{equation*}
$$

(2) If $\varphi \leq \varphi^{\prime}$, then

$$
\int \varphi d \mu \leq \int \varphi^{\prime} d \mu
$$

Proof.
(1) Write $\varphi, \varphi^{\prime}$ in the form

$$
\varphi=\sum_{j=1}^{N} c_{j} \mathcal{X}_{A_{j}}, \quad \varphi^{\prime}=\sum_{j=1}^{N^{\prime}} c_{j}^{\prime} \mathcal{X}_{A_{j}^{\prime}}
$$

Then,

$$
\begin{aligned}
\int\left(a \varphi+a^{\prime} \varphi^{\prime}\right) d \mu & =\sum_{i, j}\left(a c_{i}+a^{\prime} c_{j}^{\prime}\right) \mu\left(A_{i} \cap A_{j}^{\prime}\right) \\
& =a \sum_{i} c_{i} \sum_{j} \mu\left(A_{i} \cap A_{j}^{\prime}\right)+a^{\prime} \sum_{j} c_{j}^{\prime} \sum_{i} \mu\left(A_{i} \cap A_{j}^{\prime}\right) .
\end{aligned}
$$

Notice that $\sum_{j} \mu\left(A_{i} \cap A_{j}^{\prime}\right)=\mu\left(A_{i}\right)$ because the sets A_{j}^{\prime} are pairwise disjoint and their union is Ω. The same applies to

$$
\begin{aligned}
& \sum_{i} \mu\left(A_{i} \cap A_{j}^{\prime}\right)=\mu\left(A_{j}^{\prime}\right) \text {. Hence, } \\
& \qquad \int\left(a \varphi+a^{\prime} \varphi^{\prime}\right) d \mu=a \int \varphi d \mu+a^{\prime} \int \varphi^{\prime} d \mu
\end{aligned}
$$

(2) Prove it.
1.2. Integral of non-negative measurable functions. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f: \Omega \rightarrow \mathbb{R}$ a non-negative measurable function $(f \geq 0)$. Consider the set of all possible values of the integral of nonnegative simple functions that are not above f, i.e.

$$
I(f)=\left\{\int \varphi d \mu: 0 \leq \varphi \leq f, \varphi \text { is simple }\right\} .
$$

Proposition 4.4. There is $a \in[0,+\infty]$ such that $I(f)=[0, a[$ or $I(f)=[0, a]$.

Proof. Since $\int \varphi d \mu \geq 0$, then $I(f) \subset[0,+\infty]$. Moreover, $0 \in$ $I(f)$ because $\int 0 d \mu=0$ for the simple function $\varphi=0$ and $0 \leq f$.

Suppose now that $x \in I(f)$ with $x>0$. This means that there is a simple function $0 \leq \varphi \leq f$ such that $\int \varphi d \mu=x$. Considering $y \in[0, x]$, let $\tilde{\varphi}=\frac{y}{x} \varphi$. This is also a simple function satisfying $0 \leq \tilde{\varphi} \leq \varphi \leq f$. Furthermore,

$$
\int \tilde{\varphi} d \mu=\frac{y}{x} \int \varphi d \mu=y \in I(f)
$$

Therefore, $[0, x] \subset I(f)$.
The only sets which have the property $[0, x] \subset I(f)$ for every $x \in$ $I(f)$ are the intervals $[0, a[$ and $[0, a]$ for some $a \geq 0$ or $a=+\infty$.

The integral of $f \geq 0$ with respect to the measure μ is defined to be

$$
\int f d \mu=\sup I(f)
$$

So, the integral always exists and it is either a finite number in $[0,+\infty[$ or $+\infty$.

Remark 4.5. This definition of integral for non-negative measurable functions makes sense by Proposition 3.21. Indeed, as a measurable function is approximable from below by simple funtions, it is natural to consider the integral as being approximated from below by integrals of simple functions. One would expect then to have $\int \lim \varphi_{n} d \mu=\lim \int \varphi_{n} d \mu$, as discussed in more general terms in section 4.
1.3. Integral of measurable functions. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f: \Omega \rightarrow \mathbb{R}$ a measurable function. There is a simple decomposition of f into its positive and negative parts:

$$
\begin{aligned}
& f^{+}(x)=\max \{f(x), 0\} \geq 0 \\
& f^{-}(x)=\max \{-f(x), 0\} \geq 0
\end{aligned}
$$

Hence,

$$
f(x)=f^{+}(x)-f^{-}(x)
$$

and also

$$
|f(x)|=\max \left\{f^{+}(x), f^{-}(x)\right\}=f^{+}(x)+f^{-}(x)
$$

A measurable function f is integrable with respect to μ iff $\int|f| d \mu<$ $+\infty$. Its integral is defined as

$$
\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu
$$

Given $A \in \mathcal{F}$ we say that f is integrable on A with respect to μ if $f \mathcal{X}_{A}$ is integrable. In such case, the integral of f on A with respect to μ is

$$
\int_{A} f d \mu=\int f \mathcal{X}_{A} d \mu
$$

Exercise 4.6. Consider a simple function $\varphi=\sum_{j=1}^{N} c_{j} \mathcal{X}_{A_{j}}$ (not necessarily non-negative). Show that:
(1) $\varphi \cdot \mathcal{X}_{A}=\sum_{j} c_{j} \mathcal{X}_{A_{j} \cap A}$.

$$
\begin{equation*}
\int_{A} \varphi d \mu=\sum_{j=1}^{N} c_{j} \mu\left(A_{j} \cap A\right) . \tag{2}
\end{equation*}
$$

In probability theory the integral of an integrable random variable X on a probability space (Ω, \mathcal{F}, P), is denoted by

$$
E(X)=\int X d P
$$

and called the expected value ${ }^{1}$ of X.
Remark 4.7. As for simple functions we will also be using the notation:

$$
\int_{A} f d \mu=\int_{A} f(x) d \mu(x) .
$$

[^6]
2. Properties

Proposition 4.8. Let f and g be integrable functions and $A, B \in$ \mathcal{F}.
(1) If $f \leq g \mu$-a.e. then $\int f d \mu \leq \int g d \mu$.
(2) If $A \subset B$, then $\int_{A}|f| d \mu \leq \int_{B}|f| d \mu$.
(3) If $\mu(A)=0$ then $\int_{A} f d \mu=0$.
(4) If $\mu(A \cap B)=0$ then $\int_{A \cup B} f d \mu=\int_{A} f d \mu+\int_{B} f d \mu$.
(5) If $f=0 \mu$-a.e. then $\int f d \mu=0$.
(6) If $f \geq 0$ and $\lambda>0$ then
$\mu(\{x \in \Omega: f(x) \geq \lambda\}) \leq \frac{1}{\lambda} \int f d \mu \quad$ (Markov inequality).
(7) If $f \geq 0$ and $\int f d \mu=0$, then $f=0 \mu$-a.e.
(8) $(\inf f) \mu(\Omega) \leq \int f d \mu \leq(\sup f) \mu(\Omega)$.

Proof.

(1) Any simple function satisfying $\varphi \leq f^{+}$a.e. also satisfies $\varphi \leq$ g^{+}a.e. since $f^{+} \leq g^{+}$a.e. So, $I\left(f^{+}\right) \subset I\left(g^{+}\right)$and $\int f^{+} d \mu \leq$ $\int g^{+} d \mu$. Similarly, $g^{-} \leq f^{-}$a.e. and $\int g^{-} d \mu \leq \int f^{-} d \mu$. Finally, $\int f^{+} d \mu-\int f^{-} d \mu \leq \int g^{+} d \mu-\int g^{-} d \mu$.
(2) Notice that $\int_{A}|f| d \mu=\int|f| \mathcal{X}_{A} d \mu$ and similarly for the integral in B. Since $|f| \mathcal{X}_{A} \leq|f| \mathcal{X}_{B}$, by the previous property, $\int|f| \mathcal{X}_{A} d \mu \leq \int|f| \mathcal{X}_{B} d \mu$.
(3) For any simple function φ, we have $\int \varphi d \mu=\sum_{j} c_{j} \mu\left(A_{j} \cap A\right)=$ 0 . By the definition of the integral for non-negative functions one gets easily that $\int_{A} f^{ \pm} d \mu=0$.
(4) Suppose that $f \geq 0$ and $m(A \cap B)=0$. For any $C \in \mathcal{F}$ we have

$$
\begin{aligned}
\mu((A \cup B) \cap C) & =\mu((A \cap C) \cup(B \cap C)) \\
& =\mu(A \cap C)+\mu(B \cap C)
\end{aligned}
$$

as $A \cap B \cap C \subset A \cap B$ has zero measure. Given a simple function $0 \leq \varphi \leq f$ we have

$$
\begin{aligned}
\int_{A \cup B} \varphi d \mu & =\sum_{j=1}^{N} c_{j} \mu\left(A_{j} \cap(A \cup B)\right) \\
& =\sum_{j=1}^{N} c_{j}\left(\mu\left(A_{j} \cap A\right)+\mu\left(A_{j} \cap B\right)\right) \\
& =\int_{A} \varphi d \mu+\int_{B} \varphi d \mu .
\end{aligned}
$$

Using the relation $\sup \left(g_{1}+g_{2}\right) \leq \sup g_{1}+\sup g_{2}$ for any functions g_{1}, g_{1}, we obtain

$$
\int_{A \cup B} f d \mu \leq \int_{A} f d \mu+\int_{B} f d \mu
$$

Now, consider simple functions $0 \leq \varphi_{1}, \varphi_{2} \leq f$. We have

$$
\int_{A} \varphi_{1} d \mu+\int_{B} \varphi_{2} d \mu=\int_{A \cup B}\left(\varphi_{1} \mathcal{X}_{A}+\varphi_{2} \mathcal{X}_{B}\right) d \mu
$$

Since

$$
\varphi_{1} \mathcal{X}_{A}+\varphi_{2} \mathcal{X}_{B}=\varphi_{1} \mathcal{X}_{A \backslash B}+\varphi_{2} \mathcal{X}_{B \backslash A}+\left(\varphi_{1}+\varphi_{2}\right) \mathcal{X}_{A \cap B}
$$

and

$$
\int_{A \cup B}\left(\varphi_{1}+\varphi_{2}\right) \mathcal{X}_{A \cap B} d \mu=\int_{A \cap B}\left(\varphi_{1}+\varphi_{2}\right) d \mu=0
$$

we obtain
$\int_{A} \varphi_{1} d \mu+\int_{B} \varphi_{2} d \mu=\int_{A \cup B}\left(\varphi_{1} \mathcal{X}_{A \backslash B}+\varphi_{2} \mathcal{X}_{B \backslash A}\right) d \mu \leq \int_{A \cup B} f d \mu$.
Considering the supremum over the simple functions separately, we get

$$
\int_{A} f d \mu+\int_{B} f d \mu \leq \int_{A \cup B} f d \mu
$$

We have thus proved that $\int_{A \cup B} f^{ \pm} d \mu=\int_{A} f^{ \pm} d \mu+\int_{B} f^{ \pm} d \mu$. This implies that

$$
\begin{aligned}
\int_{A \cup B} f d \mu & =\int_{A \cup B} f^{+} d \mu-\int_{A \cup B} f^{-} d \mu \\
& =\int_{A} f^{+} d \mu+\int_{B} f^{+} d \mu-\int_{A} f^{-} d \mu-\int_{B} f^{-} d \mu \\
& =\int_{A} f d \mu+\int_{B} f d \mu
\end{aligned}
$$

(5) We have $0 \leq f \leq 0$ a.e. Then, by property (1), $\int 0 d \mu \leq$ $\int f d \mu \leq \int 0 d \mu$.
(6) Let $A=\{x \in \Omega: f(x) \geq \lambda\}$. Then,

$$
\int f d \mu \geq \int_{A} f d \mu \geq \int_{A} \lambda d \mu=\lambda \mu(A)
$$

(7) We want to show that $\mu(\{x \in \Omega: f(x)>0\})=\mu \circ f^{-1}(] 0,+\infty[)=$ 0 . The Markov inequality implies that for any $n \in \mathbb{N}$,

$$
\mu \circ f^{-1}\left(\left[\frac{1}{n},+\infty[) \leq n \int f d \mu=0 .\right.\right.
$$

Since

$$
f^{-1}(] 0,+\infty[)=\bigcup_{n=1}^{+\infty} f^{-1}\left(\left[\frac{1}{n},+\infty[)\right.\right.
$$

we have

$$
\mu \circ f^{-1}(] 0,+\infty[) \leq \sum_{n=1}^{+\infty} \mu \circ f^{-1}\left(\left[\frac{1}{n},+\infty[)=0 .\right.\right.
$$

(8) It is enough to notice that $\inf f \leq f \leq \sup f$.

3. Examples

We present now two fundamental examples of integrals, constructed with the Dirac and the Lebesgue measures.
3.1. Integral for the Dirac measure. Consider the measure space $\left(\Omega, \mathcal{P}, \delta_{a}\right)$ where δ_{a} is the Dirac measure at $a \in \Omega$. We start by determining the integral of a simple function $\varphi \geq 0$ written in the usual form $\varphi=\sum_{j=1}^{N} c_{j} \mathcal{X}_{A_{j}}$. So, there is a unique $1 \leq k \leq N$ such that $a \in A_{k}$ (since the sets A_{j} are pairwise disjoint and their union is Ω) and c_{k} is the value in A_{k}. In particular, $\varphi(a)=c_{k}$. This implies that

$$
\int \varphi d \delta_{a}=\sum_{j} c_{j} \delta_{a}\left(A_{j}\right)=c_{k}=\varphi(a)
$$

Any function $f: \Omega \rightarrow \mathbb{R}$ is measurable for the σ-algebra considered. Take any $f^{+} \geq 0$. Its integral is computed from the fact that

$$
I\left(f^{+}\right)=\left\{\varphi(a): 0 \leq \varphi \leq f^{+}, \varphi \text { simple }\right\}=\left[0, f^{+}(a)\right] .
$$

Therefore, for any function $f=f^{+}-f^{-}$we have

$$
\int f d \delta_{a}=\int f^{+} d \delta_{a}-\int f^{-} d \delta_{a}=f^{+}(a)-f^{-}(a)=f(a)
$$

3.2. Integral for the Lebesgue measure. Let $(\mathbb{R}, \mathcal{B}, m)$ be the measure space associated to the Lebesgue measure m and a measurable function $f: I \rightarrow \mathbb{R}$ where $I \subset \mathbb{R}$ is an interval. We use the notation

$$
\int_{a}^{b} f(t) d t= \begin{cases}\int_{[a, b]} f d m, & a \leq b \\ -\int_{[b, a]} f d m, & b<a\end{cases}
$$

where $a, b \in I$. Notice that we write $d m(t)=d t$ when the measure is the Lebesgue one.

Consider some $a \in I$ and the function $F: I \rightarrow \mathbb{R}$ given by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Theorem 4.9. If f is continuous at $x \in I$, then
(1) F is continuous at x.
(2) F is differentiable at x and

$$
F^{\prime}(x)=f(x)
$$

whenever x is in the interior of I.
Proof. Let $y \in I$. Proposition 4.8 (8) yields

$$
|y-x| \inf _{A_{x, y}} f \leq F(y)-F(x)=\int_{x}^{y} f(t) d t \leq|y-x| \sup _{A_{x, y}} f
$$

where $A_{x, y}$ is the closed interval between x and y, i.e.

$$
A_{x, y}=\left[\frac{y+x}{2}-\frac{|y-x|}{2}, \frac{y+x}{2}+\frac{|y-x|}{2}\right] .
$$

Taking $y \rightarrow x$ we get $\inf _{A_{x, y}} f \rightarrow f(x)$ and $\sup _{A_{x, y}} f \rightarrow f(x)$ because f is continuous at x. Thus, $F(y) \rightarrow F(x)$ and F is continuous at x.

By the definition, the derivative of F at x is, if it exists, given by

$$
F^{\prime}(x)=\lim _{y \rightarrow x} \frac{F(y)-F(x)}{y-x}=\lim _{y \rightarrow x} \frac{\int_{x}^{y} f(t) d t}{y-x}
$$

Now, if $x<y$,

$$
\inf _{[x, y]} f \leq \frac{\int_{x}^{y} f(t) d t}{y-x} \leq \sup _{[x, y]} f
$$

As before, if $y \rightarrow x^{+}$we get $\inf _{[x, y]} f \rightarrow f(x)$ and $\sup _{[x, y]} f \rightarrow f(x)$. Similarly for the case $y<x$. So, $F^{\prime}(x)=f(x)$.

Remark 4.10. We call F an anti-derivative of f. It is not unique, there are other functions whose derivative is equal to f.

Exercise 4.11. Show that if F_{1} and F_{2} are anti-derivatives of f, then $F_{1}-F_{2}$ is a constant function.

Theorem 4.12. If f is continuous in I and has an anti-derivative F, then for any $a, b \in I$ we have

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

Proof. Theorem 4.9 and the fact that the anti-derivative is determined up to a constant, imply that $\int_{a}^{b} f(t) d t=F(b)+c$ where c is a constant. To determine c it is enough to compute $0=\int_{a}^{a} f(t) d t=$ $F(a)+c$, thus $c=-F(a)$.

Example 4.13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=e^{-|x|}$. It is a continuous function on \mathbb{R} and

$$
\int_{0}^{x} e^{-|t|} d t= \begin{cases}1-e^{-x}, & x \geq 0 \\ -\left(1-e^{x}\right), & x<0\end{cases}
$$

4. Convergence theorems

The computation of the integral of a function $f \geq 0$ is not direct for most choices of measures. It requires considering all simple functions below f and determine the supremum of the set of all their integrals. As a measurable function is the limit of a sequence of simple functions φ_{n}, it would be very convenient to have the integral of f as just the limit of the integrals of φ_{n}.

More generally, we would like to see if $\lim \int f_{n} d \mu$ equals $\int \lim f_{n} d \mu$ for sequences of measurable functions f_{n}. This indeed is given by the convergence theorems (monotone and dominated). There are however conditions that have to be imposed as the following example shows.

Example 4.14. Consider $\varphi_{n}=\mathcal{X}_{[n, n+1]}$ a sequence of functions that converge to the zero function. So, $\int \varphi_{n} d m=1$ for any $n \in \mathbb{N}$, and $\int \lim \varphi_{n} d m=0<1=\lim \int \varphi_{n} d m$.
4.1. Monotone convergence. We start by a preliminary result that will be used later. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space.

Lemma 4.15 (Fatou). Consider f_{n} to be a sequence of measurable functions such that $f_{n} \geq 0$. Then,

$$
\int \liminf _{n \rightarrow+\infty} f_{n} d \mu \leq \liminf _{n \rightarrow+\infty} \int f_{n} d \mu
$$

Proof. Consider any simple function $0 \leq \varphi \leq \liminf f_{n}, 0<c<1$ and the increasing sequence of measurable functions

$$
g_{n}=\inf _{k \geq n} f_{k} .
$$

Thus, for a sufficiently large n we have

$$
c \varphi<g_{n} \leq \sup g_{n}=\liminf f_{n}
$$

Let

$$
A_{n}=\left\{x \in \Omega: g_{n}(x) \geq c \varphi(x)\right\}
$$

So, $A_{n} \uparrow \Omega$. In addition,

$$
\int_{A_{n}} c \varphi d \mu \leq \int_{A_{n}} g_{n} d \mu \leq \int_{A_{n}} f_{k} d \mu \leq \int f_{k} d \mu
$$

for any $k \geq n$. Finally,

$$
\int_{A_{n}} c \varphi d \mu \leq \inf _{k \geq n} \int f_{k} d \mu \leq \liminf \int f_{n} d \mu .
$$

Therefore, since the previous inequality is valid for any $0<c<1$ and any n large,

$$
\int \varphi d \mu \leq \liminf \int f_{n} d \mu
$$

It remains to observe that the definition of the integral requires that

$$
\int \liminf f_{n} d \mu=\sup \left\{\int \varphi d \mu: 0 \leq \varphi \leq \liminf f_{n}\right\} .
$$

The claim follows immediately.

The next result is the first one for limits and not just lim inf.
THEOREM 4.16 (Monotone convergence). Let $f_{n} \geq 0$ be a sequence of measurable functions. If $f_{n} \nearrow f$ a.e., then

$$
\int \lim _{n \rightarrow+\infty} f_{n} d \mu=\lim _{n \rightarrow+\infty} \int f_{n} d \mu
$$

Proof. Notice that $\int f_{n} \leq \int \lim _{n \rightarrow+\infty} f_{n}$. Hence,

$$
\limsup _{n \rightarrow+\infty} \int f_{n} \leq \int \lim _{n \rightarrow+\infty} f_{n}=\int \liminf _{n \rightarrow+\infty} f_{n} \leq \liminf _{n \rightarrow+\infty} \int f_{n}
$$

where we have used Fatou's lemma. Since liminf is always less or equal to lim sup, the above inequality implies that they have to be the same and equal than lim.

Remark 4.17. This result applied to a sequence of random variables $X_{n} \geq 0$ on a probability space is the following: if $X_{n} \nearrow X$ a.s., then $E\left(\lim X_{n}\right)=\lim E\left(X_{n}\right)$.

4.2. More properties.

Proposition 4.18. Let f, g integrable functions on $(\Omega, \mathcal{F}, \mu)$ and $a, a^{\prime} \in \mathbb{R}$.
(1) $\int\left(a f+a^{\prime} g\right) d \mu=a \int f d \mu+a^{\prime} \int g d \mu$. (linearity)
(2) If $\int_{A} f d \mu \leq \int_{A} g d \mu$ for all $A \in \mathcal{F}$, then $f \leq g \mu$-a.e.
(3) If $\int_{A} f d \mu=\int_{A} g d \mu$ for all $A \in \mathcal{F}$, then $f=g \mu$-a.e.
(4) $\left|\int f d \mu\right| \leq \int|f| d \mu$.

Proof.
(1) Consider sequences of non-negative simple functions $\varphi_{n} \nearrow f^{+}$ and $\varphi_{n}^{\prime} \nearrow g^{+}$. Assuming first that $a \geq 0$, by Proposition 4.3
and the monotone convergence theorem applied twice,

$$
\begin{aligned}
\int a f^{+} d \mu & =\int \lim \left(a \varphi_{n}\right) d \mu \\
& =\lim \int\left(a \varphi_{n}\right) d \mu \\
& =\lim a \int \varphi_{n} d \mu \\
& =a \int \lim \varphi_{n} d \mu \\
& =a \int f^{+} d \mu .
\end{aligned}
$$

The same holds for $a f^{-}$. So, $\int a f d \mu=a \int f d \mu$. Now, for $a<0$, we have $(a f)^{ \pm}=-a f^{\mp}$ and

$$
\begin{aligned}
\int a f d \mu & =\int(-a) f^{-} d \mu-\int(-a) f^{+} d \mu \\
& =(-a)\left(\int f^{-} d \mu-\int f^{+} d \mu\right)=a \int f d \mu
\end{aligned}
$$

Using again Proposition 4.3 and the monotone convergence theorem,

$$
\begin{aligned}
\int\left(f^{+}+g^{+}\right) d \mu & =\int \lim \left(\varphi_{n}+\varphi_{n}^{\prime}\right) d \mu \\
& =\lim \int\left(\varphi_{n}+\varphi_{n}^{\prime}\right) d \mu \\
& =\lim \int \varphi_{n} d \mu+\lim \int \varphi_{n}^{\prime} d \mu \\
& =\int \lim \varphi_{n} d \mu+\int \lim \varphi_{n}^{\prime} d \mu \\
& =\int f^{+} d \mu+\int g^{+} d \mu .
\end{aligned}
$$

Notice that
$(f+g)^{+}-(f+g)^{-}=f+g=\left(f^{+}+g^{+}\right)-\left(f^{-}+g^{-}\right)$
implies that

$$
(f+g)^{+}+\left(f^{-}+g^{-}\right)=(f+g)^{-}+\left(f^{+}+g^{+}\right)
$$

Observe that these are all non-negative functions. So, by the above result,

$$
\int(f+g)^{+} d \mu+\int f^{-} d \mu+\int g^{-} d \mu=\int(f+g)^{-} d \mu+\int f^{+} d \mu+\int g^{+} d \mu .
$$

Since all functions are integrable,

$$
\int(f+g) d \mu=\int f^{+} d \mu+\int g^{+} d \mu-\int f^{-} d \mu-\int g^{-} d \mu .
$$

The claim follows immediately.
(2) By writing $\int_{A}(g-f) d \mu \geq 0$ for all $A \in \mathcal{F}$, we want to show that $h=g-f \geq 0$ a.e. or equivalently that $h^{-}=0$ a.e. Let

$$
A=\{x \in \Omega: h(x)<0\}=\left\{x \in \Omega: h^{-}(x)>0\right\}
$$

Then, on A we have $h=-h^{-}$and

$$
0 \leq \int_{A} h d \mu=\int_{A}-h^{-} d \mu \leq 0
$$

That is, $\int_{A} h^{-} d \mu=0$ and $h^{-} \geq 0$. So, by (7) of Proposition 4.8 we obtain that $h^{-}=0$ a.e.
(3) Notice that $\int_{A} f d \mu=\int_{A} g d \mu$ implies that

$$
\int_{A} f d \mu \leq \int_{A} g d \mu \leq \int_{A} f d \mu
$$

By (2) we get $f \leq g$ on a set of full measure and $g \leq f$ on another set of full measure. Since the intersection of both sets has still full measure, we have $f=g$ a.e.
(4) From the definition of the integral

$$
\begin{aligned}
\left|\int f d \mu\right| & =\left|\int f^{+} d \mu-\int f^{-} d \mu\right| \\
& \leq\left|\int f^{+} d \mu\right|+\left|\int f^{-} d \mu\right| \\
& =\int f^{+} d \mu+\int f^{-} d \mu \\
& =\int|f| d \mu
\end{aligned}
$$

Proposition 4.19. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ be a measure space, $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ a measurable space and $f: \Omega_{1} \rightarrow \Omega_{2}$ measurable. If $\mu_{2}=\mu_{1} \circ f^{-1}$ is the induced measure, then

$$
\int_{\Omega_{2}} g d \mu_{2}=\int_{\Omega_{1}} g \circ f d \mu_{1}
$$

for any $g: \Omega_{2} \rightarrow \mathbb{R}$ measurable.
Proof. Consider a simple function φ in the form

$$
\varphi=\sum_{j=1}^{N} c_{j} \mathcal{X}_{A_{j}}
$$

Then,

$$
\begin{aligned}
\int_{\Omega_{2}} \varphi d \mu_{2} & =\sum_{j=1}^{N} c_{j} \int_{\Omega_{2}} \mathcal{X}_{A_{j}} d \mu_{2} \\
& =\sum_{j=1}^{N} c_{j} \mu_{1} \circ f^{-1}\left(A_{j}\right) \\
& =\sum_{j=1}^{N} c_{j} \int_{f^{-1}\left(A_{j}\right)} d \mu_{1} \\
& =\sum_{j=1}^{N} c_{j} \int_{\Omega_{1}} \mathcal{X}_{f^{-1}\left(A_{j}\right)} d \mu_{1} \\
& =\int_{\Omega_{1}} \varphi \circ f d \mu_{1} .
\end{aligned}
$$

So, the result is proved for simple functions.
Take a sequence of non-negative simple functions $\varphi_{n} \nearrow g^{+}$(we can use a similar approach for g^{-}) noting that $\varphi_{n} \circ f \nearrow g^{+} \circ f$. We can therefore use the monotone convergence theorem for the sequences of simple functions φ_{n} and $\varphi_{n} \circ f$. Thus,

$$
\begin{aligned}
\int_{\Omega_{2}} g^{+} d \mu_{2} & =\int_{\Omega_{2}} \lim \varphi_{n} d \mu_{2} \\
& =\lim \int_{\Omega_{2}} \varphi_{n} d \mu_{2} \\
& =\lim \int_{\Omega_{1}} \varphi_{n} \circ f d \mu_{1} \\
& =\int_{\Omega_{1}} \lim \varphi_{n} \circ f d \mu_{1} \\
& =\int_{\Omega_{1}} g^{+} \circ f d \mu_{1} .
\end{aligned}
$$

Example 4.20. Consider a probability space (Ω, \mathcal{F}, P) and $X: \Omega \rightarrow$ \mathbb{R} a random variable. By setting the induced measure $\alpha=P \circ X^{-1}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ measurable we have

$$
E(g(X))=\int g \circ X d P=\int g(x) d \alpha(x)
$$

In particular, $E(X)=\int x d \alpha(x)$.
Proposition 4.21. Consider the measure

$$
\mu=\sum_{n=1}^{+\infty} a_{n} \mu_{n}
$$

where μ_{n} is a measure and $a_{n} \geq 0, n \in \mathbb{N}$. If $f: \Omega \rightarrow \mathbb{R}$ satisfies

$$
\sum_{n=1}^{+\infty} a_{n} \int|f| d \mu_{n}<+\infty
$$

then f is also μ-integrable and

$$
\int f d \mu=\sum_{n=1}^{+\infty} a_{n} \int f d \mu_{n}
$$

Proof. Recall Exercise 2.30 showing that μ is a measure. Suppose that $f \geq 0$. Take a sequence of simple functions

$$
\varphi_{k}=\sum_{j} c_{j} \mathcal{X}_{A_{j}}
$$

such that $\varphi_{k} \nearrow f$ as $k \rightarrow+\infty$. Then,

$$
\int \varphi_{k} d \mu=\sum_{j} c_{j} \mu\left(A_{j}\right)=\sum_{n=1}^{+\infty} a_{n} \sum_{j} c_{j} \mu_{n}\left(A_{j}\right)=\sum_{n=1}^{+\infty} a_{n} \int \varphi_{k} d \mu_{n}
$$

which is finite for every k because $\varphi_{k} \leq|f|$. Now, using the monotone convergence theorem, f is μ-integrable and

$$
\int f d \mu=\lim _{k \rightarrow+\infty} \int \varphi_{k} d \mu=\lim _{k \rightarrow+\infty} \lim _{m \rightarrow+\infty} b_{k, m}
$$

where

$$
b_{k, m}=\sum_{n=1}^{m} a_{n} \int \varphi_{k} d \mu_{n} .
$$

Notice that $b_{k, m} \geq 0$, it is increasing both on k and on m and bounded from above. So, $A=\sup _{k} \sup _{m} b_{k, m}=\lim _{k} \lim _{m} b_{k, m}$. Define also $B=\sup _{k, m} b_{k, m}$. We want to show that $A=B$.

For all k and m we have $B \geq b_{k, m}$, so $B \geq A$. Given any $\varepsilon>0$ we can find k_{0} and m_{0} such that $B-\varepsilon \leq b_{k_{0}, m_{0}} \leq B$. This implies that

$$
A=\sup _{k} \sup _{m} b_{k, m} \geq \sup _{k} b_{k, m_{0}} \geq b_{k_{0}, m_{0}} \geq B-\varepsilon
$$

Taking $\varepsilon \rightarrow 0$ we get $A=B$. The same arguments above can be used to show that $A=B=\lim _{m} \lim _{k} b_{k, m}$.

We can thus exchange the limits order and, again by the monotone convergence theorem,

$$
\int f d \mu=\sum_{n=1}^{+\infty} a_{n} \int \lim _{k} \varphi_{k} d \mu_{n}=\sum_{n=1}^{+\infty} a_{n} \int f d \mu_{n}
$$

Consider now f not necessarily ≥ 0. Using the decomposition $f=$ $f^{+}-f^{-}$with $f^{+}, f^{-} \geq 0$, we have $|f|=f^{+}+f^{-}$. Thus, f is μ-integrable
and

$$
\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu=\sum_{n=1}^{+\infty} a_{n} \int\left(f^{+}-f^{-}\right) d \mu_{n} .
$$

4.3. Dominated convergence.

Theorem 4.22 (Dominated convergence). Let f_{n} be a sequence of measurable functions and g an integrable function. If f_{n} converges a.e. and for any $n \in \mathbb{N}$ we have

$$
\left|f_{n}\right| \leq g \quad \text { a.e. },
$$

then,

$$
\int \lim _{n \rightarrow+\infty} f_{n} d \mu=\lim _{n \rightarrow+\infty} \int f_{n} d \mu
$$

Proof. Suppose that $0 \leq f_{n} \leq g$. By Fatou's lemma,

$$
\int \lim _{n \rightarrow+\infty} f_{n} d \mu \leq \liminf _{n \rightarrow+\infty} \int f_{n} d \mu
$$

It remains to show that $\lim \sup _{n \rightarrow+\infty} \int f_{n} d \mu \leq \int \lim _{n \rightarrow+\infty} f_{n} d \mu$.
Again using Fatou's lemma,

$$
\begin{aligned}
\int g d \mu-\int \lim _{n \rightarrow+\infty} f_{n} d \mu & =\int \lim _{n \rightarrow+\infty}\left(g-f_{n}\right) d \mu \\
& \leq \liminf _{n \rightarrow+\infty} \int\left(g-f_{n}\right) d \mu \\
& =\int g d \mu-\limsup _{n \rightarrow+\infty} \int f_{n} d \mu
\end{aligned}
$$

This implies that

$$
\limsup _{n \rightarrow+\infty} \int f_{n} d \mu \leq \int \lim _{n \rightarrow+\infty} f_{n} d \mu
$$

For $\left|f_{n}\right| \leq g$, we have $\max \left\{f_{n}^{+}, f_{n}^{-}\right\} \leq g$ and $\lim _{n \rightarrow+\infty} \int f_{n}^{ \pm} d \mu=$ $\int \lim _{n \rightarrow+\infty} f_{n}^{ \pm} d \mu$.

Example 4.23.
(1) Consider $\Omega=] 0,1[$ and

$$
f_{n}(x)=\frac{n \sin x}{1+n^{2} \sqrt{x}} .
$$

So,

$$
\left|f_{n}(x)\right| \leq \frac{n}{1+n^{2} \sqrt{x}} \leq \frac{1}{\sqrt{x}}
$$

As $g(x)=1 / \sqrt{x}$ is integrable,

$$
\lim _{n \rightarrow+\infty} \int f_{n} d m=\int \lim _{n \rightarrow+\infty} f_{n} d m=0
$$

(2)
$\lim _{n \rightarrow+\infty} \int_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)^{n}} d x d y=\int_{\mathbb{R}^{2}} \lim _{n \rightarrow+\infty} e^{-\left(x^{2}+y^{2}\right)^{n}} d x d y=\int_{D} d m=\pi$,
where we have used the fact that $\left|e^{-\left(x^{2}+y^{2}\right)^{n}}\right| \leq e^{-\left(x^{2}+y^{2}\right)}$ is integrable and

$$
\lim _{n \rightarrow+\infty} e^{-\left(x^{2}+y^{2}\right)^{n}}= \begin{cases}\frac{1}{e}, & (x, y) \in \partial D \\ 1, & (x, y) \in D \\ 0, & \text { o.c. }\end{cases}
$$

with $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$.
Exercise 4.24. Determine the following limits:
(1) $\lim _{n \rightarrow+\infty} \int_{0}^{+\infty} \frac{r^{n}}{1+r^{n+2}} d r$
(2) $\lim _{n \rightarrow+\infty} \int_{0}^{\pi} \frac{\sqrt[n]{x}}{1+x^{2}} d x$
(3) $\lim _{n \rightarrow+\infty} \int_{-\infty}^{+\infty} e^{-|x|} \cos ^{n}(x) d x$
(4) $\lim _{n \rightarrow+\infty} \int_{\mathbb{R}^{2}} \frac{1+\cos ^{n}(x-y)}{\left(x^{2}+y^{2}+1\right)^{2}} d x d y$

5. Fubini theorem

Let $\left(\Omega_{1}, \mathcal{F}_{1}, P_{1}\right)$ and ($\left.\Omega_{2}, \mathcal{F}_{2}, P_{2}\right)$ be probability spaces. Consider the product probability space (Ω, \mathcal{F}, P). Given $x_{1} \in \Omega_{1}$ and $x_{2} \in \Omega_{2}$ take $A \in \mathcal{F}$ and its sections

$$
\begin{aligned}
& A_{x_{1}}=\left\{x_{2} \in \Omega_{2}:\left(x_{1}, x_{2}\right) \in A\right\}, \\
& A_{x_{2}}=\left\{x_{1} \in \Omega_{1}:\left(x_{1}, x_{2}\right) \in A\right\} .
\end{aligned}
$$

Exercise 4.25. Show that
(1) for any $A \subset \Omega$,

$$
\begin{equation*}
\left(A^{c}\right)_{x_{1}}=\left(A_{x_{1}}\right)^{c} \quad \text { and } \quad\left(A^{c}\right)_{x_{2}}=\left(A_{x_{2}}\right)^{c} . \tag{4.1}
\end{equation*}
$$

(2) for any $A_{1}, A_{2}, \cdots \subset \Omega$,

$$
\begin{equation*}
\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)_{x_{1}}=\bigcup_{n \in \mathbb{N}}\left(A_{n}\right)_{x_{1}} \quad \text { and } \quad\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)_{x_{2}}=\bigcup_{n \in \mathbb{N}}\left(A_{n}\right)_{x_{2}} . \tag{4.2}
\end{equation*}
$$

Proposition 4.26. For every $x_{1} \in \Omega_{1}$ and $x_{2} \in \Omega_{2}$, we have $A_{x_{2}} \in$ \mathcal{F}_{1} and $A_{x_{1}} \in \mathcal{F}_{2}$.

Proof. Consider the collection

$$
\mathcal{G}=\left\{A \in \mathcal{F}: A_{x_{2}} \in \mathcal{F}_{1}, x_{2} \in \Omega_{2}\right\} .
$$

We want to show that $\mathcal{G}=\mathcal{F}$.
Notice that any measurable rectangle $B=B_{1} \times B_{2}$ with $B_{1} \in \mathcal{F}_{1}$ and $B_{2} \in \mathcal{F}_{2}$ is in \mathcal{G}. In fact, $B_{x_{2}}=B_{1}$ if $x_{2} \in B_{2}$, otherwise it is empty.

If \mathcal{I} is the collection of all measurable rectangles, then $\mathcal{I} \subset \mathcal{G} \subset \mathcal{F}$. This implies that $\mathcal{F}=\sigma(\mathcal{I}) \subset \sigma(\mathcal{G}) \subset \mathcal{F}$ and $\sigma(\mathcal{G})=\mathcal{F}$. It is now enough to show that \mathcal{G} is a σ-algebra. This follows easily by using (4.1) and (4.2).

Proposition 4.27. Let $A \in \mathcal{F}$.
(1) The function $x_{1} \mapsto P_{2}\left(A_{x_{1}}\right)$ on Ω_{1} is measurable.
(2) The function $x_{2} \mapsto P_{1}\left(A_{x_{2}}\right)$ on Ω_{2} is measurable.

$$
\begin{equation*}
P(A)=\int P_{2}\left(A_{x_{1}}\right) d P_{1}\left(x_{1}\right)=\int P_{1}\left(A_{x_{2}}\right) d P_{2}\left(x_{2}\right) . \tag{3}
\end{equation*}
$$

Proof. Given $A \in \mathcal{F}$ write $f_{A}\left(x_{1}\right)=P_{2}\left(A_{x_{1}}\right)$ and $g_{A}\left(x_{2}\right)=$ $P_{1}\left(A_{x_{2}}\right)$. Denote the collection of all measurable rectangles by \mathcal{I} and consider

$$
\mathcal{G}=\left\{A \in \mathcal{F}: f_{A} \text { and } g_{A} \text { are measurable, } \int f_{A} d P_{1}=\int g_{A} d P_{2}\right\} .
$$

We want to show that $\mathcal{G}=\mathcal{F}$.
We start by looking at measurable rectangles whose collection we denote by \mathcal{I}. For each $B=B_{1} \times B_{2} \in \mathcal{I}$ we have that $f_{B}=P_{2}\left(B_{2}\right) \mathcal{X}_{B_{1}}$ and $g_{B}=P_{1}\left(B_{1}\right) \mathcal{X}_{B_{2}}$ are simple functions, thus measurable for \mathcal{F}_{1} and \mathcal{F}_{2}, respectively. In addition,

$$
P(B)=\int f_{B} d P_{1}=\int g_{B} d P_{2}=P_{1}\left(B_{1}\right) P_{2}\left(B_{2}\right)
$$

So, $\mathcal{I} \subset \mathcal{G}$. The same can be checked for the finite union of measurable rectangles, corresponding to an algebra \mathcal{A}, so that $\mathcal{A} \subset \mathcal{G}$.

We now show that \mathcal{G} is a monotone class. Take an increasing sequence $A_{n} \uparrow A$ in \mathcal{G}. Hence, their sections are increasing as well as $f_{A_{n}}$ and $g_{A_{n}}$. Moreover, $f_{A}=\lim f_{A_{n}}$ and $g_{A}=\lim g_{A_{n}}$ are measurable. Finally, since $\int f_{A_{n}} d P_{1}=\int g_{A_{n}} d P_{2}$ holds for every n, by the monotone convergence theorem $\int f_{A} d P_{1}=\int g_{A} d P_{2}$. That means that $A \in \mathcal{G}$. The same argument can be carried over to decreasing sequences $A_{n} \downarrow A$. Therefore, \mathcal{G} is a monotone class.

By Theorem 2.20 we know that $\sigma(\mathcal{A}) \subset \mathcal{G}$. Since $\mathcal{F}=\sigma(\mathcal{A})$ and $\mathcal{G} \subset \mathcal{F}$ we obtain that $\mathcal{G}=\mathcal{F}$. Also, $P(A)=\int f_{A} d P_{1}$ for any $A \in \mathcal{F}$ by extending this property for measurable rectangles.

Remark 4.28. There exist examples of non-measurable sets $(A \subset$ Ω but $A \notin \mathcal{F}$) with measurable sections and measurable functions $P_{2}\left(A_{x_{1}}\right)$ and $P_{1}\left(A_{x_{2}}\right)$ whose integrals differ.

Consider now a measurable function $f: \Omega \rightarrow \mathbb{R}$. Given $x_{1} \in \Omega_{1}$ we define

$$
f_{x_{1}}: \Omega_{2} \rightarrow \mathbb{R}, \quad f_{x_{1}}\left(x_{2}\right)=f\left(x_{1}, x_{2}\right) .
$$

Similarly, for $x_{2} \in \Omega_{2}$ let

$$
f_{x_{2}}: \Omega_{1} \rightarrow \mathbb{R}, \quad f_{x_{2}}\left(x_{1}\right)=f\left(x_{1}, x_{2}\right)
$$

Exercise 4.29. Show that if f is measurable, then $f_{x_{1}}$ and $f_{x_{2}}$ are measurable for each x_{1} and x_{2}, respectively.

Define

$$
I_{1}: \Omega_{1} \rightarrow \mathbb{R}, \quad I_{1}\left(x_{1}\right)=\int f_{x_{1}} d P_{2}
$$

and

$$
I_{2}: \Omega_{2} \rightarrow \mathbb{R}, \quad I_{2}\left(x_{2}\right)=\int f_{x_{2}} d P_{1}
$$

Exercise 4.30. Show that if f is measurable, then I_{1} and I_{2} are measurable.

Theorem 4.31 (Fubini). Let $f: \Omega \rightarrow \mathbb{R}$
(1) If f is an integrable function, then $f_{x_{1}}$ and $f_{x_{2}}$ are integrable for a.e. x_{1} and x_{2}, respectively. Moreover, I_{1} and I_{2} are integrable functions and

$$
\int f d P=\int I_{1} d P_{1}=\int I_{2} d P_{2}
$$

(2) If $f \geq 0$ and I_{1} is an integrable function, then f is integrable.

Exercise 4.32. Prove it.
Example 4.33. Consider $\Omega=[0,1] \times[0,1], \mathcal{F}=\mathcal{B}(\Omega)$ and $f: \Omega \rightarrow$ \mathbb{R} given by $f(x, y)=x y$.
(1) Take the product measure $\mu=m \times m$, where m is the Lebesgue measure on \mathbb{R}. Then,

$$
\int f d \mu=\int_{0}^{1} \int_{0}^{1} x y d x d y=\int_{0}^{1} \frac{y}{2} d y=\frac{1}{4}
$$

(2) For another measure $\mu=m \times \delta_{1}$, where δ_{1} is the Dirac measure at 1 , we obtain

$$
\int f d \mu=\int_{0}^{1} \int_{[0,1]} x y d \delta_{1}(y) d x=\int_{0}^{1} x d x=\frac{1}{2}
$$

Exercise 4.34. Consider the Lebesgue probability space $([0,1], \mathcal{B}, m)$. Write an example of a measurable function f such that I_{1} and I_{2} are integrable but $\int I_{1} d P_{1} \neq \int I_{2} d P_{2}$.

6. Signed measures

Let (Ω, \mathcal{F}) be a measurable space. We say that a function $\lambda: \mathcal{F} \rightarrow \overline{\mathbb{R}}$ is a signed measure iff it is σ-additive in the following sense: for pairwise disjoint sets $A_{1}, A_{2}, \cdots \in \mathcal{F}$ we have that

$$
\lambda\left(\bigcup_{n=1}^{+\infty} A_{n}\right)=\sum_{n=1}^{+\infty} \lambda\left(A_{n}\right) \quad \text { and } \quad \sum_{n=1}^{+\infty} \lambda\left(A_{n}\right)^{-}<+\infty .
$$

Here $x^{-}=\max \{0,-x\}$. So, $\left.\left.\lambda: \mathcal{F} \rightarrow\right]-\infty,+\infty\right]$. A signed measure is finite if $\lambda(A)$ is finite for every $A \in \mathcal{F}$, i.e. $\lambda: \mathcal{F} \rightarrow \mathbb{R}$.

Obviously, any measure is also a signed measure.
Exercise 4.35. Show that if λ is a signed measure and there is $A \in \mathcal{F}$ such that $\lambda(A)$ is finite, then $\lambda(\emptyset)=0$.

Example 4.36. If μ_{1} is a measure and μ_{2} a finite measure (i.e. $\left.\mu_{2}(\Omega)<+\infty\right)$, then $\lambda=\mu_{1}-\mu_{2}$ is a signed measure. In fact, for a sequence A_{1}, A_{2}, \ldots of pairwise disjoint measurable sets,

$$
\begin{aligned}
\lambda\left(\bigcup_{n=1}^{+\infty} A_{n}\right) & =\mu_{1}\left(\bigcup_{n=1}^{+\infty} A_{n}\right)-\mu_{2}\left(\bigcup_{n=1}^{+\infty} A_{n}\right) \\
& =\sum_{n=1}^{+\infty} \mu_{1}\left(A_{n}\right)-\mu_{2}\left(A_{n}\right) \\
& =\sum_{n=1}^{+\infty} \lambda\left(A_{n}\right)
\end{aligned}
$$

by the σ-additivity of the measures.
THEOREM 4.37. Let μ be a measure and f an integrable function with respect to μ. Then,

$$
\nu(A)=\int_{A} f d \mu, \quad A \in \mathcal{F}
$$

is a finite signed measure. Moreover, if $f \geq 0$ a.e. then ν is a finite measure and

$$
\begin{equation*}
\int_{A} g d \nu=\int_{A} g f d \mu \tag{4.3}
\end{equation*}
$$

for any function g integrable with respect to ν and $A \in \mathcal{F}$.
Remark 4.38. In the conditions of the above theorem we get $\nu(A)=\int_{A} d \nu=\int_{A} f d \mu$. It is therefore natural to use the notation

$$
d \nu=f d \mu
$$

Proof. Let $A_{1}, A_{2}, \cdots \in \mathcal{F}$ be pairwise disjoint and $B=\bigcup_{i=1}^{+\infty} A_{i}$. Hence,

$$
\nu(B)=\int_{B} f d \mu=\int f^{+} \mathcal{X}_{B} d \mu-\int f^{-} \mathcal{X}_{B} d \mu
$$

Define $g_{n}^{ \pm}=f^{ \pm} \mathcal{X}_{B_{n}}$ where $B_{n}=\bigcup_{i=1}^{n} A_{i}$. So, $g_{n}^{ \pm} \leq f^{ \pm} \mathcal{X}_{B}=\lim g_{n}^{ \pm}$. By the monotone convergence theorem, $\int \lim g_{n}^{ \pm} d \mu=\lim \int g_{n}^{ \pm} d \mu$. That is,

$$
\int f \mathcal{X}_{B} d \mu=\lim _{n \rightarrow+\infty} \int_{B_{n}} f d \mu=\sum_{i=1}^{+\infty} \int_{A_{i}} f d \mu=\sum_{i=1}^{+\infty} \nu\left(A_{i}\right),
$$

where we have used $\int_{B_{n}} f d \mu=\sum_{i=1}^{n} \int_{A_{i}} f d \mu$ obtained by induction of the property in Proposition 4.8. Therefore, ν is σ-additive. It is finite because f is integrable.

By Proposition 4.8, $\nu(\emptyset)=0$ because $\mu(\emptyset)=0$. As $f \geq 0$ a.e, we obtain $\nu(A)=\int_{A} f d \mu \geq \int_{A} 0 d \mu=0$, again using Proposition 4.8.

Finally, choose a sequence of simple functions $\varphi_{n} \nearrow g$ each written in the usual form

$$
\varphi_{n}=\sum_{j=1}^{N} c_{j} \mathcal{X}_{A_{j}}
$$

Applying the monotone convergence theorem twice we obtain

$$
\begin{aligned}
\int_{A} g d \nu & =\lim _{n \rightarrow+\infty} \int_{A} \varphi_{n} d \nu \\
& =\lim _{n \rightarrow+\infty} \sum_{j} c_{j} \nu\left(A_{j} \cap A\right) \\
& =\lim _{n \rightarrow+\infty} \sum_{j} c_{j} \int_{A} f \mathcal{X}_{A_{j}} d \mu \\
& =\lim _{n \rightarrow+\infty} \int_{A} f \varphi_{n} d \mu=\int_{A} g f d \mu .
\end{aligned}
$$

Example 4.39. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}e^{-x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

and the measure $\nu: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{R}$,

$$
\nu(A)=\int_{A} f d m
$$

So, $m([n-1, n])=1$ for any $n \in \mathbb{N}$, and

$$
\nu([n-1, n])=\int_{n-1}^{n} e^{-t} d t=e^{-n}(e-1)
$$

which goes to 0 as $n \rightarrow+\infty$. Moreover, if $g(x)=1$, then g is not integrable with respect to m since we would have $\int g d m=m(\mathbb{R})=$ $+\infty$. However,

$$
\int g d \nu=\int g f d m=\int_{0}^{+\infty} e^{-t} d t=1
$$

Also, $\nu(\mathbb{R})=1$ and ν is a probability measure.

7. Relations between signed measures

Consider two signed measures λ_{1} and λ_{2} on the same measurable space (Ω, \mathcal{F}).

We say that λ_{1} is absolutely continuous with respect to λ_{2} and write

$$
\lambda_{1} \ll \lambda_{2}
$$

if for any set $A \in \mathcal{F}$ such that $\mu(A)=0$ we also have $\lambda(A)=0$. That is, every μ-null set is also λ-null. Moreover, λ_{1} and λ_{2} are equivalent if simultaneously $\lambda_{1} \ll \lambda_{2}$ and $\lambda_{2} \ll \lambda_{1}$.

Example 4.40. Consider the measurable space (I, \mathcal{B}) where I is an interval of \mathbb{R} with positive length, the Dirac measure δ_{a} at some $a \in I$ and the Lebesgue measure m on I. For the set $A=\{a\}$ we have $m(A)=0$ but $\delta_{a}(A)=1$. So, δ_{a} is not absolutely continuous with respect to m. On the other hand, if $A=I \backslash\{a\}$ we get $\delta_{a}(A)=0$ but $m(A)=m(I)>0$. Hence, m is not absolutely continuous with respect to δ_{a}.

We say that λ_{1} is singular with respect to λ_{2} and write

$$
\lambda_{1} \perp \lambda_{2}
$$

if there is $A \in \mathcal{F}$ such that $\lambda_{1}(A)=0$ and $\lambda_{2}\left(A^{c}\right)=0$. Clearly, this relation commutes, and for that sometimes we refer to it as mutually singular. Notice that λ_{1} can not be simultaneously absolutely continuous and singular with respect to λ_{2}. However, it can be non absolutely continuous and non singular.

Exercise 4.41. Consider measures ν_{1}, ν_{2} and μ such that $\nu_{i} \perp \mu$, $i=1,2$. Show that $\nu_{1}-\nu_{2} \perp \mu$.

Consider a signed measure λ. A set $A \in \mathcal{F}$ is λ-positive if for every $B \in \mathcal{F}$ such that $B \subset A$ we have $\lambda(B) \geq 0$. It is λ-negative if the same statement holds with $\lambda(B) \leq 0$.

Exercise 4.42. Let λ be a signed measure, Ω^{+}a λ-positive set and Ω^{-}a λ-negative set. Show that $\lambda_{\Omega^{ \pm}}= \pm \lambda\left(\cdot \cap \Omega^{ \pm}\right)$are mutually singular measures.

Theorem 4.43 (Hahn decomposition). Let λ be a signed measure. Then there is a λ-positive set Ω^{+}and a λ-negative set Ω^{-}such that

$$
\Omega^{+} \cup \Omega^{-}=\Omega \quad \text { and } \quad \Omega^{+} \cap \Omega^{-}=\emptyset
$$

and this decomposition is unique up to a λ-null set.

Proof.

Theorem 4.44 (Jordan decomposition). Let λ be a signed measure. Then there is a unique pair of measures $\nu_{1} \perp \nu_{2}$ such that

$$
\lambda=\nu_{1}-\nu_{2} .
$$

Moreover, if λ is finite, then ν_{1}, ν_{2} are also finite.
Proof. Consider the Hahn decomposition $\Omega=\Omega^{+} \cup \Omega^{-}$. From Exercise 4.42 take the mutually singular measures $\nu_{1}=\lambda_{\Omega^{+}}$and $\nu_{2}=$ $\lambda_{\Omega^{-}}$so that by additivity $\lambda=\lambda\left(\cdot \cap \Omega^{+}\right)+\lambda\left(\cdot \cap \Omega^{-}\right)=\nu_{1}-\nu_{2}$. Clearly, if λ is finite, so are the other measures. To prove uniqueness it is enough to recall that the Hahn decomposition is unique up to a λ-null set.

Theorem 4.45 (Lebesgue decomposition). Let ν, μ be finite measures. Then, there is a measure $\nu_{s} \perp \mu$ and an integrable function f with respect to μ such that

$$
\nu(A)=\nu_{s}(A)+\int_{A} f d \mu, \quad A \in \mathcal{F} .
$$

Proof.

8. Radon-Nikodym theorem

In the case of finite measures, absolutely continuity is characterized by the following result.

Theorem 4.46 (Radon-Nikodym). Let (Ω, \mathcal{F}) be a measurable space, λ a finite signed measure and μ a finite measure. Then, $\lambda \ll \mu$ iff there is a unique μ-a.e. function f integrable with respect to μ such that

$$
\lambda(A)=\int_{A} f d \mu, \quad A \in \mathcal{F}
$$

Remark 4.47.
(1) The function f in the above theorem is called the RadonNikodym derivative of λ with respect to μ and denoted by

$$
\frac{d \lambda}{d \mu}=f
$$

The notation is appropriate in order to have the following convenient expression:

$$
\lambda(A)=\int_{A} \frac{d \lambda}{d \mu} d \mu, \quad A \in \mathcal{F}
$$

(2) If λ is also a measure then $\frac{d \lambda}{d \mu} \geq 0$ a.e.

Proof.

(\Leftarrow) If μ is a measure and f is integrable, then

$$
\lambda(A)=\int_{A} f d \mu
$$

is a signed measure by Theorem 4.37. Moreover, if $\mu(A)=0$ then the integral over A is always equal to zero. So, $\lambda \ll \mu$.
(\Rightarrow) By the Jordan decomposition (Theorem 4.44), we can write $\lambda=\nu_{1}-\nu_{2}$ for two mutually singular measures $\nu_{i}, i=1,2$.

Now, the Lebesgue decomposition (Theorem 4.45) implies that each of the above measures ν_{i} is given by

$$
\nu_{i}(A)=\nu_{i, s}(A)+\int_{A} f_{i} d \mu
$$

where $\nu_{i, s} \perp \mu$ and f_{i} is integrable with respect to μ. So,

$$
\lambda(A)=\nu_{1, s}(A)-\nu_{2, s}(A)+\int_{A}\left(f_{1}-f_{2}\right) d \mu, \quad A \in \mathcal{F}
$$

By Exercise 4.41 we know that $\nu_{1, s}-\nu_{2, s} \perp \mu$. This means that there is $B \in \mathcal{F}$ such that $\left(\nu_{1, s}-\nu_{2, s}\right)\left(B^{c}\right)=0$ and $\mu(B)=$ 0 . On the other hand, from $\lambda \ll \mu$ we know that $\lambda(B)=0$ and so $\left(\nu_{1, s}-\nu_{2, s}\right)(B)=0$. That is, $\nu_{1, s}-\nu_{2, s}$ is the trivial zero measure.

Exercise 4.48. Prove that f is unique μ-a.e.
Example 4.49.
(1) Consider a countable set $\Omega=\left\{a_{1}, a_{2}, \ldots\right\}$ and $\mathcal{F}=\mathcal{P}(\Omega)$. If μ is a finite measure such that all points in Ω have weight (i.e. $\mu\left(\left\{a_{n}\right\}\right)>0$ for any $n \in \mathbb{N}$) and λ is any finite signed measure, then the only possible subset $A \subset \Omega$ with $\mu(A)=0$
is the empty set $A=\emptyset$. So, $\lambda(A)$ is also equal to zero and $\lambda \ll \mu$. Since

$$
\mu(A)=\sum_{a_{n} \in A} \mu\left(\left\{a_{n}\right\}\right)
$$

and

$$
\lambda\left(\left\{a_{n}\right\}\right)=\int_{\left\{a_{n}\right\}} \frac{d \lambda}{d \mu}(x) d \mu(x)=\frac{d \lambda}{d \mu}\left(a_{n}\right) \mu\left(\left\{a_{n}\right\}\right),
$$

we obtain

$$
\frac{d \lambda}{d \mu}\left(a_{n}\right)=\frac{\lambda\left(\left\{a_{n}\right\}\right)}{\mu\left(\left\{a_{n}\right\}\right)}, \quad n \in \mathbb{N} .
$$

This defines the Radon-Nikodym derivative at μ-almost every point.
(2) Suppose that $\Omega=[0,1] \subset \mathbb{R}$ and $\mathcal{F}=\mathcal{B}([0,1])$. Take the Dirac measure δ_{0} at 0 , the Lebesgue measure m on $[0,1]$ and $\mu=\frac{1}{2} \delta_{0}+\frac{1}{2} m$. If $\mu(A)=0$ then $\frac{1}{2} \delta_{0}(A)+\frac{1}{2} m(A)=0$ which implies that $\delta_{0}(A)=0$ and $m(A)=0$. Therefore, $\delta_{0} \ll \mu$ and $m \ll \mu$. Notice that for any integrable function f we have

$$
\int_{A} f d \mu=\frac{1}{2} \int_{A} f d \delta_{0}+\frac{1}{2} \int_{A} f d m
$$

Therefore, for every $A \in \mathcal{F}$,

$$
\delta_{0}(A)=\frac{1}{2} \int_{A} \frac{d \delta_{0}}{d \mu} d \delta_{0}+\frac{1}{2} \int_{A} \frac{d \delta_{0}}{d \mu} d m
$$

and also

$$
m(A)=\frac{1}{2} \int_{A} \frac{d m}{d \mu} d \delta_{0}+\frac{1}{2} \int_{A} \frac{d m}{d \mu} d m
$$

Aiming at finding the Radon-Nikodym derivatives, we first choose $A=\{0\}$ so that

$$
\frac{d \delta_{0}}{d \mu}(0)=2, \quad \frac{d m}{d \mu}(0)=0
$$

Moreover, let $A \in \mathcal{F}$ be such that $0 \notin A$. Thus,

$$
\int_{A} \frac{d \delta_{0}}{d \mu} d m=0, \quad \int_{A} \frac{d m}{d \mu} d m=2 m(A)=\int_{A} 2 d m
$$

By considering the σ-algebra \mathcal{F}^{\prime} induced by \mathcal{F} on $\left.] 0,1\right]$ we have that the Radon-Nikodym derivatives restricted to the measurable space ($] 0,1], \mathcal{F}^{\prime}$) are measurable and so the above equations imply that

$$
\frac{d \delta_{0}}{d \mu}(x)=\left\{\begin{array}{ll}
2, & x=0 \\
0, & \text { o.c. }
\end{array} \quad \frac{d m}{d \mu}(x)= \begin{cases}0, & x=0 \\
2, & \text { o.c. }\end{cases}\right.
$$

Proposition 4.50. Let ν, λ, μ be finite measures. If $\nu \ll \lambda$ and $\lambda \ll \mu$, then
(1) $\nu \ll \mu$
(2)

$$
\frac{d \nu}{d \mu}=\frac{d \nu}{d \lambda} \frac{d \lambda}{d \mu} \quad \text { a.e. }
$$

Proof.
(1) If $A \in \mathcal{F}$ is such that $\mu(A)=0$ then $\lambda(A)=0$ because $\lambda \ll \mu$. Furthermore, since $\nu \ll \lambda$ we also have $\nu(A)=0$. This means that $\nu \ll \mu$.
(2) We know that

$$
\lambda(A)=\int_{A} \frac{d \lambda}{d \mu} d \mu
$$

So,

$$
\nu(A)=\int_{A} \frac{d \nu}{d \lambda} d \lambda=\int_{A} \frac{d \nu}{d \lambda} \frac{d \lambda}{d \mu} d \mu
$$

where we have used (4.3).

Part 2

Probability

CHAPTER 5

Distributions

From now on we focus on probability theory and use its notations and nomenclatures. That is, we interpret Ω as the set of outcomes of an experiment, \mathcal{F} as the collection of events (sets of outcomes), \mathcal{F} measurable functions as random variables (numerical result of an observation) and finally P is a probability measure. Moreover, whenever there is a property valid for a set of full probability measure, we will use the initials a.s. (almost surely) instead of a.e. (almost everywhere).

In this chapter we are going to explore a correspondence between distributions and two types of functions: distribution functions and characteristic functions. It is simpler to study functions than measures. Determining a measure requires knowing its value for every measurable set, a much harder task than to understand a function.

1. Definition

Let (Ω, \mathcal{F}, P) be a probability space and $X: \Omega \rightarrow \mathbb{R}$ a random variable (an \mathcal{F}-measurable function). The distribution of X (or the law of X) is the induced probability measure $\alpha: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{R}$,

$$
\alpha=P \circ X^{-1} .
$$

In general we say that any probability measure P on \mathbb{R} is a distribution by considering the identity random variable $X: \mathbb{R} \rightarrow \mathbb{R}, X(x)=x$, so that $\alpha=P$.

It is common in probability theory to use several notations that are appropriate in the context. We list below some of them:
(1) $P(X \in A)=P\left(X^{-1}(A)\right)=\alpha(A)$
(2) $P(X \in A, X \in B)=\alpha(A \cap B)$
(3) $P(X \in A$ or $X \in B)=\alpha(A \cup B)$
(4) $P(X \notin A)=\alpha\left(A^{c}\right)$
(5) $P(X \in A, X \notin B)=\alpha(A \backslash B)$
(6) $P(X=a)=\alpha(\{a\})$
(7) $P(X \leq a)=\alpha(]-\infty, a])$
(8) $P(a<X \leq b)=\alpha(] a, b])$

Exercise 5.1. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a $\mathcal{B}(\mathbb{R})$-measurable function and α is the distribution of a random variable X. Find the distribution of $f \circ X$.

When the random variable is multidimensional, i.e. $X: \Omega \rightarrow \mathbb{R}^{d}$ and $X=\left(X_{1}, \ldots, X_{d}\right)$, we call the induced measure $\alpha: \mathcal{B}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ given by $\alpha=P \circ X^{-1}$ the joint distribution of X_{1}, \ldots, X_{d}.

In most applications it is the distribution α that really matters. For example, suppose that Ω is the set of all possible states of the atmosphere. If X is the function that gives the temperature $\left({ }^{\circ} \mathrm{C}\right)$ in Lisbon for a given state of the atmosphere and $I=[20,21]$,

$$
\alpha(I)=P\left(X^{-1}(I)\right)=P(X \in I)=P(20 \leq X \leq 21)
$$

is the probability of the temperature being between $20^{\circ} \mathrm{C}$ and $21^{\circ} \mathrm{C}$. That is, we first compute the set $X^{-1}(I)$ of all states that correspond to a temperature in Lisbon inside the interval I, and then find its probability measure.

It is important to be aware that for the vast majority of systems in the real world, we do not know Ω and P. So, one needs to guess α. Finding the right distribution is usually a very difficult task, if not impossible. Nevertheless, a frequently convenient way to acquire some knowledge of α is by treating statistically the data from experimental observations. In particular, it is possible to determine good approximations of each moment of order n of α (if it exists):

$$
m_{n}=E\left(X^{n}\right)=\int x^{n} d \alpha(x), \quad n \in \mathbb{N}, \quad m_{0}=1
$$

Knowing the moments is a first step towards a choice of the distribution, but in general it does not determine it uniquely. Notice that $E\left(X^{n}\right)$ exists if $E\left(\left|X^{n}\right|\right)<+\infty$ (i.e. X^{n} is integrable).

Remark 5.2.
(1) The moment of order 1 is the expectation of X,

$$
m_{1}=E(X)
$$

(2) The variance of X is defined as

$$
\operatorname{Var}(X)=E(X-E(X))^{2}=E\left(X^{2}\right)-E(X)^{2}=m_{2}-m_{1}^{2} .
$$

(3) Given two integrable random variables X and Y, their covariance is

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E((X-E(X))(Y-E(Y))) \\
& =E(X Y)-E(X) E(Y)
\end{aligned}
$$

If $\operatorname{Cov}(X, Y)=0$, then we say that X and Y are uncorrelated.
Exercise 5.3. Show that $\operatorname{Var}(X)=0$ iff $P(X=E(X))=1$.

Exercise 5.4. Show that for each distribution α there is n_{0} such that m_{n} exists for every $n \leq n_{0}$ and it does not exist otherwise.

Exercise 5.5. Consider X_{1}, \ldots, X_{n} integrable random variables. Show that if $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0, i \neq j$, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) .
$$

Exercise 5.6. Let X be a random variable and $\lambda>0$. Prove the Tchebychev inequalities:

$$
\begin{equation*}
P(|X| \geq \lambda) \leq \frac{1}{\lambda^{k}} E\left(|X|^{k}\right) \tag{1}
\end{equation*}
$$

When $k=1$ this is also called Markov inequality.
(2) For $k \in \mathbb{N}$,

$$
P(|X-E(X)| \geq \lambda) \leq \frac{\operatorname{Var}(X)}{\lambda^{2}}
$$

2. Simple examples

Here are some examples of random variables for which one can find explicitly their distributions.

Example 5.7. Consider X to be constant, i.e. $X(x)=c$ for any $x \in \Omega$ and some $c \in \mathbb{R}$. Then, given $B \in \mathcal{B}$ we obtain

$$
X^{-1}(B)= \begin{cases}\emptyset, & c \notin B \\ \Omega, & c \in B\end{cases}
$$

Hence,

$$
\alpha(B)=P\left(X^{-1}(B)\right)= \begin{cases}P(\emptyset)=0, & c \notin B \\ P(\Omega)=1, & c \in B .\end{cases}
$$

That is, $\alpha=\delta_{c}$ is the Dirac distribution at c. Finally, $E(g(X))=$ $\int g(x) d \alpha(x)=g(c)$, so $m_{n}=c^{n}$ and in particular

$$
E(X)=c \quad \text { and } \quad \operatorname{Var}(X)=0
$$

Example 5.8. Given $A \in \mathcal{F}$ and constants $c_{1}, c_{2} \in \mathbb{R}$, let $X=$ $c_{1} \mathcal{X}_{A}+c_{2} \mathcal{X}_{A^{c}}$. Then, for $B \in \mathcal{B}$ we get

$$
X^{-1}(B)= \begin{cases}A, & c_{1} \in B, c_{2} \notin B \\ A^{c}, & c_{1} \notin B, c_{2} \in B \\ \Omega, & c_{1}, c_{2} \in B \\ \emptyset, & \text { o.c. }\end{cases}
$$

So, the distribution of $c \mathcal{X}_{A}$ is

$$
\alpha(B)= \begin{cases}p, & c_{1} \in B, c_{2} \notin B \\ 1-p, & c_{1} \notin B, c_{2} \in B \\ 1, & c_{1}, c_{2} \in B \\ 0, & \text { o.c. }\end{cases}
$$

where $p=P(A)$. That is,

$$
\alpha=p \delta_{c_{1}}+(1-p) \delta_{c_{2}}
$$

is the so-called Bernoulli distribution. Hence, $E(g(X))=\int g(x) d \alpha(x)=$ $p g\left(c_{1}\right)+(1-p) g\left(c_{2}\right)$ and $m_{n}=p c_{1}^{n}+(1-p) c_{2}^{n}$. In particular,

$$
E(X)=p c_{1}+(1-p) c_{2}, \quad \operatorname{Var}(X)=p(1-p)\left(c_{1}-c_{2}\right)^{2}
$$

Exercise 5.9. Find the distribution of a simple function in the form

$$
X=\sum_{j=1}^{N} c_{j} \mathcal{X}_{A_{j}}
$$

and compute its moments.

3. Distribution functions

A function $F: \mathbb{R} \rightarrow \mathbb{R}$ is a distribution function iff
(1) it is increasing, i.e. for any $x_{1}<x_{2}$ we have $F\left(x_{1}\right) \leq F\left(x_{2}\right)$,
(2) it is continuous from the right at every point, i.e. $F\left(x^{+}\right)=$ $F(x)$,
(3) $F(-\infty)=0, F(+\infty)=1$.

The next theorem states that there is a one-to-one correspondence between distributions and distribution functions.

Theorem 5.10 (Lebesgue).
(1) If α is a distribution, then

$$
F(x)=\alpha(]-\infty, x]), \quad x \in \mathbb{R},
$$

is a distribution function.
(2) If F is a distribution function, then there is a unique distribution α such that

$$
\alpha(]-\infty, x])=F(x), \quad x \in \mathbb{R}
$$

Remark 5.11. The function F as above is called the distribution function of α. Whenever α is the distribution of a random variable X, we also say that F is the distribution function of X and

$$
F(x)=P(X \leq x)
$$

Proof.
(1) For any $x_{1} \leq x_{2}$ we have $\left.\left.\left.]-\infty, x_{1}\right] \subset\right]-\infty, x_{2}\right]$. Thus, $F\left(x_{1}\right) \leq$ $F\left(x_{2}\right)$ and F is increasing. Now, given any sequence $x_{n} \rightarrow a^{+}$,

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} F\left(x_{n}\right) & \left.\left.=\lim _{n \rightarrow+\infty} \alpha(]-\infty, x_{n}\right]\right) \\
& \left.\left.=\alpha\left(\bigcap_{n=1}^{+\infty}\right]-\infty, x_{n}\right]\right) \\
& =\alpha(]-\infty, a])=F(a) .
\end{aligned}
$$

That is, F is continuous from the right for any $a \in \mathbb{R}$. Finally, using Theorem 2.34,

$$
\begin{aligned}
F(-\infty) & =\lim _{n \rightarrow+\infty} F(-n) \\
& \left.\left.=\lim _{n \rightarrow+\infty} \alpha(]-\infty,-n\right]\right) \\
& \left.\left.=\alpha\left(\bigcap_{n=1}^{+\infty}\right]-\infty,-n\right]\right) \\
& =\alpha(\emptyset)=0 .
\end{aligned}
$$

and

$$
\begin{aligned}
F(+\infty) & =\lim _{n \rightarrow+\infty} F(n) \\
& \left.\left.=\lim _{n \rightarrow+\infty} \alpha(]-\infty, n\right]\right) \\
& \left.\left.=\alpha\left(\bigcup_{n=1}^{+\infty}\right]-\infty, n\right]\right) \\
& =\alpha(\mathbb{R})=1 .
\end{aligned}
$$

(2) Consider the algebra $\mathcal{A}(\mathbb{R})$ that contains every finite union of intervals of the form $] a, b]$ (see section 1.2). Take a sequence of disjoint intervals $\left.] a_{n}, b_{n}\right],-\infty \leq a_{n} \leq b_{n} \leq+\infty$, whose union is in $\mathcal{A}(\mathbb{R})$ and define

$$
\left.\left.\alpha\left(\bigcup_{n=1}^{+\infty}\right] a_{n}, b_{n}\right]\right)=\sum_{n=1}^{+\infty}\left(F\left(b_{n}\right)-F\left(a_{n}\right)\right) .
$$

Thus, α is σ-additive, $\alpha(\emptyset)=\alpha(] a, a])=0, \alpha(A) \geq 0$ for any $A \in \mathcal{A}(\mathbb{R})$ because F is increasing, and $\alpha(\mathbb{R})=F(+\infty)-$ $F(-\infty)=1$. Thus, α is a probability measure on $\mathcal{A}(\mathbb{R})$. In particular, $\alpha(]-\infty, x])=F(x), x \in \mathbb{R}$.

Finally, the Carathéodory extension theorem guarantees that α can be uniquely extended to a distribution in $\sigma(\mathcal{A}(\mathbb{R}))=$ $\mathcal{B}(\mathbb{R})$.

Exercise 5.12. Show that for $-\infty \leq a \leq b \leq+\infty$ we have
(1) $\alpha(\{a\})=F(a)-F\left(a^{-}\right)$
(2) $\alpha(] a, b[)=F\left(b^{-}\right)-F(a)$
(3) $\alpha\left(\left[a, b[)=F\left(b^{-}\right)-F\left(a^{-}\right)\right.\right.$
(4) $\alpha([a, b])=F(b)-F\left(a^{-}\right)$
(5) $\alpha(]-\infty, b[)=F\left(b^{-}\right)$
(6) $\alpha\left(\left[a,+\infty[)=1-F\left(a^{-}\right)\right.\right.$
(7) $\alpha(] a,+\infty[)=1-F(a)$

Exercise 5.13. Compute the distribution function of the following distributions:
(1) The Dirac distribution δ_{a} at $a \in \mathbb{R}$.
(2) The Bernoulli distribution $p \delta_{a}+(1-p) \delta_{b}$ with $0 \leq p \leq 1$ and $a, b \in \mathbb{R}$.
(3) The uniform distribution on a bounded interval $I \subset \mathbb{R}$

$$
m_{I}(A)=\frac{m(A \cap I)}{m(I)}, \quad A \in \mathcal{B}(\mathbb{R})
$$

where m is the Lebesgue measure.
(4) $\alpha=c_{1} \delta_{a}+c_{2} m_{I}$ on $\mathcal{B}(\mathbb{R})$ where $c_{1}, c_{2} \geq 0$ and $c_{1}+c_{2}=1$.

$$
\begin{equation*}
\alpha=\sum_{n=1}^{+\infty} \frac{1}{2^{n}} \delta_{-1 / n} . \tag{5}
\end{equation*}
$$

4. Classification of distributions

Consider a distribution α and its correspondent distribution function $F: \mathbb{R} \rightarrow \mathbb{R}$. The set of points where F is discontinuous is denoted by

$$
D=\left\{x \in \mathbb{R}: F\left(x^{-}\right)<F(x)\right\} .
$$

Proposition 5.14.
(1) $\alpha(\{a\})>0$ iff $a \in D$.
(2) D is countable.

Proof.
(1) Recall that $\alpha(\{a\})=F(a)-F\left(a^{-}\right)$. So, it is positive iff a is a discontinuity point of F.
(2) For each $x \in D$ we can choose a rational number $g(x)$ such that $F\left(x^{-}\right)<g(x)<F(x)$. This defines a function $g: D \rightarrow \mathbb{Q}$. Now, for $x_{1}, x_{2} \in D$ satisfying $x_{1}<x_{2}$, we have

$$
g\left(x_{1}\right)<F\left(x_{1}\right) \leq F\left(x_{2}^{-}\right)<g\left(x_{2}\right) .
$$

Hence g is strictly increasing and injective. It yields therefore a bijection $D \rightarrow g(D) \subset \mathbb{Q}$ which implies that D is countable.
4.1. Discrete. A distribution function $F: \mathbb{R} \rightarrow \mathbb{R}$ is called discrete if it is piecewise constant, i.e. for any $n \in \mathbb{N}$ we can find $a_{n} \in \mathbb{R}$ and $p_{n} \geq 0$ such that $\sum_{n} p_{n}=1$ and

$$
F(x)=\sum_{n=1}^{+\infty} p_{n} \mathcal{X}_{]-\infty, a_{n}\right]}(x)=\sum_{a_{n} \geq x} p_{n}
$$

A distribution is called discrete iff its distribution function is discrete. So, a discrete distribution α is given by

$$
\alpha(A)=\sum_{n=1}^{+\infty} p_{n} \delta_{a_{n}}(A)=\sum_{a_{n} \in A} p_{n}, \quad A \in \mathcal{B}(\mathbb{R})
$$

Exercise 5.15. Show that $\alpha(D)=1$ iff α is a discrete distribution.
Example 5.16. Consider a random variable X such that $P(X \in$ $\mathbb{N})=1$. So,

$$
P(X \geq n)=\sum_{i=n}^{+\infty} P(X=i)
$$

Its expected value is then

$$
\begin{aligned}
E(X) & =\int X d P=\sum_{i=1}^{+\infty} i P(X=i) \\
& =\sum_{i=1}^{+\infty} \sum_{n=1}^{i} P(X=i) \\
& =\sum_{n=1}^{+\infty} \sum_{i=n}^{+\infty} P(X=i) \\
& =\sum_{n=1}^{+\infty} P(X \geq n) .
\end{aligned}
$$

4.2. Continuous. A distribution is called continuous iff its distribution function is continuous.
4.2.1. Absolutely continuous. We say that a distribution function is absolutely continuous if there is an integrable function $f \geq 0$ with respect to the Lebesgue measure m such that

$$
F(x)=\int_{-\infty}^{x} f d m, \quad x \in \mathbb{R} .
$$

In particular, F is continuous $(D=\emptyset)$. Recall that by the fundamental theorem of calculus, if F is differentiable at x, then $F^{\prime}(x)=f(x)$. Moreover, if f is continuous, then F is differentiable.

A distribution is called absolutely continuous iff its distribution function is absolutely continuous. An absolutely continuous distribution α is given by

$$
\alpha(A)=\int_{A} f d m, \quad A \in \mathcal{B}(\mathbb{R})
$$

The function f is known as the density of α.
Example 5.17. Take $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$ and the Lebesgue measure m on $[0,1]$. For a fixed $r>0$ consider the random variable

$$
X(\omega)=\omega^{r} \mathcal{X}_{[0,+\infty[}(\omega)
$$

Thus,

$$
\{X \leq x\}= \begin{cases}\emptyset, & x<0 \\]-\infty, x^{1 / r}\right], & x \geq 0\end{cases}
$$

and the distribution function of X is

$$
F(x)=m(X \leq x)= \begin{cases}0, & x<0 \\ x^{1 / r}, & 0 \leq x<1 \\ 1, & x \geq 1\end{cases}
$$

The function F is absolutely continuous since

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

where $f(t)=F^{\prime}(t)$ is the density function given by

$$
f(t)=\frac{1}{r} t^{1 / r-1} \mathcal{X}_{[0,1]}(t)
$$

4.2.2. Singular continuous. We say that a distribution function is singular continuous if F is continuous $(D=\emptyset)$ but not absolutely continuous.

A distribution is called singular continuous iff its distribution function is singular continuous.
4.3. Mixed. A distribution is called mixed iff it is not discrete neither continuous.

5. Convergence in distribution

Consider a sequence of random variables X_{n} and the sequence of their distributions $\alpha_{n}=P \circ X_{n}^{-1}$. Moreover, we take the sequence of the corresponding distribution functions F_{n}.

We say that X_{n} converges in distribution to a random variable X iff

$$
\lim _{n \rightarrow+\infty} F_{n}(x)=F(x), \quad x \in D^{c}
$$

where F is the distribution function of X and D the set of its discontinuity points. We use the notation

$$
X_{n} \xrightarrow{d} X .
$$

Moreover, we say that α_{n} converges weakly to a distribution α iff

$$
\lim _{n \rightarrow+\infty} \int f d \alpha_{n}=\int f d \alpha
$$

for every $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous and bounded. We use the notation

$$
\alpha_{n} \xrightarrow{w} \alpha .
$$

It turns out that it is enough to check the convergence of the above integral for a one-parameter family of complex-valued functions $g_{t}(x)=$ $e^{i t x}$ where $t \in \mathbb{R}$. That is the content of the next theorem. Recall that $e^{i t x}=\cos (t x)+i \sin (t x)$, so that

$$
\int e^{i t x} d \alpha(x)=\int \cos (t x) d \alpha(x)+i \int \sin (t x) d \alpha(x)
$$

Theorem 5.18. Let α_{n} be a sequence of distributions. If

$$
\lim _{n \rightarrow+\infty} \int e^{i t x} d \alpha_{n}
$$

exists for every $t \in \mathbb{R}$ and it is continuous at 0 , then there is a distribution α such that $\alpha_{n} \xrightarrow{w} \alpha$.

Proof. Let F_{n} be the distribution function of each α_{n}. Let r_{j} be a sequence ordering the rational numbers. As $F_{n}\left(r_{1}\right) \in[0,1]$ there is a subsequence $k_{1}(n)$ (that is, $k_{1}: \mathbb{N} \rightarrow \mathbb{N}$ is strictly increasing) for which $F_{k_{1}(n)}\left(r_{1}\right)$ converges when $n \rightarrow+\infty$, say to $b_{r_{1}}$. Again, $F_{k_{1}(n)}\left(r_{2}\right) \in$ $[0,1]$ implies that there is a subsequence $k_{2}(n)$ of $k_{1}(n)$ (meaning that $k_{2}: \mathbb{N} \rightarrow k_{1}(\mathbb{N})$ is strictly increasing) giving $F_{k_{2}(n)}\left(r_{2}\right) \rightarrow b_{r_{2}}$. Inductively, we can find subsequences $k_{j}(n)$ of $k_{j-1}(n)$ such that $F_{k_{j}(n)}\left(r_{j}\right) \rightarrow$ $b_{r_{j}}$. Notice that the sequence $m(n)=k_{n}(n)$ is a subsequence of $k_{j}(n)$ when $n \geq j$. Therefore, for any j we have that $F_{m(n)}\left(r_{j}\right) \rightarrow b_{r_{j}}$. Since each distribution function F_{n} is increasing, for rationals $r<r^{\prime}$ we have for any sufficiently large n that $F_{m(n)}(r) \leq F_{m(n)}\left(r^{\prime}\right)$.

Define $G_{n}=F_{m(n)}$. So, $G_{n}(r) \rightarrow b_{r}$ for any $r \in \mathbb{Q}$. In addition, for rationals $r<r^{\prime}$ it holds $b_{r} \leq b_{r^{\prime}}$. We now choose the function $G: \mathbb{R} \rightarrow[0,1]$ by

$$
G(x)=\inf _{r>x} b_{r} .
$$

We will now show that G is also a distribution function.
For $x_{1}<x_{2}$ it is simple to check that

$$
G\left(x_{1}\right)=\inf _{r>x_{1}} b_{r} \leq \inf _{r>x_{2}} b_{r}=G\left(x_{2}\right),
$$

so that G is increasing. Take a sequence $x_{n} \rightarrow x^{+}$. Hence $G(x)=$
[...]

The following theorem shows that convergence in distribution for sequences of random variables is the same as weak convergence for their distributions. Moreover, this is equivalent to showing convergence of the integrals for a specific complex function $x \mapsto e^{i t x}$ for each $t \in \mathbb{R}$. This last fact will be explored in the next section, and this integral will be called the characteristic function of the distribution.

Theorem 5.19 (Lévy-Cramer continuity). For each $n \in \mathbb{N}$ consider a distribution α_{n} with distribution function F_{n}. Let α be a distribution α with distribution function F. The following propositions are equivalent:
(1) $F_{n} \rightarrow F$ on D^{c},
(2) $\alpha_{n} \xrightarrow{w} \alpha$,
(3) for each $t \in \mathbb{R}$,

$$
\lim _{n \rightarrow+\infty} \int e^{i t x} d \alpha_{n}(x)=\int e^{i t x} d \alpha(x)
$$

Proof.
$(1) \Rightarrow(2)$ Assume that $F_{n} \rightarrow F$ on the set D^{c} of continuity points of F. Let $\varepsilon>0$ and $a, b \in D^{c}$ such that $a<b, F(a) \leq \varepsilon$ and $F(b) \geq 1-\varepsilon$. Then, there is $n_{0} \in \mathbb{N}$ satisfying

$$
F_{n}(a) \leq 2 \varepsilon \quad \text { and } \quad F_{n}(b) \geq 1-2 \varepsilon
$$

for all $n \geq n_{0}$.
Let $\delta>0$ and f continuous such that $|f(x)| \leq M$ for some $M>0$. Take the following partition

$$
] a, b]=\bigcup_{j=1}^{N} I_{j}, \quad I_{j}=\right] a_{j}, a_{j+1}\right],
$$

where $a=a_{1}<\cdots<a_{N+1}=b$ with $a_{i} \in D^{c}$ such that

$$
\max _{I_{j}} f-\min _{I_{j}} f<\delta
$$

Consider now the simple function

$$
h(x)=\sum_{j=1}^{N} f\left(a_{j}\right) \mathcal{X}_{I_{j}} .
$$

Hence,

$$
|f(x)-h(x)| \leq \delta, \quad x \in] a, b]
$$

In addition,

$$
\begin{aligned}
\left|\int(f-h) d \alpha_{n}\right| & =\left|\int_{] a, b b}(f-h) d \alpha_{n}+\int_{J a, b] c} f d \alpha_{n}\right| \\
& \left.\left.\leq \delta \alpha_{n}(] a, b\right]\right)+(\max |f|)\left(F_{n}(a)+1-F_{n}(b)\right) \\
& \leq \delta+4 M \varepsilon .
\end{aligned}
$$

Similarly,

$$
\left|\int(f-h) d \alpha\right| \leq \delta+2 M \varepsilon
$$

In addition,

$$
\alpha_{n}\left(I_{j}\right)-\alpha\left(I_{j}\right)=F_{n}\left(a_{j+1}\right)-F\left(a_{j+1}\right)-\left(F_{n}\left(a_{j}\right)-F\left(a_{j}\right)\right)
$$

converges to zero as $n \rightarrow+\infty$ and the same for

$$
\left|\int h d \alpha_{n}-\int h d \alpha\right|=\left|\sum_{j=1}^{N} f\left(a_{j}\right)\left(\alpha_{n}\left(I_{j}\right)-\alpha\left(I_{j}\right)\right)\right|
$$

Therefore, using

$$
\begin{aligned}
\left|\int f d \alpha_{n}-\int f d \alpha\right|= & \mid \int(f-h) d \alpha_{n}-\int(f-h) d \alpha \\
& +\int h d \alpha_{n}-\int h d \alpha \mid
\end{aligned}
$$

we obtain

$$
\limsup _{n \rightarrow+\infty}\left|\int f d \alpha_{n}-\int f d \alpha\right| \leq 2 \delta+6 M \varepsilon
$$

Being ε and δ arbitrary, we get $\alpha_{n} \xrightarrow{w} \alpha$.
$(2) \Rightarrow(1)$ Let y be a continuity point of F. So, $\alpha(\{y\})=0$. Consider $A=]-\infty, y[$ and the sequence of functions

$$
f_{k}(x)= \begin{cases}1, x \leq y-\frac{1}{2^{k}} & \\ -2^{k}(x-y), & y-\frac{1}{2^{k}}<x \leq y \\ 0, & x>y\end{cases}
$$

where $k \in \mathbb{N}$. Notice that $f_{k} \nearrow \mathcal{X}_{A}$. Thus, using the dominated convergence theorem
$F(y)=\alpha(A)=\int \mathcal{X}_{A} d \alpha=\int \lim _{k} f_{k} d \alpha=\lim _{k} \int f_{k} d \alpha$.
Since f_{k} is continuous and bounded, and $f_{k} \leq \mathcal{X}_{A}$,

$$
\begin{aligned}
\lim _{k} \int f_{k} d \alpha & =\lim _{k} \lim _{n} \int f_{k} d \alpha_{n} \\
& \leq \lim _{k} \liminf _{n} \int \mathcal{X}_{A} d \alpha_{n}=\liminf _{n} F_{n}(y)
\end{aligned}
$$

where it was also used the fact that $F_{n}\left(y^{-}\right) \leq F_{n}(y)$.
Now, take $A=]-\infty, y]$ and

$$
f_{k}(x)= \begin{cases}1, x \leq y & \\ -2^{k}(x-y)+1, & y<x \leq y+\frac{1}{2^{k}} \\ 0, & x>y+\frac{1}{2^{k}}\end{cases}
$$

Similarly to above, as $f_{k} \searrow \mathcal{X}_{A}$,

$$
F(y)=\lim _{k} \lim _{n} \int f_{k} d \alpha_{n} \geq \lim _{k} \limsup _{n} \int \mathcal{X}_{A} d \alpha_{n}=\limsup _{n} F_{n}(y) .
$$

Combining the two inequalities,

$$
\underset{n}{\lim \sup } F_{n}(y) \leq F(y) \leq \liminf _{n} F_{n}(y)
$$

we conclude that $F(y)=\lim _{n} F_{n}(y)$.
$(2) \Rightarrow(3)$ Define $g_{t}(x)=e^{i t x}=\cos (t x)+i \sin (t x)$ for each $t \in \mathbb{R}$. Since $\cos (t x)$ and $\sin (t x)$ are continuous and bounded as functions of x, by (2) we have $\lim _{n} \int g_{t}(x) d \alpha_{n}(x)=\int g_{t}(x) d \alpha(x)$.
$(3) \Rightarrow(2)$ This follows from Theorem 5.18 by noticing that $t \mapsto \int e^{i t x} d \alpha(x)$ is continuous at 0 .

Exercise 5.20. Show that if X_{n} converges in distribution to a constant, then it also converges in probability.

6. Characteristic functions

A function $\phi: \mathbb{R} \rightarrow \mathbb{C}$ is a characteristic function iff
(1) ϕ is continuous at 0 ,
(2) ϕ is positive definite, i.e.

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \phi\left(t_{i}-t_{j}\right) z_{i} \bar{z}_{j} \in \mathbb{R}_{0}^{+}
$$

for all $z_{1}, \ldots, z_{n} \in \mathbb{C}, t_{1}, \ldots, t_{n} \in \mathbb{R}$ and $n \in \mathbb{N}$,
(3) $\phi(0)=1$.

The next theorem states that there is a one-to-one correspondence between distributions and characteristic functions.

Theorem 5.21 (Bochner).
(1) If α is a distribution, then

$$
\phi(t)=\int e^{i t x} d \alpha(x), \quad t \in \mathbb{R},
$$

is a characteristic function.
(2) If ϕ is a characteristic function, then there is a unique distribution α such that

$$
\int e^{i t x} d \alpha(x)=\phi(t), \quad t \in \mathbb{R}
$$

The above theorem is proved in section 6.3.
Remark 5.22. The function ϕ as above is called the characteristic function 1 of α. Whenever α is the distribution of a random variable X, we also say that ϕ is the characteristic function of X and

$$
\phi(t)=E\left(e^{i t X}\right) .
$$

Example 5.23. The characteristic function of the Dirac distribution δ_{a} at a point $a \in \mathbb{R}$ is

$$
\phi(t)=\int e^{i t x} d \delta_{a}(x)=e^{i t a}
$$

Exercise 5.24. Let X and $Y=a X+b$ be random variables with $a, b \in \mathbb{R}$ and $a \neq 0$. Show that if ϕ_{X} is the characteristic function of the distribution of X, then

$$
\phi_{Y}(t)=e^{i t b} \phi_{X}(a t), \quad t \in \mathbb{R}
$$

is the characteristic function of the distribution of Y.
Exercise 5.25. Let X be a random variable and ϕ_{X} its characteristic function. Show that the characteristic function of $-X$ is

$$
\phi_{-X}(t)=\phi_{X}(-t) .
$$

Exercise 5.26. Let ϕ be the characteristic function of the distribution α. Prove that ϕ is real-valued (i.e. $\phi(t) \in \mathbb{R}, t \in \mathbb{R}$) iff α is symmetric around the origin (i.e. $\alpha(A)=\alpha(-A), A \in \mathcal{B}$).

[^7]6.1. Regularity of the characteristic function. We start by presenting some facts about positive definite functions.

ExERCISE 5.27. Show the following statements:
(1) If ϕ is positive definite, then for any $a \in \mathbb{R}$ the function $\psi(t)=$ $e^{i t a} \phi(t)$ is also positive definite.
(2) If ϕ, \ldots, ϕ_{n} are positive definite functions and $a_{1}, \ldots, a_{n}>0$, then $\sum_{i=1}^{n} a_{i} \phi_{i}$ is also positive definite.

Lemma 5.28. Suppose that $\phi: \mathbb{R} \rightarrow \mathbb{C}$ is a positive definite function. Then,
(1) $0 \leq|\phi(t)| \leq \phi(0)$ and $\phi(-t)=\overline{\phi(t)}$ for every $t \in \mathbb{R}$.
(2) for any $s, t \in \mathbb{R}$,

$$
|\phi(t)-\phi(s)|^{2} \leq 4 \phi(0)|\phi(0)-\phi(t-s)|
$$

(3) ϕ is continuous at 0 iff it is uniformly continuous on \mathbb{R}.

Proof.
(1) Take $n=2, t_{1}=0$ and $t_{2}=t$. Hence,

$$
\phi(0) z_{1} \bar{z}_{1}+\phi(-t) z_{1} \bar{z}_{2}+\phi(t) z_{2} \bar{z}_{1}+\phi(0) z_{2} \bar{z}_{2} \in \mathbb{R}_{0}^{+}
$$

for any choice of $z_{1}, z_{2} \in \mathbb{C}$. In particular, using $z_{1}=1$ and $z_{2}=0$ we obtain $\phi(0) \in \mathbb{R}_{0}^{+}$. On the other hand, $z_{1}=z_{2}=1$ implies that the imaginary part of $\phi(-t)+\phi(t)$ is zero. For $z_{1}=1$ and $z_{2}=i$, we get that the real part of $\phi(-t)-\phi(t)$ is zero. Finally, $z_{1}=\bar{z}_{2}=\sqrt{-\phi(t)}$ yields that $|\phi(t)| \leq \phi(0)$.
(2) Fixing $n \in \mathbb{N}$ and $t_{1}, \ldots, t_{n} \in \mathbb{R}$ we have that the matrix $\left[\phi\left(t_{i}-t_{j}\right)\right]_{i, j}$ is positive definite and Hermitian. In particular, by choosing $n=3, t_{1}=t, t_{2}=s$ and $t_{3}=0$, we obtain that

$$
\left[\begin{array}{ccc}
\frac{\phi(0)}{\phi(t-s)} & \phi(t-s) & \phi(t) \\
\frac{\phi(0)}{\phi(t)} & \phi(s) \\
\phi(s) & \phi(0)
\end{array}\right]
$$

has a non-negative determinant given by

$$
\phi(0)^{3}+2 \operatorname{Re}(\phi(t-s) \phi(s) \overline{\phi(t)})-\phi(0)\left(|\phi(t)|^{2}+|\phi(s)|^{2}+|\phi(t-s)|^{2}\right) \geq 0
$$

Hence, assuming that $\phi(0)>0$ (otherwise the result is immediate),

$$
\begin{aligned}
|\phi(t)-\phi(s)|^{2} & =|\phi(t)|^{2}+|\phi(s)|^{2}-2 \operatorname{Re} \phi(s) \overline{\phi(t)} \\
& \leq \phi(0)^{2}+2 \operatorname{Re}(\phi(t-s)-\phi(0)) \frac{\phi(s) \overline{\phi(t)}}{\phi(0)}-|\phi(t-s)|^{2} \\
& \leq(\phi(0)-|\phi(t-s)|)(\phi(0)+|\phi(t-s)|+2 \phi(0)) \\
& \leq 4 \phi(0)|\phi(0)-\phi(t-s)| .
\end{aligned}
$$

(3) This follows from the previous estimate.

The previous lemma implies that any characteristic function ϕ is continuous everywhere and its absolute value is between 0 and 1 . In the following we find a condition for the differentiability of ϕ.

Proposition 5.29. If there is $k \in \mathbb{N}$ such that

$$
\int|x|^{k} d \alpha(x)<+\infty
$$

then ϕ is C^{k} and $\phi^{(k)}(0)=i^{k} m_{k}$.
Proof. Let $k=1$. Then,

$$
\begin{aligned}
\phi^{\prime}(t) & =\lim _{s \rightarrow 0} \frac{\phi(t+s)-\phi(t)}{s} \\
& =\lim _{s \rightarrow 0} \int e^{i t x} \frac{e^{i s x}-1}{s} d \alpha(x) \\
& =\lim _{s \rightarrow 0} \int e^{i t x} \sum_{n=1}^{+\infty} \frac{(i x)^{n}}{n!} s^{n-1} d \alpha(x) \\
& =\int e^{i t x} \sum_{n=1}^{+\infty} \frac{(i x)^{n}}{n!} \lim _{s \rightarrow 0} s^{n-1} d \alpha(x) \\
& =\int e^{i t x} i x d \alpha(x) .
\end{aligned}
$$

This integral exists (it is finite) because

$$
\left|\int e^{i t x} i x d \alpha(x)\right| \leq \int|x| d \alpha(x)<+\infty
$$

by hypothesis. Therefore, ϕ^{\prime} exists and it is a continuous function of t. In addition, $\phi^{\prime}(0)=i \int x d \alpha(x)$. The claim is proved for $k=1$.

We can now proceed by induction for the remaining cases $k \geq 2$. This is left as an exercise for the reader.
6.2. Examples. In the following there is a list of widely used distributions. For some of the examples below there is a special notation to indicate the distribution of a random variable X. For instance, if it is the Uniform distribution on $[a, b]$, we write $X \sim \mathrm{U}([\mathrm{a}, \mathrm{b}])$. Other cases are included in the next examples.

Exercise 5.30. Find the characteristic functions of the following discrete distributions $\alpha(A)=P(X \in A), A \in \mathcal{B}(\mathbb{R})$:
(1) Dirac (or degenerate or atomic) distribution

$$
\alpha(A)= \begin{cases}1, & a \in A \\ 0, & \text { o.c. }\end{cases}
$$

where $a \in \mathbb{R}$.
(2) Binomial distribution $(X \sim \operatorname{Bin})$ with $n \in \mathbb{N}$:

$$
\alpha(\{k\})=C_{k}^{n} p^{k}(1-p)^{n-k}, \quad 0 \leq k \leq n .
$$

(3) Poisson distribution ($X \sim \operatorname{Poisson}(\lambda)$) with $\lambda>0$:

$$
\alpha(\{k\})=\frac{\lambda^{k}}{k!e^{\lambda}}, \quad k \in \mathbb{N} \cup\{0\} .
$$

This describes the distribution of 'rare' events with rate λ.
(4) Geometric distribution ($X \sim \operatorname{Geom}(\mathrm{p}))$ with $0 \leq p \leq 1$:

$$
\alpha(\{k\})=(1-p)^{k} p, \quad k \in \mathbb{N} \cup\{0\} .
$$

This describes the distribution of the number of unsuccessful attempts preceding a success with probability p.
(5) Negative binomial distribution ($X \sim$ NBin):

$$
\alpha(\{k\})=C_{k}^{n+k-1}(1-p)^{k} p^{n}, \quad k \in \mathbb{N} \cup\{0\} .
$$

This describes the distribution of the number of accumulated failures before n successes. Hint: Recall the Taylor series of $\frac{1}{1-x}=\sum_{i=0}^{+\infty} x^{i}$ for $|x|<1$. Differentiate this n times and use the result.

Exercise 5.31. Find the characteristic functions of the following absolutely continuous distributions $\alpha(A)=P(X \in A)=\int_{A} f(x) d x$, $A \in \mathcal{B}(\mathbb{R})$ where f is the density function:
(1) Uniform distribution on $[a, b](X \sim \mathrm{U}([a, b]))$:

$$
f(x)= \begin{cases}\frac{1}{b-a}, & x \in[a, b] \\ 0, & \text { o.c. }\end{cases}
$$

(2) Exponential distribution $(X \sim \operatorname{Exp}(\lambda))$ with $\lambda>0$:

$$
f(x)=\lambda e^{-\lambda x}, \quad x \geq 0
$$

(3) The two-sided exponential distribution $(X \sim \operatorname{Exp}(\lambda))$, with $\lambda>0$:

$$
f(x)=\frac{\lambda}{2} e^{-\lambda|x|}, \quad x \in \mathbb{R}
$$

(4) The Cauchy distribution ($X \sim$ Cauchy):

$$
f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}, \quad x \in \mathbb{R}
$$

Hint: Use the residue theorem of complex analysis.
(5) The normal (Gaussian) distribution $(X \sim \mathrm{~N}(\mu, \sigma)$) with mean μ and variance $\sigma^{2}>0$:

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

Exercise 5.32. Let $X_{n} \sim \mathrm{U}([0,1])$ and $Y_{n}=-\frac{1}{\lambda} \log \left(1-X_{n}\right)$ with $\lambda>0$. Show that $Y_{n} \sim \operatorname{Exp}(\lambda)$.

6.3. Proof of Bochner theorem.

Proposition 5.33. Consider a distribution α and the function

$$
\phi(t)=\int e^{i t x} d \alpha(x), \quad t \in \mathbb{R}
$$

Then, ϕ is a characteristic function, i.e.
(1) $\phi(0)=1$,
(2) ϕ is uniformly continuous,
(3) ϕ is positive definite.

Proof.
(1) $\phi(0)=\int d \alpha=1$.
(2) For any $s, t \in \mathbb{R}$ we have

$$
\begin{aligned}
|\phi(t)-\phi(s)| & =\left|\int\left(e^{i t x}-e^{i s x}\right) d \alpha(x)\right| \\
& \leq \int\left|e^{i s x}\right|\left|e^{i(t-s) x}-1\right| d \alpha(x) \\
& =\int\left|e^{i(t-s) x}-1\right| d \alpha(x)
\end{aligned}
$$

Taking $s \rightarrow t$ we can use the dominated convergence theorem to show that

$$
\lim _{s \rightarrow t} \int\left|e^{i(t-s) x}-1\right| d \alpha(x)=\int \lim _{s \rightarrow t}\left|e^{i(t-s) x}-1\right| d \alpha(x)=0
$$

being enough to notice that $\left|e^{i(t-s) x}-1\right|$ is bounded. So,

$$
\lim _{s \rightarrow t}|\phi(t)-\phi(s)|=0
$$

meaning that ϕ is uniformly continuous.
(3) For all $z_{1}, \ldots, z_{n} \in \mathbb{C}, t_{1}, \ldots, t_{n} \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
\sum_{i, j=1}^{n} \phi\left(t_{i}-t_{j}\right) z_{i} \bar{z}_{j} & =\sum_{i, j=1}^{n} z_{i} \bar{z}_{j} \int e^{i\left(t_{i}-t_{j}\right) x} d \alpha(x) \\
& =\int \sum_{i=1}^{n} z_{i} e^{i t_{i} x} \sum_{j=1}^{n} \overline{z_{j} e^{i t_{j} x}} d \alpha(x) \\
& =\int\left|\sum_{i=1}^{n} z_{i} e^{i t_{i} x}\right|^{2} d \alpha(x) \geq 0
\end{aligned}
$$

PROPOSITION 5.34. If $\phi: \mathbb{R} \rightarrow \mathbb{C}$ is a characteristic function, then there is a unique distribution α such that

$$
\int e^{i t x} d \alpha(x)=\phi(t)
$$

Proof. Visit the library.

CHAPTER 6

Independence

1. Independent events

Two events A_{1} and A_{2} are independent if they do not influence each other in terms of probability. This notion is fundamental in probability theory and it is stated in general in the following way. Let (Ω, \mathcal{F}, P) be a probability space. We say that $A_{1}, A_{2} \in \mathcal{F}$ are independent events iff

$$
P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right) .
$$

A simple intuitive description of what are independent events can be achieved by assuming that $P\left(A_{2}\right)>0$. In this case we can write

$$
\frac{P\left(A_{1} \cap \Omega\right)}{P(\Omega)}=\frac{P\left(A_{1} \cap A_{2}\right)}{P\left(A_{2}\right)} .
$$

This means that A_{1} and A_{2} are independent whenever we have the same relative probability of A_{1} regardless of the restriction to the event A_{2}.

Exercise 6.1. Show that:
(1) If A_{1} and A_{2} are independent, then A_{1}^{c} and A_{2} are also independent.
(2) Any full probability event is independent of any other event. The same for any zero probability event.
(3) Two disjoint events are independent iff at least one of them has zero probability.
(4) Consider two events $A_{1} \subset A_{2}$. They are independent iff A_{1} has zero probability or A_{2} has full probability.

Example 6.2. Consider the Lebesgue measure m on $\Omega=[0,1]$ and the event $I_{1}=\left[0, \frac{1}{2}\right]$. Any other interval $I_{2}=[a, b]$ with $0 \leq a<b \leq 1$ that is independent of I_{1} has to satisfy the relation $P\left(I_{2} \cap\left[0, \frac{1}{2}\right]\right)=$ $\frac{1}{2}(b-a)$. Notice that $a \leq \frac{1}{2}$ (otherwise $I_{1} \cap I_{2}=\emptyset$) and $b \geq \frac{1}{2}$ (otherwise $\left.I_{2} \subset I_{1}\right)$. So, $b=1-a$. That is, any interval $[a, 1-a]$ with $0 \leq a \leq \frac{1}{2}$ is independent of $\left[0, \frac{1}{2}\right]$.

Exercise 6.3. Suppose that A and C are independent events as well as B and C with $A \cap B=\emptyset$. Show that $A \cup B$ and C are also independent.

Exercise 6.4. Give examples of probability measures P_{1} and P_{2}, and of events A_{1} and A_{2} such that $P_{1}\left(A_{1} \cap A_{2}\right)=P_{1}\left(A_{1}\right) P_{1}\left(A_{2}\right)$ but $P_{2}\left(A_{1} \cap A_{2}\right) \neq P_{2}\left(A_{1}\right) P_{2}\left(A_{2}\right)$. Recall that the definition of independence depends on the probability measure.

2. Independent random variables

Two random variables X, Y are independent random variables iff

$$
P\left(X \in B_{1}, Y \in B_{2}\right)=P\left(X \in B_{1}\right) P\left(Y \in B_{2}\right), \quad B_{1}, B_{2} \in \mathcal{B} .
$$

Remark 6.5. The independence between X and Y is equivalent to any of the following propositions. For any $B_{1}, B_{2} \in \mathcal{B}$,
(1) $X^{-1}\left(B_{1}\right)$ and $Y^{-1}\left(B_{2}\right)$ are independent events.
(2) $P\left((X, Y) \in B_{1} \times B_{2}\right)=P\left(X \in B_{1}\right) P\left(Y \in B_{2}\right)$.
(3) $\alpha_{Z}\left(B_{1} \times B_{2}\right)=\alpha_{X}\left(B_{1}\right) \alpha_{Y}\left(B_{2}\right)$, where $\alpha_{Z}=P \circ Z^{-1}$ is the joint distribution of $Z=(X, Y), \alpha_{X}=P \circ X^{-1}$ and $\alpha_{Y}=$ $P \circ Y^{-1}$ are the distributions of X and Y, respectively. We can therefore show that the joint distribution is the product measure

$$
\alpha_{Z}=\alpha_{X} \times \alpha_{Y} .
$$

Exercise 6.6. Show that any random variable is independent of a constant random variable.

Example 6.7. Consider simple functions

$$
X=\sum_{i=1}^{N} c_{i} \mathcal{X}_{A_{i}}, \quad Y=\sum_{j=1}^{N^{\prime}} c_{j}^{\prime} \mathcal{X}_{A_{j}^{\prime}} .
$$

Then, for any $B_{1}, B_{2} \in \mathcal{B}$,

$$
X^{-1}\left(B_{1}\right)=\bigcup_{i: c_{i} \in B_{1}} A_{i}, \quad Y^{-1}\left(B_{2}\right)=\bigcup_{j: c_{j}^{\prime} \in B_{2}} A_{j}^{\prime} .
$$

These are independent events iff A_{i} and A_{j}^{\prime} are independent for every i, j.

Proposition 6.8. Let X and Y be independent random variables. Then, there are sequences φ_{n} and φ_{n}^{\prime} of simple functions such that
(1) $\varphi_{n} \nearrow X$ and $\varphi_{n}^{\prime} \nearrow Y$,
(2) φ_{n} and φ_{n}^{\prime} are independent for every $n \in \mathbb{N}$.

Proof. We follow the idea in the proof of Proposition 3.21. The construction there guarantees that we get $\varphi_{n} \nearrow X$ and $\varphi_{n}^{\prime} \nearrow Y$ by considering the simple functions

$$
\varphi_{n}=\sum_{j=0}^{n 2^{n+1}-1}\left(-n+\frac{j}{2^{n}}\right) \mathcal{X}_{A_{n, j}}+n \mathcal{X}_{X^{-1}([n,+\infty[)}-n \mathcal{X}_{X^{-1}(]-\infty,-n[)}
$$

where

$$
A_{n, j}=X^{-1}\left(\left[-n+\frac{j}{2^{n}},-n+\frac{j+1}{2^{n}}[)\right.\right.
$$

and

$$
\varphi_{n}^{\prime}=\sum_{j=0}^{n 2^{n+1}}\left(-n+\frac{j}{2^{n}}\right) \mathcal{X}_{A_{n, j}}+n \mathcal{X}_{Y^{-1}([n,+\infty[)}-n \mathcal{X}_{Y^{-1}(]-\infty,-n[)}
$$

where

$$
A_{n, j}^{\prime}=Y^{-1}\left(\left[-n+\frac{j}{2^{n}},-n+\frac{j+1}{2^{n}}[)\right.\right.
$$

It remains to check that φ_{n} and φ_{n}^{\prime} are independent for any given n. This follows from the fact that X and Y are independent, since any pre-image of a Borel set by X and Y are independent.

Proposition 6.9. If X and Y are independent and $E\left(|X|^{2}\right), E\left(|Y|^{2}\right)$ are finite, then

$$
E(X Y)=E(X) E(Y)
$$

and

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Proof. We start by considering two independent simple functions $\varphi=\sum_{j} c_{j} \mathcal{X}_{A_{j}}$ and $\varphi^{\prime}=\sum_{j^{\prime}} c_{j^{\prime}}^{\prime} \mathcal{X}_{A_{j^{\prime}}^{\prime}}$. The independence implies that

$$
P\left(A_{j} \cap A_{j^{\prime}}^{\prime}\right)=P\left(A_{j}\right) P\left(A_{j^{\prime}}^{\prime}\right)
$$

So,

$$
E\left(\varphi \varphi^{\prime}\right)=\sum_{j, j^{\prime}} c_{j} c_{j^{\prime}}^{\prime} P\left(A_{j} \cap A_{j^{\prime}}^{\prime}\right)=E(\varphi) E\left(\varphi^{\prime}\right)
$$

The claim follows from the application of the monotone convergence theorem to sequences of simple functions $\varphi_{n} \nearrow X$ and $\varphi_{n}^{\prime} \nearrow Y$ which are independent.

Finally, it is simple to check that $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+$ $2 E(X Y)-2 E(X) E(Y)$. So, by the previous relation we complete the proof.

Proposition 6.10. If X and Y are independent random variables and f and g are \mathcal{B}-measurable functions on \mathbb{R}, then
(1) $f(X)$ and $g(Y)$ are independent.
(2) $E(f(X) g(Y))=E(f(X)) E(g(Y))$ if $E(|f(X)|), E(|g(Y)|)<$ $+\infty$.

Exercise 6.11. Prove it.
EXAMPLE 6.12. Let $f(x)=x^{2}$ and $g(y)=e^{y}$. If X and Y are independent random variables, then X^{2} and e^{Y} are also independent.

The random variables in a sequence X_{1}, X_{2}, \ldots are independent iff for any $n \in \mathbb{N}$ and $B_{1}, \ldots, B_{n} \in \mathcal{B}$ we have

$$
P\left(X_{1} \in B_{1}, \ldots, X_{n} \in B_{n}\right)=P\left(X_{1} \in B_{1}\right) \cdots P\left(X_{n} \in B_{n}\right) .
$$

That is, the joint distribution of $\left(X_{1}, \ldots, X_{n}\right)$ is equal to the product of the individual distributions for any $n \in \mathbb{N}$.

Exercise 6.13. Suppose that the random variables X and Y have only values in $\{0,1\}$. Show that if $E(X Y)=E(X) E(Y)$, then X, Y are independent.

Recall the definition of variance of a random variable X,

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2},
$$

and of covariance between X and Y,

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

Notice that if X, Y are independent, then they are uncorrelated since $\operatorname{Cov}(X, Y)=0$.

Exercise 6.14. Construct an example of two uncorrelated random variables that are not independent.

Exercise 6.15. Show that if $\operatorname{Var}(X) \neq \operatorname{Var}(Y)$, then $X+Y$ and $X-Y$ are not independent.

3. Independent σ-algebras

Two σ-algebras $\mathcal{F}_{1}, \mathcal{F}_{2}$ are independent iff every $A_{1} \in \mathcal{F}_{1}$ and $A_{2} \in$ \mathcal{F}_{2} are independent.

Exercise 6.16. Show that:
(1) If $\mathcal{G} \subset \mathcal{F}_{1}$ and $\mathcal{F}_{1}, \mathcal{F}_{2}$ are independent σ-algebras, then \mathcal{G} and \mathcal{F}_{2} are also independent.
(2) Two random variables X, Y are independent iff $\sigma(X)$ and $\sigma(Y)$ are independent.

CHAPTER 7

Conditional expectation

In this chapter we introduce the concept of conditional expectation. It will be used in the construction of stochastic processes which are not sequences of i.i.d. random variables.

1. Conditional expectation

Let (Ω, \mathcal{F}, P) be a probability space and $X: \Omega \rightarrow \mathbb{R}$ a random variable (i.e. a \mathcal{F}-measurable function). Define the signed measure $\lambda: \mathcal{F} \rightarrow \mathbb{R}$ given by

$$
\lambda(B)=\int_{B} X d P, \quad B \in \mathcal{F}
$$

Recall that the Radon-Nikodym derivative is an \mathcal{F}-measurable function and it is of course given by

$$
\frac{d \lambda}{d P}=X
$$

Consider now a σ-subalgebra $\mathcal{G} \subset \mathcal{F}$ and the restriction of λ to \mathcal{G}. That is, $\lambda_{\mathcal{G}}: \mathcal{G} \rightarrow \mathbb{R}$ such that

$$
\lambda_{\mathcal{G}}(A)=\int_{A} X d P, \quad A \in \mathcal{G} .
$$

If the random variable X is not \mathcal{G}-measurable, it is not the RadonNikodym derivative of $\lambda_{\mathcal{G}}$. We define the conditional expectation of X given \mathcal{G} as

$$
E(X \mid \mathcal{G})=\frac{d \lambda_{\mathcal{G}}}{d P} \quad \text { a.s. }
$$

which is an \mathcal{G}-measurable function. Therefore,

$$
\begin{equation*}
\lambda_{\mathcal{G}}(A)=\int_{A} E(X \mid \mathcal{G}) d P=\int_{A} X d P, \quad A \in \mathcal{G} . \tag{7.1}
\end{equation*}
$$

Remark 7.1. The conditional expectation $E(X \mid \mathcal{G})$ is a random variable on the probability space (Ω, \mathcal{G}, P).

Proposition 7.2. Let X be a random variable and $\mathcal{G} \subset \mathcal{F}$ a σ algebra.
(1) If X is \mathcal{G}-measurable, then $E(X \mid \mathcal{G})=X$ a.s. ${ }^{1}$

[^8](2) $E(E(X \mid \mathcal{G}))=E(X)$.
(3) If $X \geq 0$, then $E(X \mid \mathcal{G}) \geq 0$ a.s.
(4) $E(|E(X \mid \mathcal{G})|) \leq E(|X|)$.
(5) $E(1 \mid \mathcal{G})=1$ a.s.
(6) For every $c_{1}, c_{2} \in \mathbb{R}$ and random variables X_{1}, X_{2},
$$
E\left(c_{1} X_{1}+c_{2} X_{2} \mid \mathcal{G}\right)=c_{1} E\left(X_{1} \mid \mathcal{G}\right)+c_{2} E\left(X_{2} \mid \mathcal{G}\right)
$$
(7) If $h: \Omega \rightarrow \mathbb{R}$ is \mathcal{G}-measurable and bounded, then
$$
E(h X \mid \mathcal{G})=h E(X \mid \mathcal{G}) \quad \text { a.s }
$$
(8) If $\mathcal{G}_{1} \subset \mathcal{G}_{2} \subset \mathcal{F}$ are σ-algebras, then
$$
E\left(E\left(X \mid \mathcal{G}_{2}\right) \mid \mathcal{G}_{1}\right)=E\left(X \mid \mathcal{G}_{1}\right)
$$
(9) If $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex, then
$$
E(\phi \circ X \mid \mathcal{G}) \geq \phi \circ E(X \mid \mathcal{G}) \quad \text { a.s. }
$$

Proof.
(1) If X is \mathcal{G}-measurable, then it is the Radon-Nikodym derivative of $\lambda_{\mathcal{G}}$ with respect to P.
(2) This follows from (7.1) with $A=\Omega$.
(3) Consider the set $A=\{E(X \mid \mathcal{G})<0\}$ which is in \mathcal{G} since $E(X \mid \mathcal{G})$ is \mathcal{G}-measurable. If $P(A)>0$, then by (7.1),

$$
0 \leq \int_{A} X d P=\int_{A} E(X \mid \mathcal{G}) d P<0
$$

which is false. So, $P(A)=0$.
(4) Consider the set $A=\{E(X \mid \mathcal{G}) \geq 0\} \in \mathcal{G}$. Hence,

$$
\begin{aligned}
E(|E(X \mid \mathcal{G})|) & =\int_{A} E(X \mid \mathcal{G}) d P-\int_{A^{c}} E(X \mid \mathcal{G}) d P \\
& =\int_{A} X d P-\int_{A^{c}} X d P \\
& \leq \int_{A}|X| d P+\int_{A^{c}}|X| d P=E(|X|)
\end{aligned}
$$

(5) Since $X=1$ is a constant it is \mathcal{G}-measurable. Therefore, $E(X \mid \mathcal{G})=X$ a.s.
(6) Using the linearity of the integral and (7.1), for every $A \in \mathcal{G}$,

$$
\begin{aligned}
\int_{A} E\left(c_{1} X_{1}+c_{2} X_{2} \mid \mathcal{G}\right) d P & =c_{1} \int_{A} X_{1} d P+c_{2} \int_{A} X_{2} d P \\
& =\int_{A}\left(c_{1} E\left(X_{1} \mid \mathcal{G}\right)+c_{2} E\left(X_{2} \mid \mathcal{G}\right)\right) d P
\end{aligned}
$$

Since both integrand functions are \mathcal{G}-measurable, they agree a.s.
(7) Assume that $h \geq 0$ (the general case follows from the decomposition $h=h^{+}-h^{-}$with $h^{+}, h^{-} \geq 0$). Take a sequence of \mathcal{G}-measurable non-negative simple functions $\varphi_{n} \nearrow h$ of the form

$$
\varphi_{n}=\sum_{j} c_{j} \mathcal{X}_{A_{j}}
$$

where each $A_{j} \in \mathcal{G}$. We will show first that the claim holds for simple functions and later use the monotone convergence theorem to deduce it for h. For any $A \in \mathcal{G}$ we have that $A \cap A_{j} \in \mathcal{G}$. Hence

$$
\begin{aligned}
\int_{A} E\left(\varphi_{n} X \mid \mathcal{G}\right) d P & =\int_{A} \varphi_{n} X d P \\
& =\sum_{j} c_{j} \int_{A \cap A_{j}} X d P \\
& =\sum_{j} c_{j} \int_{A \cap A_{j}} E(X \mid \mathcal{G}) d P \\
& =\int_{A} \varphi_{n} E(X \mid \mathcal{G}) d P
\end{aligned}
$$

By the monotone convergence theorem applied twice,

$$
\begin{aligned}
\int_{A} E(h X \mid \mathcal{G}) d P & =\int_{A} \lim \varphi_{n} X d P \\
& =\lim \int_{A} E\left(\varphi_{n} X \mid \mathcal{G}\right) d P \\
& =\lim \int_{A} \varphi_{n} E(X \mid \mathcal{G}) d P \\
& =\int_{A} h E(X \mid \mathcal{G}) d P
\end{aligned}
$$

(8) Let $A \in \mathcal{G}_{1}$. Then,

$$
\begin{aligned}
\int_{A} E\left(E\left(X \mid \mathcal{G}_{2}\right) \mid \mathcal{G}_{1}\right) d P & =\int_{A} E\left(X \mid \mathcal{G}_{2}\right) d P \\
& =\int_{A} X d P=\int_{A} E\left(X \mid \mathcal{G}_{1}\right) d P
\end{aligned}
$$

since A is also in \mathcal{G}_{2}.
(9) Do it as an exercise.

Remark 7.3. Whenever the σ-algebra is generated by the random variables Y_{1}, \ldots, Y_{n}, we use the notation

$$
E\left(X \mid Y_{1}, \ldots, Y_{n}\right)=E\left(X \mid \sigma\left(Y_{1}, \ldots, Y_{n}\right)\right)
$$

which reads as the conditional expectation of X given Y_{1}, \ldots, Y_{n}.

Proposition 7.4. Let $X, Y_{1}, \ldots Y_{n}$ be independent random variables. Then,

$$
E\left(X \mid Y_{1}, \ldots, Y_{n}\right)=E(X) \quad \text { a.s. }
$$

Proof. We first consider the case $X=\mathcal{X}_{B}$ for $B \in \mathcal{F}$ such that B is independent of $\sigma\left(Y_{1}, \ldots, Y_{n}\right)$. Then, for any $A \in \sigma\left(Y_{1}, \ldots, Y_{n}\right)$ we have that

$$
\int_{A} E\left(\mathcal{X}_{B} \mid Y_{1}, \ldots, Y_{n}\right) d P=\int_{A} \mathcal{X}_{B} d P=P(A \cap B)=P(A) P(B)
$$

since A and B are independent. Therefore, as $P(A)=\int_{A} d P$ we have that

$$
\int_{A} E\left(\mathcal{X}_{B} \mid Y_{1}, \ldots, Y_{n}\right) d P=\int_{A} P(B) d P
$$

Since $P(B)$ is a constant, hence $\sigma\left(Y_{1}, \ldots, Y_{n}\right)$-measurable, the equality above implies that $E\left(\mathcal{X}_{B} \mid Y_{1}, \ldots, Y_{n}\right)=P(B)=E\left(\mathcal{X}_{B}\right)$.

Choose now a sequence of simple functions $\varphi_{n} \nearrow X$ of the form $\varphi_{n}=\sum_{j} c_{j} \mathcal{X}_{A_{j}}$ such that for every $n \in \mathbb{N}$ we have that $\varphi_{n}, Y_{1}, \ldots, Y_{n}$ are independent. So, for any $A \in \sigma\left(Y_{1}, \ldots, Y_{n}\right)$, using the monotone convergence theorem,

$$
\begin{aligned}
\int_{A} E\left(X \mid Y_{1}, \ldots, Y_{n}\right) d P & =\int_{A} X d P \\
& =\lim \int_{A} \varphi_{n} d P \\
& =\lim \sum_{j} c_{j} P\left(A_{j} \cap A\right) \\
& =\lim \sum_{j} c_{j} P\left(A_{j}\right) P(A) \\
& =\lim E\left(\varphi_{n}\right) \int_{A} d P \\
& =\int_{A} E(X) d P
\end{aligned}
$$

Example 7.5. Fixing some event $B \in \mathcal{F}$ notice that the σ-algebra generated by the random variable \mathcal{X}_{B} is $\sigma\left(\mathcal{X}_{B}\right)=\left\{\emptyset, \Omega, B, B^{c}\right\}$. As $E\left(X \mid \mathcal{X}_{B}\right)$ is $\sigma\left(\mathcal{X}_{B}\right)$-measurable it is constant in B and in B^{c} :

$$
E\left(X \mid \mathcal{X}_{B}\right)(x)= \begin{cases}a_{1}, & x \in B \\ a_{2}, & x \in B^{c}\end{cases}
$$

By (7.1) we obtain the conditions

$$
\begin{aligned}
a_{1} P(B)+a_{2} P\left(B^{c}\right) & =E(X) \\
a_{1} P(B) & =\int_{B} X d P \\
a_{2} P\left(B^{c}\right) & =\int_{B^{c}} X d P
\end{aligned}
$$

So, if $0<P(B)<1$ we have

$$
\begin{aligned}
E\left(X \mid \mathcal{X}_{B}\right)(x) & = \begin{cases}\frac{\int_{B} X d P}{P(B)}, & x \in B \\
\frac{\int_{B^{c} X d P}}{P\left(B^{c}\right)}, & x \in B^{c}\end{cases} \\
& =\frac{\int_{B} X d P}{P(B)} \mathcal{X}_{B}+\frac{\int_{B^{c}} X d P}{P\left(B^{c}\right)} \mathcal{X}_{B^{c}}
\end{aligned}
$$

Finally, if $P(B)=0$ of $P(B)=1$ we have

$$
E\left(X \mid \mathcal{X}_{B}\right)(x)=E(X) \quad \text { a.e. }
$$

Remark 7.6. In the case that $P(B)>0$ we define the conditional expectation of X given the event B as the restriction of $E\left(X \mid \mathcal{X}_{B}\right)$ to B and use the notation

$$
E(X \mid B)=\left.E\left(X \mid \mathcal{X}_{B}\right)\right|_{B}=\frac{\int_{B} X d P}{P(B)}
$$

In particular, for the event $B=\{Y=y\}$ for some random variable Y and $y \in \mathbb{R}$ it is written as $E(X \mid Y=y)$.

Exercise 7.7. Let X be a random variable.
(1) Show that if $0<P(B)<1$ and $\alpha, \beta \in \mathbb{R}$, then

$$
E\left(X \mid \alpha \mathcal{X}_{B}+\beta \mathcal{X}_{B^{c}}\right)=E\left(X \mid \mathcal{X}_{B}\right)
$$

(2) Let $Y=\alpha_{1} \mathcal{X}_{B_{1}}+\alpha_{2} \mathcal{X}_{B_{2}}$ where $B_{1} \cap B_{2}=\emptyset$ and $\alpha_{1} \neq \alpha_{2}$. Find $E(X \mid Y)$.

Exercise 7.8. Let $\Omega=\{1,2,3,4,5,6\}, \mathcal{F}=\mathcal{P}(\Omega)$,

$$
\begin{aligned}
& P(\{x\})= \begin{cases}\frac{1}{16}, & x=1,2 \\
\frac{1}{4}, & x=3,4 \\
\frac{3}{16}, & x=5,6,\end{cases} \\
& X(x)= \begin{cases}2, & x=1,2 \\
8, & x=3,4,5,6,\end{cases}
\end{aligned}
$$

and $Y=4 \mathcal{X}_{\{1,2,3\}}+6 \mathcal{X}_{\{4,5,6\}}$. Find $E(X \mid Y)$.

Exercise 7.9. Let $\Omega=[0,1[, \mathcal{F}=\mathcal{B}([0,1[)$ and $P=m$ where m is the Lebesgue measure on $[0,1[$. Consider the random variables $X(\omega)=\omega$ and

$$
Y(\omega)= \begin{cases}2 \omega, & 0 \leq \omega<\frac{1}{2} \\ 2 \omega-1, & \frac{1}{2} \leq \omega<1\end{cases}
$$

(1) Find $\sigma(Y)$.
(2) By the knowledge that $E(X \mid Y)$ is $\sigma(Y)$-measurable, show that

$$
E(X \mid Y)(\omega)=E(X \mid Y)(\omega+1 / 2), \quad 0 \leq \omega<1 / 2 .
$$

(3) Reduce the problem of determining $E(X \mid Y)$ on $[0,1$ [to finding the solution of

$$
\int_{A} E(X \mid Y) d m=\frac{1}{2} \int_{A \cup(A+1 / 2)} X d m, \quad A \in \mathcal{B}([0,1 / 2[),
$$

and compute $E(X \mid Y)$.

2. Conditional probability

Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{G} \subset \mathcal{F}$ a σ-subalgebra. The conditional probability of an event $B \in \mathcal{F}$ given \mathcal{G} is defined as the \mathcal{G}-measurable function

$$
P(B \mid \mathcal{G})=E\left(\mathcal{X}_{B} \mid \mathcal{G}\right) .
$$

Remark 7.10. From the definition of conditional expectation, we obtain for any $A \in \mathcal{G}$ that

$$
\int_{A} P(B \mid \mathcal{G}) d P=\int_{A} E\left(\mathcal{X}_{B} \mid \mathcal{G}\right) d P=\int_{A} \mathcal{X}_{B} d P=P(A \cap B) .
$$

Theorem 7.11.
(1) If $P(B)=0$, then $P(B \mid \mathcal{G})=0$ a.e.
(2) If $P(B)=1$, then $P(B \mid \mathcal{G})=1$ a.e.
(3) $0 \leq P(B \mid \mathcal{G}) \leq 1$ a.e. for any $B \in \mathcal{F}$.
(4) If $B_{1}, B_{2}, \cdots \in \mathcal{F}$ are pairwise disjoint, then

$$
P\left(\bigcup_{n=1}^{+\infty} B_{n} \mid \mathcal{G}\right)=\sum_{n=1}^{+\infty} P\left(B_{n} \mid \mathcal{G}\right) \quad \text { a.e. }
$$

(5) If $B \in \mathcal{G}$, then $P(B \mid \mathcal{G})=\mathcal{X}_{B}$ a.e.

Exercise 7.12. Prove it.
Remark 7.13.
(1) Similarly to the case of the conditional expectation, we define the conditional probability of B given random variables Y_{1}, \ldots, Y_{n} by

$$
P\left(B \mid Y_{1}, \ldots, Y_{n}\right)=P\left(B \mid \sigma\left(Y_{1}, \ldots, Y_{n}\right)\right) .
$$

Moreover, given events $A, B \in \mathcal{F}$ with $P(A)>0$, we define the conditional expectation of B given A as

$$
P(B \mid A)=\left.E\left(\mathcal{X}_{B} \mid A\right)\right|_{A}=\frac{P(A \cap B)}{P(A)}
$$

which is a constant.
(2) Generally, without making any assumption on $P(A)$, the following formula is always true:

$$
P(B \mid A) P(A)=P(A \cap B) .
$$

(3) Another widely used notation concerns events determined by random variables X and Y. When $B=\{X=x\}$ and $A=$ $\{Y=y\}$ for some $x, y \in \mathbb{R}$, we write

$$
P(X=x \mid Y=y) P(Y=y)=P(X=x, Y=y)
$$

Exercise 7.14. Show that for $A, B \in \mathcal{F}$:
(1) Assuming that $P(A)>0, A$ and B are independent events iff $P(B \mid A)=P(B)$.
(2) $P(A \mid B) P(B)=P(B \mid A) P(A)$.
(3) For any sequence of pairwise disjoint sets $C_{1}, C_{2}, \cdots \in \mathcal{F}$ such that $P\left(\bigcup_{n} C_{n}\right)=1$, we have

$$
\begin{equation*}
P(A \mid B)=\sum_{n} P\left(A \cap C_{n} \mid B\right) . \tag{7.2}
\end{equation*}
$$

and

$$
\begin{equation*}
P(A \mid B)=\sum_{n} P\left(A \mid C_{n} \cap B\right) P\left(C_{n} \mid B\right) . \tag{7.3}
\end{equation*}
$$

Part 3

Stochastic processes

CHAPTER 8

General stochastic processes

First, a simple clarification. Stochastic just means random ${ }^{1}$. Stochastic processes are families of random variables with the purpose of describing the time evolution of a system when what rules it is not known. One might only be aware of the probability of its states or of the transitions between states.

For many real-world systems there is no way to determine the trajectory of a state. Given an initial condition, where is the system after a while? Due to many complex interactions, external influences and poor observation tools, it has been far more productive to study such systems through the probabilities of the relations between observations at different times. Our goal will be to find some answers eventhough there is a lack of information.

In order to formalize the above ideas, consider a probability space (Ω, \mathcal{F}, P) and the Borel measurable space $\left(\mathbb{R}^{d}, \mathcal{B}\right)$. So, taking time to be a parameter t belonging to some parameter space T, we define the state of the system at time t to be a (multidimensional) random variable ${ }^{2}$

$$
X_{t}: \Omega \rightarrow \mathbb{R}^{d}
$$

for some given $d \in \mathbb{N}$. The set of all possible states of the system is called the state space:

$$
S=\bigcup_{t \in T} X_{t}(\Omega) .
$$

A stochastic process is the family

$$
\left\{X_{t}: t \in T\right\} .
$$

It is usually denoted by its general term X_{t}.
A stochastic process X_{t} can be interpreted as the random path of a point particle in S. More specifically, for each $\omega \in \Omega$ the map $t \mapsto X_{t}(\omega)$ generates an orbit in S starting at $X_{0}(\omega)$. This is called a realization of X_{t}, since it is determined by a specific outcome $\omega \in \Omega$.

If the parameter space is countable, we will usually assume that $T \subset \mathbb{N}_{0}$. We then say that it is a discrete-time stochastic process,

[^9]corresponding to a sequence of random variables X_{n}. Otherwise it is a continuous-time stochastic process, where the parameter space T is usually an interval of \mathbb{R}.

Example 8.1. Take X_{n} to be the value of the maximum temperature reached in Lisbon at day n. The parameter space is $\mathbb{N}_{0}=$ $\{0,1,2, \ldots\}$, counting the days, and the state space is the interval

$$
S=[-273.15,+\infty[
$$

measured in degrees Celsius. Notice that it is not possible to have temperatures below the absolute zero at $-273.15^{\circ} \mathrm{C}$. The next day temperature does not usually change dramatically. This means that X_{n+1} should not be independent of X_{n}. Moreover, the distribution of the temperatures is affected by the season, as in winter is cooler than in summer. Hence, the distribution of X_{n} depends on n.

Example 8.2. Let X_{t} be the score of a football match. The possible scores are two-dimensional vectors in the state space $S=\mathbb{N}_{0} \times \mathbb{N}_{0}$. The duration of a match is 90 minutes 3, so $t \in[0,90]$ and X_{t} is a continuous stochastic process. A realization of X_{t} is a discontinuous path by assuming that a goal is instantaneous. At those random times X_{t} jumps by a vector either $(0,1)$ or $(1,0)$.

A particular simple class of stochastic processes are the ones corresponding to independent and identically distributed (iid) random variables. In this case each X_{t} is independent of any other and they all share the same distribution. Any realization of such process will correspond to the repetition of the same experiment under exactly the same conditions. A basic example is the repetition of the tossing of a fair coin.

[^10]
CHAPTER 9

Sums of iid processes: Limit theorems

In this chapter we consider a discrete independent and identically distributed (iid) stochastic process X_{n}, but we will be interested in the stochastic process that corresponds to the sum of the first n terms:

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

Exercise 9.1. Show that the S_{n} 's are no longer independent random variables.

Furthermore, we will prove in the following that each S_{n} will have a different distribution. More spectacularly, by rescaling S_{n} appropriately, it is possible to find a limit distribution, i.e. the distributions will converge in an appropriate sense as $n \rightarrow+\infty$.

1. Distribution of sums

Let (Ω, \mathcal{F}, P) be a probability space and X_{1}, X_{2} random variables with distributions α_{1}, α_{2}, respectively. Consider the measurable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$, which is measurable with respect to the product Borel σ-algebra \mathcal{G}.

The convolution of α_{1} and α_{2} is defined to be the induced product measure on \mathcal{B}

$$
\alpha_{1} * \alpha_{2}=\left(\alpha_{1} \times \alpha_{2}\right) \circ f^{-1} .
$$

In addition, $\alpha_{1} * \alpha_{2}(\Omega)=1$. So, the convolution is a distribution which turns out to be of the random variable $X_{1}+X_{2}$.

Proposition 9.2.
(1) For every $A \in \mathcal{B}$,

$$
\left(\alpha_{1} * \alpha_{2}\right)(A)=\int \alpha_{1}\left(A-x_{2}\right) d \alpha_{2}\left(x_{2}\right)
$$

where $A-x_{2}=\left\{y-x_{2} \in \mathbb{R}: y \in A\right\}$.
(2) The characteristic function of $\alpha_{1} * \alpha_{2}$ is

$$
\phi_{\alpha_{1} * \alpha_{2}}=\phi_{\alpha_{1}} \phi_{\alpha_{2}},
$$

where $\phi_{\alpha_{i}}$ is the characteristic function of α_{i}.
(3) $\alpha_{1} * \alpha_{2}=\alpha_{2} * \alpha_{1}$.

Proof. Writing $f_{x_{2}}\left(x_{1}\right)=f\left(x_{1}, x_{2}\right)$ and using Proposition 4.19 and the Fubini theorem we get:
(1)

$$
\begin{aligned}
\left(\alpha_{1} * \alpha_{2}\right)(A) & =\int \mathcal{X}_{A}(y) d\left(\alpha_{1} * \alpha_{2}\right)(y) \\
& =\int \mathcal{X}_{A} \circ f\left(x_{1}, x_{2}\right) d\left(\alpha_{1} \times \alpha_{2}\right)\left(x_{1}, x_{2}\right) \\
& =\iint \mathcal{X}_{f_{x_{2}}^{-1}(A)}\left(x_{1}\right) d \alpha_{1}\left(x_{1}\right) d \alpha_{2}\left(x_{2}\right) \\
& =\int \alpha_{1}\left(f_{x_{2}}^{-1}(A)\right) d \alpha_{2}\left(x_{2}\right) \\
& =\int \alpha_{1}\left(A-x_{2}\right) d \alpha_{2}\left(x_{2}\right) .
\end{aligned}
$$

(2)

$$
\begin{aligned}
\phi_{\alpha_{1} * \alpha_{2}}(t) & =\int e^{i t y} d\left(\alpha_{1} * \alpha_{2}\right)(y) \\
& =\int e^{i t f\left(x_{1}, x_{2}\right)} d\left(\alpha_{1} \times \alpha_{2}\right)\left(x_{1}, x_{2}\right) \\
& =\int e^{i t x_{1}} d \alpha_{1} \int e^{i t x_{2}} d \alpha_{2} .
\end{aligned}
$$

(3) By the previous result, it follows from the fact that the characteristic functions are equal.

Proposition 9.3. Let X_{1}, \ldots, X_{n} be independent random variables with distributions $\alpha_{1}, \ldots, \alpha_{n}$, respectively. Then,
(1) $\mu_{n}=\alpha_{1} * \cdots * \alpha_{n}$ is the distribution of S_{n}.
(2) $\phi_{\mu_{n}}=\phi_{\alpha_{1}} \ldots \phi_{\alpha_{n}}$ is the characteristic function of μ_{n}.
(3) $E\left(S_{n}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)$.
(4) $\operatorname{Var}\left(S_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$.

Exercise 9.4. Prove it.
Example 9.5. Let $\lambda \in] 0,1[$. Consider a sequence of independent random variables $X_{n}: \Omega \rightarrow\left\{-\lambda^{n}, \lambda^{n}\right\}$ with Bernoulli distributions

$$
\alpha_{n}=\frac{1}{2}\left(\delta_{-\lambda^{n}}+\delta_{\lambda^{n}}\right) .
$$

The characteristic function of α_{n} is

$$
\phi_{X_{n}}(t)=\cos \left(t \lambda^{n}\right) .
$$

The distribution of S_{n} is $\mu_{n}=\alpha_{1} * \cdots * \alpha_{n}$ and it is called a Bernoulli convolution. The characteristic function is

$$
\phi_{S_{n}}(t)=\prod_{i=1}^{n} \cos \left(t \lambda^{i}\right)
$$

2. Law of large numbers

Let (Ω, \mathcal{F}, P) be a probability space and X_{1}, X_{2}, \ldots a sequence of random variables. We say that the sequence is i.d.d. if the random variables are independent and identically distributed. That is, all of the random variables are independent and share the same distribution $\alpha=P \circ X_{n}^{-1}, n \in \mathbb{N}$.

Theorem 9.6 (Weak law of large numbers). Let X_{1}, X_{2}, \ldots be an i.i.d. sequence of random variables. If $E\left(\left|X_{1}\right|\right)<+\infty$, then

$$
\frac{S_{n}}{n} \xrightarrow{P} E\left(X_{1}\right)
$$

Proof. Let ϕ be the characteristic function of the distribution of X_{1} (it is the same for every $X_{n}, n \in \mathbb{N}$). Since $E\left(\left|X_{1}\right|\right)<+\infty$, we have $\phi^{\prime}(0)=i E\left(X_{1}\right)$. So, the first order Taylor expansion of ϕ around 0 is

$$
\phi(t)=1+i E\left(X_{1}\right) t+o(t)
$$

where $|t|<r$ for some sufficiently small $r>0$. For any fixed $t \in \mathbb{R}$ and n sufficiently large such that $|t| / n<r$ we have

$$
\phi\left(\frac{t}{n}\right)=1+i E\left(X_{1}\right) \frac{t}{n}+o\left(\frac{t}{n}\right)
$$

Thus, for those values of t and n, the random variable $M_{n}=\frac{1}{n} S_{n}$ has characteristic function

$$
\phi_{n}(t)=\phi\left(\frac{t}{n}\right)^{n}=\left[1+i E\left(X_{1}\right) \frac{t}{n}+o\left(\frac{t}{n}\right)\right]^{n}
$$

Finally, using the fact that $(1+a / n+o(1 / n))^{n} \rightarrow e^{a}$ whenever $n \rightarrow+\infty$, we get

$$
\lim _{n \rightarrow+\infty} \phi_{n}(t)=e^{i E\left(X_{1}\right) t} .
$$

This is the characteristic function of the Dirac distribution at $E\left(X_{1}\right)$, corresponding to the constant random variable $E\left(X_{1}\right)$. Therefore, M_{n} converges in distribution to $E\left(X_{1}\right)$ and also in probability by Proposition 5.20.

Remark 9.7. Notice that

$$
\frac{S_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

is the average of the random variables X_{1}, \ldots, X_{n}. So, the weak law of large numbers states that the average converges in probability to the expected value.

Exercise 9.8. Show that the weak law of large numbers does not hold for the Cauchy distribution.

The law of large numbers can be improved by getting a stronger convergence. For the theorem below we will use the following estimate.

Exercise 9.9. Show that for any $t, p>0$ we have

$$
\begin{equation*}
P(X \geq t) \leq \frac{1}{t^{p}} E\left(|X|^{p}\right) \tag{9.1}
\end{equation*}
$$

THEOREM 9.10 (Strong law of large numbers). Let X_{1}, X_{2}, \ldots be an i.i.d. sequence of random variables. If $E\left(\left|X_{1}\right|^{4}\right)<+\infty$, then

$$
\frac{S_{n}}{n} \rightarrow E\left(X_{1}\right) \quad \text { a.s. }
$$

Proof. Suppose $E\left(X_{1}\right)=0$ for simplicity (the general result is left as an exercise). So, we can show by induction that $E\left(S_{n}^{2}\right)=n E\left(X_{1}^{2}\right)$ and

$$
E\left(S_{n}^{4}\right)=n E\left(X_{1}^{4}\right)+3 n(n-1) E\left(X_{1}^{2}\right)^{2}
$$

Therefore, $E\left(S_{n}^{4}\right) \leq n E\left(\left|X_{1}\right|^{4}\right)+3 n^{2} \sigma^{4}$.
Now, for any $\delta>0$, using (9.1),

$$
P\left(\left|\frac{S_{n}}{n}\right| \geq \delta\right)=P\left(\left|S_{n}\right| \geq n \delta\right) \leq \frac{n E\left(\left|X_{1}\right|^{4}\right)+3 n^{2} \sigma^{4}}{n^{4} \delta^{4}}
$$

This implies that

$$
\sum_{n \geq 1} P\left(\left|\frac{S_{n}}{n} \geq \delta\right|\right)<+\infty
$$

and the claim follows from the first Borel-Cantelli lemma (Exercise 2.38), i.e. $S_{n} / n \rightarrow 0$ a.s.

3. Central limit theorem

Let (Ω, \mathcal{F}, P) be a probability space.
Theorem 9.11 (Central limit theorem). Let X_{1}, X_{2}, \ldots be an i.i.d. sequence of random variables. If $E\left(X_{1}\right)=0$ and $\sigma^{2}=\operatorname{Var}\left(X_{1}\right)<+\infty$, then for every $x \in \mathbb{R}$,

$$
P\left(\frac{S_{n}}{\sqrt{n}} \leq x\right) \rightarrow \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} e^{-t^{2} / 2 \sigma^{2}} d t
$$

Remark 9.12. The central limit theorem states that S_{n} / \sqrt{n} converges in distribution to a random variable with the normal distribution.

Proof. It is enough to show that the characteristic function ϕ_{n} of $\frac{S_{n}}{\sqrt{n}}$ converges to the characteristic function of the normal distribution.

Let ϕ be the characteristic function of X_{n} for any n. Its Taylor expansion of second order at 0 is

$$
\phi(t)=1-\frac{1}{2} \sigma^{2} t^{2}+o\left(t^{2}\right)
$$

with $|t|<r$ for some $r>0$. So, for a fixed $t \in \mathbb{R}$ and n satisfying $|t| / \sqrt{n}<r$ (i.e. $n>t^{2} / r^{2}$),

$$
\phi\left(\frac{t}{\sqrt{n}}\right)=1-\frac{1}{2} \sigma^{2} \frac{t^{2}}{n}+o\left(\frac{t^{2}}{n}\right) .
$$

Then,

$$
\phi_{n}(t)=\phi\left(\frac{t}{\sqrt{n}}\right)^{n}=\left[1-\frac{1}{2} \sigma^{2} \frac{t^{2}}{n}+o\left(\frac{t^{2}}{n}\right)\right]^{n} .
$$

Taking the limit as $n \rightarrow+\infty$ we obtain

$$
\phi_{n}(t) \rightarrow e^{-\sigma^{2} t^{2} / 2}
$$

Exercise 9.13. Write the statement of the central limit theorem for sequences of i.i.d. random variables X_{n} with mean μ. Hint: Apply the theorem to $X_{n}-\mu$ which has zero mean.

CHAPTER 10

Markov chains

1. The Markov property

Let (Ω, \mathcal{F}, P) be a probability space and $S \subset \mathbb{R}$ a countable set called the state space. For convenience we often choose S to be

$$
S=\{1,2, \ldots, N\}
$$

where $N \in \mathbb{N} \cup\{+\infty\}$ but it can also be $S=\mathbb{Z}$. We are considering both cases of S finite or infinite.

A discrete-time stochastic process X_{0}, X_{1}, \ldots is a Markov chain on S iff for all $n \geq 0$,
(1) $P\left(X_{n} \in S\right)=1$,
(2) it satisfies the Markov property: for every $i_{0}, \ldots, i_{n} \in S$,

$$
P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right) .
$$

This means that the next future state (at time $n+1$) only depends on the present one (at time n). The system does not have "memory" of the past.

We will see that the distributions of each X_{1}, X_{2}, \ldots are determined by the knowledge of the above conditional probabilities (that control the evolution of the system) and the initial distribution of X_{0}.

Denote by

$$
\pi_{i, j}^{n}=P\left(X_{n}=j \mid X_{n-1}=i\right)
$$

the transition probability of moving from state i to state j at time $n \geq 1$. This defines the transition probability matrix at time n given by

$$
T_{n}=\left[\pi_{i, j}^{n}\right]_{i, j \in S} .
$$

Notice that T_{n} can be an infinite matrix if S is infinite.
Proposition 10.1. The sum of the coefficients in each row of T_{n} equals 1.

Proof. The sum of the coefficients in the i-th row of T_{n} is

$$
\begin{aligned}
\sum_{j \in S} \pi_{i, j}^{n} & =\sum_{j \in S} P\left(X_{n}=j \mid X_{n-1}=i\right) \\
& =P\left(\bigcup_{j \in S}\left\{X_{n}=j\right\} \mid X_{n-1}=i\right) \\
& =P\left(X_{n} \in S \mid X_{n-1}=i\right) \\
& =1
\end{aligned}
$$

because $P\left(X_{n} \in S\right)=1$.
A matrix M with dimension $r \times r(r \in \mathbb{N}$ or $r=+\infty)$ is called a stochastic matrix iff all its coefficients are non-negative and

$$
M(1,1, \ldots)=(1,1, \ldots),
$$

i.e. the sum of each row coefficients equals 1 . Thus, the product of two stochastic matrices M_{1} and M_{2} is also a stochastic matrix since the coefficients are again non-negative and $M_{1} M_{2}(1, \ldots, 1)=M_{1}(1, \ldots, 1)=$ $(1, \ldots, 1)$.

The matrices T_{n} are stochastic by Proposition 10.1.
Example 10.2. Consider the state space $S=\{1,2,3\}$ and the matrix

$$
T_{n}=\left[\begin{array}{ccc}
\frac{1}{2^{n}} & \frac{2^{n}-1}{2^{n}} & 0 \\
\frac{1}{2 n} & \frac{n^{2}-1}{2 n} & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right] .
$$

This is a stochastic matrix that corresponds to a Markov chain with the transition probability of moving from state i to state j at time n given by the entry i, j of T_{n}.

2. Distributions

Let X_{n} be a Markov chain. The distribution of each $X_{n}, n \geq 0$, given by $P \circ X_{n}^{-1}$, can be represented by a vector with dimension equal to $\# S$:

$$
\alpha_{n}=\left(\alpha_{n, 1}, \alpha_{n, 2}, \ldots\right) \quad \text { where } \quad \alpha_{n, j}=P\left(X_{n}=j\right), \quad j \in S .
$$

We say that α_{n} is the distribution of X_{n}. Notice that

$$
\alpha_{n} \cdot(1,1, \ldots)=1 .
$$

We can now determine the distribution of the chain at each time n from the initial distribution and the transition probabilities.

Proposition 10.3. If α_{0} is the distribution of X_{0}, then

$$
\alpha_{n}=\alpha_{0} T_{1} \ldots T_{n}
$$

is the distribution of $X_{n}, n \geq 1$.

Proof. If $n=1$ the formula states that

$$
\begin{aligned}
\alpha_{1, j} & =\sum_{k \in S} \alpha_{0, k} \pi_{k, j}^{1} \\
& =\sum_{k} P\left(X_{0}=k\right) P\left(X_{1}=j \mid X_{0}=k\right) \\
& =\sum_{k} P\left(X_{1}=j, X_{0}=k\right) \\
& =P\left(X_{1}=j\right)
\end{aligned}
$$

which is the distribution of X_{1}. We proceed by induction for $n \geq 2$ assuming that $\alpha_{n-1}=\alpha_{0} T_{1} \ldots T_{n-1}$ is the distribution of X_{n-1}. So,

$$
\begin{aligned}
\alpha_{n, j} & =\sum_{k} \alpha_{n-1, k} \pi_{k, j}^{n} \\
& =\sum_{k} P\left(X_{n-1}=k\right) P\left(X_{n}=j \mid X_{n-1}=k\right) \\
& =\sum_{k} P\left(X_{n}=j, X_{n-1}=k\right) \\
& =P\left(X_{n}=j\right)
\end{aligned}
$$

that is the distribution of X_{n}.
Example 10.4. Using the setting of Example 10.2 and the initial distribution $\alpha_{0}=(1,0,0)$ of X_{0}, we obtain that the distribution of X_{1} is given by

$$
\alpha_{1}=\alpha_{0} T_{1}=\left(\frac{1}{2}, \frac{1}{2}, 0\right)
$$

That is, $P\left(X_{1}=1\right)=P\left(X_{1}=2\right)=\frac{1}{2}, P\left(X_{1}=3\right)=0$. Moreover, the distribution of X_{2} is

$$
\alpha_{2}=\alpha_{1} T_{2}=\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right) .
$$

A vector $\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in S \times \cdots \times S$ defines a trajectory of states visited by the stochastic process up to time n. We are interested in computing its probability.

Proposition 10.5. If α_{0} is the distribution of X_{0}, then for any $i_{0}, \ldots, i_{n} \in S$ and $n \geq 1$,

$$
P\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=\alpha_{0, i_{0}} \pi_{i_{0}, i_{1}}^{1} \ldots \pi_{i_{n-1}, i_{n}}^{n}
$$

Proof. Starting at $n=1$ we have

$$
\begin{aligned}
P\left(X_{0}=i_{0}, X_{1}=i_{1}\right) & =P\left(X_{0}=i_{0}\right) P\left(X_{1}=i_{1} \mid X_{0}=i_{0}\right) \\
& =\alpha_{0, i_{0}} \pi_{i_{0}, i_{1}}^{1}
\end{aligned}
$$

By induction, for $n \geq 2$ and assuming that $P\left(X_{0}=i_{0}, \ldots, X_{n-1}=\right.$ $\left.i_{n-1}\right)=\alpha_{0, i_{0}} \pi_{i_{0}, i_{1}}^{1} \ldots \overline{\pi_{i_{n-2}, i_{n-1}}^{n-1}}$ we get

$$
\begin{aligned}
P\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)= & P\left(X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right) \\
& P\left(X_{n}=i_{n} \mid X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right) \\
= & \alpha_{0, i_{0}} \pi_{i_{0}, i_{1}}^{1} \ldots \pi_{i_{n-2}, i_{n-1}}^{n-1} P\left(X_{n}=i_{n} \mid X_{n-1}=i_{n-1}\right) \\
= & \alpha_{0, i_{0}} \pi_{i_{0}, i_{1}}^{1} \ldots \pi_{i_{n-1}, i_{n}}^{n}
\end{aligned}
$$

where we have used the Markov property.
Example 10.6. Using the setting of Example 10.4, the probability of starting at state 1 , then moving to state 2 and next back to 1 is

$$
P\left(X_{0}=1, X_{1}=2, X_{2}=1\right)=1 \frac{1}{2} \frac{1}{4}=\frac{1}{8}
$$

The probability of a trajectory given an initial state is now simple to obtain. It also follows the n-step transition probability.

Proposition 10.7. If $P\left(X_{0}=i\right)>0$, then
(1) $P\left(X_{1}=i_{1}, \ldots, X_{n}=i_{n} \mid X_{0}=i\right)=\pi_{i, i_{1}}^{1} \ldots \pi_{i_{n-1}, i_{n}}^{n}$.

$$
\begin{equation*}
P\left(X_{n}=j \mid X_{0}=i\right)=\pi_{i, j}^{(n)} \tag{2}
\end{equation*}
$$

where $\pi_{i, j}^{(n)}$ is the (i, j)-coefficient of the product matrix $T_{1} \ldots T_{n}$.
Proof.
(1) It is enough to observe that

$$
P\left(X_{1}=i_{1}, \ldots, X_{n}=i_{n} \mid X_{0}=i\right)=\frac{P\left(X_{0}=i, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right)}{P\left(X_{0}=i\right)}
$$

and use Proposition 10.5.
(2) Using the previous result and (7.2),

$$
\begin{aligned}
P\left(X_{n}=j \mid X_{0}=i\right) & =\sum_{i_{1}, \ldots, i_{n-1}} P\left(X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=j \mid X_{0}=i\right) \\
& =\sum_{i_{1}, \ldots, i_{n-1}} \pi_{i, i_{1}}^{1} \pi_{i_{1}, i_{2}}^{2} \ldots \pi_{i_{n-2}, i_{n-1}}^{n-1} \pi_{i_{n-1}, j}^{n} .
\end{aligned}
$$

Now, notice that

$$
\begin{aligned}
\sum_{i_{1}} \pi_{i, i_{1}}^{1} \pi_{i_{1}, i_{2}}^{2} & =\sum_{i_{1}} P\left(X_{2}=i_{2} \mid X_{1}=i_{1}, X_{0}=i\right) P\left(X_{1}=i_{1} \mid X_{0}=i\right) \\
& =P\left(X_{2}=i_{2} \mid X_{0}=i\right)
\end{aligned}
$$

where we have used the fact that it is a Markov chain and (7.3). Moreover, using the same arguments

$$
\begin{aligned}
\sum_{i_{2}} P\left(X_{2}=i_{2} \mid X_{0}=i\right) \pi_{i_{2}, i_{3}}^{3} & =\sum_{i_{1}} P\left(X_{3}=i_{3} \mid X_{2}=i_{2}, X_{0}=i\right) P\left(X_{2}=i_{2} \mid X_{0}=i\right) \\
& =P\left(X_{3}=i_{3} \mid X_{0}=i\right)
\end{aligned}
$$

Therefore, repeating the same ideia up to the sum in i_{n-1}, we finally prove the claim.

Example 10.8. Following the previous examples we have

$$
T_{1} T_{2}=\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{8} & \frac{3}{8} & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right]
$$

So, for instance

$$
P\left(X_{2}=2 \mid X_{0}=2\right)=\frac{3}{8}
$$

EXERCISE 10.9. Given any increasing sequence of positive integers u_{n}, show that the sequence of (stochastic) product matrices

$$
T_{1} \ldots T_{u_{1}}, T_{u_{1}+1} \ldots T_{u_{2}}, T_{u_{2}+1} \ldots T_{u_{3}}, \ldots
$$

corresponds to the transition matrices of the Markov chain

$$
X_{0}, X_{u_{1}}, X_{u_{2}}, X_{u_{3}} \ldots
$$

3. Homogeneous Markov chains

From now on we will restrict our attention to a special class of Markov chains, when the transition probabilities do not depend on the time n, i.e.

$$
T_{1}=T_{2}=\cdots=T=\left[\pi_{i, j}\right]_{i, j \in S} .
$$

These are called homogeneous Markov chains.
By Proposition 10.3 we have that the distribution of X_{n} is

$$
\alpha_{n}=\alpha_{0} T^{n} .
$$

where α_{0} is the initial distribution (i.e. the one of X_{0}) and T^{n} is the n-th power of T.

Example 10.10. Let $S=\{1,2,3\}$ and

$$
T=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
1 & 0 & 0
\end{array}\right] .
$$

We can represent this stochastic process in graphical mode.

Moreover, we can get the distribution $\alpha_{1}=\alpha_{0} T$ of X_{1} as

$$
\begin{aligned}
P\left(X_{1}=1\right) & =\sum_{j=1}^{3} \pi_{i, j}^{(1)} P\left(X_{0}=j\right) \\
& =\frac{1}{2} P\left(X_{0}=1\right)+\frac{1}{3} P\left(X_{0}=2\right)+P\left(X_{0}=3\right) \\
P\left(X_{1}=2\right) & =\frac{1}{4} P\left(X_{0}=1\right)+\frac{1}{3} P\left(X_{0}=2\right) \\
P\left(X_{1}=3\right) & =\frac{1}{4} P\left(X_{0}=1\right)+\frac{1}{3} P\left(X_{0}=2\right) .
\end{aligned}
$$

Similar relations can be obtained for the distribution α_{n} of X_{n} for any $n \geq 1$. In addition, given $X_{0}=1$ the probability of a trajectory $(1,2,3,1)$ is

$$
P\left(X_{1}=2, X_{2}=3, X_{3}=1 \mid X_{0}=1\right)=\frac{1}{12}
$$

Whenever $\alpha_{0, i}=P\left(X_{0}=i\right)>0$ by (10.1) we get

$$
P\left(X_{n}=j \mid X_{0}=i\right)=\pi_{i, j}^{(n)}
$$

where $\pi_{i, j}^{(n)}$ is the (i, j)-coefficient of T^{n}. In fact, all the information about the evolution of the stochastic process is derived from the power matrix T^{n} called the n-step transition matrix. It is also a stochastic matrix. In particular, the sequence of random variables

$$
X_{0}, X_{n}, X_{2 n}, X_{3 n}, \ldots
$$

is also a Markov chain with transition matrix T^{n} and called the n-step Markov chain.

Notice that we can include the case $n=0$, since

$$
\pi_{i, j}^{(0)}=P\left(X_{0}=j \mid X_{0}=i\right)= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

This corresponds to the transition matrix $T^{0}=I$ (the identity matrix).

Example 10.11. Let

$$
T=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
1 & 0
\end{array}\right] .
$$

Then,

$$
T^{2}=\left[\begin{array}{cc}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right] \quad \text { and } \quad T^{3}=\left[\begin{array}{cc}
\frac{5}{8} & \frac{3}{8} \\
\frac{3}{4} & \frac{1}{4}
\end{array}\right] .
$$

The Markov chain corresponding to T can be represented graphically as

Moreover, the two-step Markov chain given by T^{2} looks like

Finally, the three-step Markov chain is

Exercise 10.12 (Bernoulli process). Let $S=\mathbb{N}, 0<p<1$ and

$$
\begin{aligned}
P\left(X_{n+1}=i+1 \mid X_{n}=i\right) & =p \\
P\left(X_{n+1}=i \mid X_{n}=i\right) & =1-p,
\end{aligned}
$$

for every $n \geq 0, i \in S$. The random variable X_{n} could count the number of heads in n tosses of a coin if we set $P\left(X_{0}=0\right)=1$. This is a homogeneous Markov chain with (infinite) transition matrix

$$
T=\left[\begin{array}{ccccc}
1-p & p & & & 0 \\
& 1-p & p & & \\
0 & & \ddots & \ddots &
\end{array}\right]
$$

i.e. for $i, j \in \mathbb{N}$

$$
\pi_{i, j}= \begin{cases}1-p, & i=j \\ p, & i+1=j \\ 0, & \text { o.c. }\end{cases}
$$

Show that

$$
P\left(X_{n}=j \mid X_{0}=i\right)=C_{j-i}^{n} p^{j-i}(1-p)^{n-j+i}, \quad 0 \leq j-i \leq n .
$$

4. Recurrence

Consider a homogeneous Markov chain X_{n} on S. The time of the first visit to $i \in S$ (regardless of the initial state) is the random variable $t_{i}: \Omega \rightarrow \mathbb{N} \cup\{+\infty\}$ given by

$$
t_{i}= \begin{cases}\min \left\{n \geq 1: X_{n}=i\right\}, & \text { if there is } n \text { such that } X_{n}=i, \\ +\infty, & \text { if for all } n \text { we have } X_{n} \neq i\end{cases}
$$

Exercise 10.13. Show that t_{i} is a random variable.
Exercise 10.14. Show that

$$
t_{i}=\sum_{n \geq 1} \mathcal{X}_{\left\{t_{i} \geq n\right\}}
$$

The distribution of t_{i} is given by

$$
P\left(t_{i}=n\right)=P\left(X_{1} \neq i, \ldots, X_{n-1} \neq i, X_{n}=i\right), \quad n \in \mathbb{N}
$$

and

$$
P\left(t_{i}=+\infty\right)=P\left(X_{1} \neq i, X_{2} \neq i, \ldots\right)
$$

The mean recurrence time τ_{i} of the state i is the expected value of t_{i} given $X_{0}=i$,

$$
\tau_{i}=E\left(t_{i} \mid X_{0}=i\right)
$$

Using the convention

$$
+\infty \cdot a= \begin{cases}0, & a=0 \\ +\infty, & a>0\end{cases}
$$

we can write

$$
\tau_{i}=\sum_{n=1}^{+\infty} n P\left(t_{i}=n \mid X_{0}=i\right)+\infty \cdot P\left(t_{i}=+\infty \mid X_{0}=i\right)
$$

Thus, $\tau_{i} \in[1,+\infty]$. Notice also that if $P\left(X_{0}=i\right)=0$, then $\tau_{i}=E\left(t_{i}\right)$.
EXERCISE 10.15. Given a state $i \in S$, consider the function $V_{i}: \Omega \rightarrow$ $\mathbb{N} \cup\{+\infty\}$ that counts the number of times the chain visits i :

$$
V_{i}=\sum_{n=0}^{+\infty} \mathcal{X}_{\left\{X_{n}=i\right\}}
$$

(1) Show that V_{i} is a random variable.
(2) Compute the distribution of V_{i}.
(3) Determine $P\left(V_{i}=+\infty\right)$ if i is recurrent and if it is transient.
(4) Show by induction that for any $k \geq 0$,

$$
P\left(V_{i} \geq k+1 \mid X_{0}=i\right)=P\left(t_{i}<+\infty \mid X_{0}=i\right)^{k}
$$

(5) Show that

$$
P\left(V_{i}<+\infty \mid X_{0}=i\right)= \begin{cases}0 & \text { if } P\left(t_{i}=+\infty \mid X_{0}=i\right)=0 \\ 1 & \text { if } P\left(t_{i}=+\infty \mid X_{0}=i\right)>0\end{cases}
$$

5. Classification of states

A state i is called recurrent iff

$$
P\left(t_{i}=+\infty \mid X_{0}=i\right)=0 .
$$

This is equivalent to

$$
P\left(X_{1} \neq i, X_{2} \neq i, \ldots \mid X_{0}=i\right)=0
$$

and also to

$$
P\left(V_{i}=+\infty \mid X_{0}=i\right)=1
$$

It means that the process returns infinitely often to the initial state i with full probability. A state i which is not recurrent is said to be transient. So,

$$
S=R \cup T
$$

where R is the set of recurrent states and T its complementary in S.
Exercise 10.16. Compute $E\left(V_{i} \mid X_{0}=i\right)$ for i recurrent.
Remark 10.17. Notice that

$$
\begin{aligned}
\left\{X_{n}=i \text { for some } n \geq 1\right\} & =\bigcup_{n=1}^{+\infty}\left\{X_{n}=i\right\} \\
& =\left(\bigcap_{n=1}^{+\infty}\left\{X_{n} \neq i\right\}\right)^{c}
\end{aligned}
$$

Hence, $i \in R$ iff

$$
P\left(X_{n}=i \text { for some } n \geq 1 \mid X_{0}=i\right)=1
$$

Proposition 10.18. Let $i \in S$. Then,
(1) $i \in R$ iff

$$
\sum_{n=1}^{+\infty} \pi_{i, i}^{(n)}=+\infty
$$

(2) If $i \in T$, then for any $j \in S$

$$
\sum_{n=1}^{+\infty} \pi_{j, i}^{(n)}<+\infty
$$

Remark 10.19. Recall that if $\sum_{n} u_{n}<+\infty$, then $u_{n} \rightarrow 0$. On the other hand, there are sequences u_{n} that converge to 0 but the corresponding series does not converge. For example, $\sum_{n} 1 / n=+\infty$.

Proof.
(1)
(\Rightarrow) Notice first that

$$
\begin{aligned}
\sum_{n=1}^{+\infty} \pi_{i, i}^{(n)} & =\sum_{n=1}^{+\infty} P\left(X_{n}=i \mid X_{0}=i\right) \\
& =\sum_{n=1}^{+\infty} E\left(\mathcal{X}_{\left\{X_{n}=i\right\}} \mid X_{0}=i\right) \\
& =E\left(\sum_{n=1}^{+\infty} \mathcal{X}_{\left\{X_{n}=i\right\}} \mid X_{0}=i\right) \\
& =E\left(V_{i} \mid X_{0}=i\right) .
\end{aligned}
$$

This is $+\infty$ if $i \in R$.
(\Leftarrow) Suppose now that $\sum_{n} \pi_{i, i}^{(n)}=+\infty$. Using (7.3), since

$$
\sum_{k=1}^{+\infty} P\left(t_{i}=k\right)+P\left(t_{i}=+\infty\right)=1
$$

we have

$$
\begin{aligned}
\pi_{j, i}^{(n)} & =P\left(X_{n}=i \mid X_{0}=j\right) \\
& =\sum_{k=1}^{+\infty} P\left(X_{n}=i \mid t_{i}=k, X_{0}=j\right) P\left(t_{i}=k \mid X_{0}=j\right)
\end{aligned}
$$

Observe that $P\left(X_{n}=i \mid t_{i}=+\infty, X_{0}=j\right)=0$. The Markov property implies that

$$
P\left(X_{n}=i \mid t_{i}=k, X_{0}=j\right)=P\left(X_{n}=i \mid X_{k}=i\right)=\pi_{i, i}^{(n-k)}
$$

for $0 \leq k \leq n$ and it vanishes for other values of k. Recall that $\left\{t_{i}=k\right\}=\left\{X_{1} \neq 1, \ldots, X_{k-1} \neq i, X_{k}=i\right\}$ and $\pi_{i, i}^{(0)}=1$. Therefore,

$$
\begin{equation*}
\pi_{j, i}^{(n)}=\sum_{k=1}^{n} \pi_{i, i}^{(n-k)} P\left(t_{i}=k \mid X_{0}=j\right) \tag{10.2}
\end{equation*}
$$

For $N \geq 1$ and $j=i$, the following holds by resummation

$$
\begin{aligned}
\sum_{n=1}^{N} \pi_{i, i}^{(n)} & =\sum_{n=1}^{N} \sum_{k=1}^{n} \pi_{i, i}^{(n-k)} P\left(t_{i}=k \mid X_{0}=i\right) \\
& =\sum_{k=1}^{N} \sum_{n=k}^{N} \pi_{i, i}^{(n-k)} P\left(t_{i}=k \mid X_{0}=i\right) \\
& =\sum_{k=1}^{N} P\left(t_{i}=k \mid X_{0}=i\right) \sum_{n=0}^{N-k} \pi_{i, i}^{(n)} \\
& \leq \sum_{k=1}^{N} P\left(t_{i}=k \mid X_{0}=i\right)\left(1+\sum_{n=1}^{N} \pi_{i, i}^{(n)}\right)
\end{aligned}
$$

Finally,

$$
1 \geq \sum_{k=1}^{N} P\left(t_{i}=k \mid X_{0}=i\right) \geq \frac{\sum_{n=1}^{N} \pi_{i, i}^{(n)}}{1+\sum_{n=1}^{N} \pi_{i, i}^{(n)}} \rightarrow 1
$$

as $N \rightarrow+\infty$, which implies

$$
P\left(t_{i}<+\infty \mid X_{0}=i\right)=\sum_{k=1}^{+\infty} P\left(t_{i}=k \mid X_{0}=i\right)=1 .
$$

That is, i is recurrent.
(2) Consider a transient state i, i.e. $\sum_{n} \pi_{i, i}^{(n)}<+\infty$. Using (10.2) we have by resummation

$$
\begin{aligned}
\sum_{n=1}^{+\infty} \pi_{j, i}^{(n)} & =\sum_{n=1}^{+\infty} \sum_{k=1}^{n} \pi_{i, i}^{(n-k)} P\left(t_{i}=k \mid X_{0}=j\right) \\
& =\sum_{k=1}^{+\infty} P\left(t_{i}=k \mid X_{0}=j\right) \sum_{n=1}^{+\infty} \pi_{i, i}^{(n)} \\
& \leq \sum_{n=1}^{+\infty} \pi_{i, i}^{(n)}<+\infty
\end{aligned}
$$

Example 10.20. Consider the Markov chain with two states and transition matrix

$$
T=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Thus,

$$
T^{n}= \begin{cases}T, & n \text { odd } \\ I, & n \text { even } .\end{cases}
$$

It is now easy to check for $i=1,2$ that

$$
\sum_{n=1}^{+\infty} \pi_{i, i}^{(n)}=+\infty
$$

Both states are recurrent.
Remark 10.21. If $i \in T$, i.e. $P\left(t_{i}=+\infty \mid X_{0}=i\right)>0$, then $\tau_{i}=+\infty$.

So, only recurrent states can have finite mean recurrence time. We will classify them accordingly.

A recurrent state i is null iff $\tau_{i}=+\infty\left(\tau_{i}^{-1}=0\right)$. We write $i \in R_{0}$. Otherwise it is called positive, i.e. $\tau_{i} \geq 1$ and $i \in R_{+}$. Hence,

$$
R=R_{0} \cup R_{+} .
$$

Proposition 10.22. Let $i \in S$. Then,
(1) $\tau_{i}=+\infty$ iff

$$
\lim _{n \rightarrow+\infty} \pi_{i, i}^{(n)}=0
$$

(2) If $\tau_{i}=+\infty$, then for any $j \in S$

$$
\lim _{n \rightarrow+\infty} \pi_{j, i}^{(n)}=0
$$

Exercise 10.23. Prove it.
The period of a state i is given by

$$
\operatorname{Per}(i)=\operatorname{gcd}\left\{n \geq 1: \pi_{i, i}^{(n)}>0\right\}
$$

if this set is non-empty; otherwise the period is not defined. Here $g c d$ stands for the greatest common divisor. Furthermore, i is periodic iff $\operatorname{Per}(i) \geq 2$. It is called aperiodic iff $\operatorname{Per}(i)=1$.

Remark 10.24.
(1) If n is not a multiple of $\operatorname{Per}(i)$, then $\pi_{i, i}^{(n)}=0$.
(2) If $\pi_{i, i}>0$, then i is aperiodic.

Finally, a state i is said to be ergodic iff it is recurrent positive and aperiodic. We denote the set of ergodic states by E, which is a subset of R_{+}.

Exercise 10.25. * Consider a homogeneous Markov chain on the state space $S=\mathbb{N}$ given by

$$
\begin{aligned}
P\left(X_{1}=i \mid X_{0}=i\right)=r, & i \geq 2, \\
P\left(X_{1}=i-1 \mid X_{0}=i\right)=1-r, & i \geq 2, \\
P\left(X_{1}=j \mid X_{0}=1\right)=\frac{1}{2^{j}}, & j \geq 1 .
\end{aligned}
$$

Classify the states of the chain and find their mean recurence times by computing the probability of first return after n steps, $P\left(t_{i}=n \mid X_{0}=i\right)$ for $i \in S$.

Exercise 10.26. Show that
(1) $i \in R_{+}$iff $\sum_{n} \pi_{i, i}^{(n)}=+\infty$ and $\lim _{n \rightarrow+\infty} \pi_{i, i}^{(n)} \neq 0$.
(2) $i \in R_{0}$ iff $\sum_{n} \pi_{i, i}^{(n)}=+\infty$ and $\lim _{n \rightarrow+\infty} \pi_{i, i}^{(n)}=0$.
(3) $i \in T$ iff $\sum_{n} \pi_{i, i}^{(n)}<+\infty$ (in particular $\lim _{n \rightarrow+\infty} \pi_{i, i}^{(n)}=0$).

Conclude that $\tau_{i}=+\infty$ iff $\lim _{n \rightarrow+\infty} \pi_{i, i}^{(n)}=0$.

6. Decomposition of chains

Let $i, j \in S$. We write

$$
i \rightarrow j
$$

whenever there is $n \geq 0$ such that $\pi_{i, j}^{(n)}>0$. That is, the probability of eventually moving from i to j is positive. Moreover, we use the notation

$$
i \longleftrightarrow j
$$

if $i \rightarrow j$ and $j \rightarrow i$ simultaneously.
Exercise 10.27. Consider $i \neq j$. Show that $i \rightarrow j$ is equivalent to

$$
\sum_{n=1}^{+\infty} P\left(t_{j}=n \mid X_{0}=i\right)>0
$$

Proposition 10.28. \longleftrightarrow is an equivalence relation on S.
Proof. Since $\pi_{i, i}^{(0)}=1$, we always have $i \longleftrightarrow i$. Moreover, having $i \longleftrightarrow j$ is clearly equivalent to $j \longleftrightarrow i$. Finally, given any three states i, j, k such that $i \longleftrightarrow j$ and $j \longleftrightarrow k$, the probability of moving from i to k is positive because it is greater or equal than the product of the probabilities of moving from i to j and from j to k. In the same way we obtain that $k \rightarrow i$. So, $i \longleftrightarrow k$.

Denote the sets of all states that are equivalent to a given $i \in S$ by

$$
[i]=\{j \in S: i \longleftrightarrow j\}
$$

which is called the equivalence class of i. Of course, $[i]=[j]$ iff $i \longleftrightarrow j$. The equivalence classes are also known as irreducible sets.

Theorem 10.29. If $j \in[i]$, then
(1) $\operatorname{Per}(i)=\operatorname{Per}(j)$.
(2) i is recurrent iff j is recurrent.
(3) i is null recurrent iff j is null recurrent.
(4) i is positive recurrent iff j is positive recurrent.
(5) i is ergodic iff j is ergodic.

Proof. We will just prove (2). The remaining cases are similar and left as an exercise.

Notice first that

$$
\begin{aligned}
\pi_{i, i}^{(m+n+r)} & =\sum_{k} \pi_{i, k}^{(m+n)} \pi_{k, i}^{(r)} \\
& \geq \pi_{i, j}^{(m+n)} \pi_{j, i}^{(r)} \\
& =\sum_{k} \pi_{i, k}^{(m)} \pi_{k, j}^{(n)} \pi_{j, i}^{(r)} \\
& \geq \pi_{i, j}^{(m)} \pi_{j, j}^{(n)} \pi_{j, i}^{(r)}
\end{aligned}
$$

Since $i \longleftrightarrow j$, there are $m, r \geq 0$ such that $\pi_{i, j}^{(m)} \pi_{j, i}^{(r)}>0$. So,

$$
\pi_{j, j}^{(n)} \leq \frac{\pi_{i, i}^{(m+n+r)}}{\pi_{i, j}^{(m)} \pi_{j, i}^{(r)}}
$$

This implies that

$$
\begin{aligned}
\sum_{n=1}^{+\infty} \pi_{j, j}^{(n)} & \leq \frac{1}{\pi_{i, j}^{(m)} \pi_{j, i}^{(r)}} \sum_{n=1}^{+\infty} \pi_{i, i}^{(m+n+r)} \\
& \leq \frac{1}{\pi_{i, j}^{(m)} \pi_{j, i}^{(r)}} \sum_{n=1}^{+\infty} \pi_{i, i}^{(n)}
\end{aligned}
$$

Therefore, if i is transient, i.e.

$$
\sum_{n=1}^{+\infty} \pi_{i, i}^{(n)}<+\infty
$$

then j is also transient.
Consider a subset of the states $C \subset S$. We say that C is closed iff for every $i \in C$ and $j \notin C$ we have $\pi_{i, j}^{(1)}=0$. This means that moving out of C is an event of probability zero. It does not exclude outside states from moving inside C, i.e. we can have $\pi_{j, i}^{(1)}>0$.

A closed set C made of only one state is called an absorving state.
Proposition 10.30. If $i \in R$, then [i] is closed.
Proof. Suppose that $[i]$ is not closed. Then, there is some $j \notin[i]$ such that $\pi_{i, j}^{(1)}>0$. That is, $i \rightarrow j$ but $j \nrightarrow i$ (otherwise j would be in
[i]). So,

$$
\begin{aligned}
P\left(\bigcap_{n \geq 1}\left\{X_{n} \neq i\right\} \mid X_{0}=i\right) & \geq P\left(\left\{X_{1}=j\right\} \cap \bigcap_{n \geq 2}\left\{X_{n} \neq i\right\} \mid X_{0}=i\right) \\
& =P\left(X_{1}=j \mid X_{0}=i\right)=\pi_{i, j}^{(1)}>0 .
\end{aligned}
$$

Taking the complementary set

$$
P\left(\bigcup_{n \geq 1}\left\{X_{n}=i\right\} \mid X_{0}=i\right)=1-P\left(\bigcap_{n \geq 1}\left\{X_{n} \neq i\right\} \mid X_{0}=i\right)<1
$$

This means that $i \in T$.
The previous proposition implies the following decomposition of the state space.

Theorem 10.31 (Decomposition). Any state space S can be decomposed into the union of the set of transient states T and closed recurrent irreducible sets C_{1}, C_{2}, \ldots :

$$
S=T \cup C_{1} \cup C_{2} \cup \ldots
$$

Remark 10.32.
(1) If $[i]$ is not closed, then $i \in T$.
(2) If X_{0} is in C_{k}, then X_{n} stays in C_{k} forever with probability 1.
(3) If X_{0} is in T, then X_{n} stays in T or moves eventually to one of the C_{k} 's. If the state space is finite, it can not stay in T forever.

Exercise 10.33. If X_{n} is an irreducible Markov chain with period d, is $Y_{n}=X_{n d}$ also an irreducible Markov chain? If yes, what is the period of Y_{n} ?

6.1. Finite closed sets.

Proposition 10.34. If $C \subset S$ is closed and finite, then

$$
C \cap R=C \cap R_{+} \neq \emptyset
$$

Moreover, if C is a irreducible set, then $C \subset R_{+}$.
Proof. Suppose that all states are transient. Then, for any $i, j \in$ C we have $\pi_{j, i}^{(n)} \rightarrow 0$ as $n \rightarrow+\infty$ by Proposition 10.18. Moreover, for any $j \in C$ we have

$$
\sum_{i \in C} \pi_{j, i}^{(n)}=1
$$

So, for any $\varepsilon>0$ there is $N \in \mathbb{N}$ such that for any $n \geq N$ we have $\pi_{j, i}^{(n)}<\varepsilon$. Therefore,

$$
1=\sum_{i \in C} \pi_{j, i}^{(n)}<\varepsilon \# C,
$$

which implies for any ε that $\# C>1 / \varepsilon$. That is, C is infinite.
Assume now that there is $i \in R_{0} \cap C$. So, by Proposition 10.22 we have for any $j \in C$ that $\pi_{j, i}^{(n)} \rightarrow 0$ as $n \rightarrow+\infty$. As

$$
\sum_{j \in C} \pi_{j, i}^{(n)}>c
$$

for some constant $c>0$ and the limit of the left hand side is zero unless C is infinite.

Finally, if C is irreducible all its states have the same recurrence property. Since at least one is in R_{+}, then all are in R_{+}.

Remark 10.35. The previous result implies that if $[i]$ is finite and closed, then $[i] \subset R_{+}$. In particular, if S is finite and irreducible (notice that it is always closed), then $S=R_{+}$.

Example 10.36. Consider the finite state space $S=\{1,2,3,4,5,6\}$ and the transition probabilities matrix

$$
T=\left[\begin{array}{cccccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\
\frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right] .
$$

It is simple to check that $1 \longleftrightarrow 2,3 \longleftrightarrow 4$ and $5 \longleftrightarrow 6$. We have that $[1]=\{1,2\}$ and $[5]=\{5,6\}$ are irreducible closed sets, while $[3]=\{3,4\}$ is not closed. So, the states in [1] and [5] are positive recurrent and in [3] are transient.

7. Stationary distributions

Consider a homogeneous Markov chain X_{n} on a state space S. Given an initial distribution α of X_{0}, we have seen that the distribution of X_{n} is given by $\alpha_{n}=\alpha T^{n}, n \in \mathbb{N}$. A special case is when the distribution stays the same for all times n, i.e. $\alpha_{n}=\alpha$. So, a distribution α on S is called stationary iff

$$
\alpha T=\alpha
$$

Example 10.37. Consider a Markov chain with $S=\mathbb{N}$ and for any $i \in S$

$$
P\left(X_{1}=1 \mid X_{0}=i\right)=\frac{1}{2}, \quad P\left(X_{1}=i+1 \mid X_{0}=i\right)=\frac{1}{2}
$$

A stationary distribution has to satisfy

$$
P\left(X_{0}=i\right)=P\left(X_{1}=i\right), \quad i \in S
$$

So,

$$
P\left(X_{0}=i\right)=\sum_{j} P\left(X_{1}=i \mid X_{0}=j\right) P\left(X_{0}=j\right)
$$

If $i=1$, this implies that

$$
P\left(X_{0}=1\right)=\frac{1}{2} \sum_{j} P\left(X_{0}=j\right)=\frac{1}{2}
$$

If $i \geq 2$,

$$
\begin{aligned}
P\left(X_{0}=i\right) & =P\left(X_{1}=i \mid X_{0}=i-1\right) P\left(X_{0}=i-1\right) \\
& =\frac{1}{2} P\left(X_{0}=i-1\right) .
\end{aligned}
$$

So,

$$
P\left(X_{0}=i\right)=\frac{1}{2^{i}}
$$

In the case of a finite state space a stationary distribution α is a solution of the linear equation:

$$
\left(T^{\top}-I\right) \alpha^{\top}=0 .
$$

It can also be computed as an eigenvector of T^{\top} (the transpose matrix of T) corresponding to the eigenvalue 1 . Notice that it must satisfy $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i}=1$. Moreover, if T does not have an eigenvalue 1 (T and T^{\top} share the same eigenvalues), then there are no stationary distributions.

Example 10.38. Consider the Markov chain with transition matrix

$$
T=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{4} & \frac{3}{4}
\end{array}\right]
$$

The eigenvalues of T are 1 and $\frac{1}{4}$. Furthermore, an eigenvector of T^{\top} associated to the unit eigenvalue is $(1,2) \in \mathbb{R}^{2}$. Therefore, the eigenvector which corresponds to a distribution is $\alpha=\left(\alpha_{1}, 2 \alpha_{1}\right)$ with $\alpha_{1} \geq 0$ and $3 \alpha_{1}=1$. That is, $\alpha=\left(\frac{1}{3}, \frac{2}{3}\right)$.

Exercise 10.39. Find a stationary distribution for the Markov chain in Example 10.36.

Theorem 10.40. Consider an irreducible S. Then, $S=R_{+}$iff there is a unique stationary distribution, in which case it is given by $\alpha_{i}=\tau_{i}^{-1}$.

The proof of the above theorem is contained in section 7.1.
Remark 10.41. Recall that if S is finite and irreducible then $S=$ R_{+}. So, in this case there is a unique stationary distribution.

Exercise 10.42. Find the unique stationary distribution for the Markov chain with transition matrix:

$$
T=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
$$

7.1. Proof of Theorem 10.40. A measure μ on S is stationary iff $\mu T=\mu$. Notice that it is not required that μ is a probability measure as in the case of a stationary distribution (when $\mu(S)=1$). In other words, a stationary measure is a generalization of a stationary distribution.

EXERCISE 10.43. Show that any stationary measure $\nu=\left(\nu_{1}, \ldots\right)$ on an irreducible S verifies $0<\nu_{i}<+\infty$ for every $i \in S$.

In the following we always assume S to be irreducible.
Proposition 10.44. If $S=T$ then there are no stationary measures.

Proof. As for any $i, j \in S=T$ we have $\sum_{n} \pi_{i, j}^{(n)}<+\infty$, thus $\pi_{i, j}^{(n)} \rightarrow 0$ as $n \rightarrow+\infty$. Therefore $\mu T^{n} \rightarrow 0$, implying that μT can not be equal to μ unless $\mu=0$ which is not a measure.

Proposition 10.45. If $S=R$, then for each $i \in S$ the measure $\mu^{(i)}$ given by

$$
\mu_{j}^{(i)}:=\mu^{(i)}(\{j\})=\sum_{n \geq 1} P\left(X_{n}=j, t_{i} \geq n \mid X_{0}=i\right), \quad j \in S,
$$

is stationary. Moreover, $\mu^{(i)}(S)=\tau_{i}$.
Proof. Fix $i \in S$ and let

$$
N_{j}=\sum_{n \geq 1} \mathcal{X}_{\left\{X_{n}=j, t_{i} \geq n\right\}}
$$

be the random variable that counts the number of visits to state j until time t_{i}. That is, the chain visits the state j for N_{j} times until it reaches i. Notice that $N_{i}=1$.

The mean of N_{j} starting at $X_{0}=i$ is

$$
\rho_{j}=E\left(N_{j} \mid X_{0}=i\right)
$$

Clearly, $\rho_{i}=1$. Considering the simple functions

$$
\varphi_{m}=\sum_{n=1}^{m} P\left(X_{n}=j, t_{i} \geq n \mid X_{0}=i\right)
$$

so that $\varphi_{m} \nearrow N_{j}$ as $m \rightarrow+\infty$, we can use the monotone convergence theorem to get

$$
\rho_{j}=\sum_{n \geq 1} P\left(X_{n}=j, t_{i} \geq n \mid X_{0}=i\right)
$$

Furthermore,

$$
\begin{aligned}
\rho_{j} & =\pi_{i, j}+\sum_{n \geq 2} \sum_{k \neq i} P\left(X_{n}=j, X_{n-1}=k, t_{i} \geq n \mid X_{0}=i\right) \\
& =\pi_{i, j}+\sum_{n \geq 2} \sum_{k \neq i} \pi_{k, j} P\left(X_{n-1}=k, t_{i} \geq n \mid X_{0}=i\right) \\
& =\pi_{i, j}+\sum_{k \neq i} \pi_{k, j} \sum_{n \geq 1} P\left(X_{n}=k, t_{i} \geq n+1 \mid X_{0}=i\right) .
\end{aligned}
$$

Notice that for $k \neq i$ we have

$$
\begin{aligned}
\left\{X_{n}=k, t_{i} \geq n+1\right\} & =\left\{X_{1} \neq i, \ldots, X_{n-1} \neq i, X_{n}=k\right\} \\
& =\left\{X_{n}=k, t_{k} \geq n\right\} .
\end{aligned}
$$

So, since $\rho_{i}=1$,

$$
\rho_{j}=\pi_{i, j} \rho_{i}+\sum_{k \neq i} \pi_{k, j} \rho_{j}=\sum_{k \in S} \pi_{k, j} \rho_{j} .
$$

That is,

$$
\rho=\rho T
$$

where $\rho=\left(\rho_{1}, \rho_{2}, \ldots\right)$. We therefore take $\mu^{(i)}(\{j\})=\rho_{j}$.
The sum of all the N_{j} 's is equal to t_{i}. Indeed,

$$
\sum_{j \in S} N_{j}=\sum_{n \geq 1} \sum_{j \in S} \mathcal{X}_{\left\{X_{n}=j, t_{i} \geq n\right\}}=\sum_{n \geq 1} \mathcal{X}_{\left\{t_{i} \geq n\right\}}=t_{i} .
$$

Again by the monotone convergence theorem,

$$
\mu_{i}(S)=\sum_{j \in S} \rho_{j}=E\left(t_{i} \mid X_{0}=i\right)=\tau_{i}
$$

Exercise 10.46. Show that $\mu_{i}^{(i)}=1$.
Exercise 10.47. Show that

$$
\mu_{j}^{(i)}=\pi_{i, j}+\sum_{n \geq 1} \sum_{k_{1}, \ldots, k_{n} \neq i} \pi_{i, k_{1}} \pi_{k_{1}, k_{2}} \ldots \pi_{k_{n-1}, k_{n}} \pi_{k_{n}, j} .
$$

Proposition 10.48. If $S=R$ and $\nu=\left(\nu_{1}, \ldots\right)$ a stationary measure, then for any $i \in S$ we have $\nu=\nu_{i} \mu^{(i)}$.

Proof. Given $j \in S$ there is n such that $\pi_{j, i}^{(n)}>0$ by the irreducibility of S. Using also the stationarity property of the measures $\left(\nu T^{n}=\nu\right.$ and $\left.\mu^{(i)} T^{n}=\mu^{(i)}\right)$,

$$
\sum_{k \in S} \nu_{k} \pi_{k, i}^{(n)}=\nu_{i} \quad \text { and } \quad \sum_{k \in S} \mu_{k}^{(i)} \pi_{k, i}^{(n)}=\mu_{i}^{(i)}=1
$$

So, from

$$
0=\sum_{k \in S}\left(\nu_{k}-\nu_{i} \mu_{k}^{(i)}\right) \pi_{k, i}^{(n)} \geq\left(\nu_{j}-\nu_{i} \mu_{j}^{(i)}\right) \pi_{j, i}^{(n)}
$$

we obtain $\nu_{j} \leq \nu_{i} \mu_{j}^{(i)}$.
Now, for $j \in S$, again by the stationarity of ν,

$$
\nu_{j}=\nu_{i} \pi_{i, j}+\sum_{k_{1} \neq i} \nu_{k_{1}} \pi_{k_{1}, j}
$$

Using the same relation for $\nu_{k_{1}}$ we obtain

$$
\nu_{j}=\nu_{i} \pi_{i, j}+\nu_{i} \sum_{k_{1} \neq i} \pi_{i, k_{1}} \pi_{k_{1}, j}+\sum_{k_{1}, k_{2} \neq i} \nu_{k_{2}} \pi_{k_{2}, k_{1}} \pi_{k_{1}, j} .
$$

Repeating this indefinitely, we get

$$
\begin{aligned}
\nu_{i}^{-1} \nu_{j} & \geq \pi_{i, j}+\sum_{n \geq 1} \sum_{k_{1}, \ldots, k_{n} \neq i} \pi_{i, k_{1}} \pi_{k_{1}, k_{2}} \ldots \pi_{k_{n-1}, k_{n}} \pi_{k_{n}, j} \\
& =\mu_{j}^{(i)} .
\end{aligned}
$$

Exercise 10.49. Complete the proof of Theorem 10.40.

8. Limit distributions

Recall that the distribution of a Markov chain at time n is given by

$$
P\left(X_{n}=j\right)=\sum_{i \in S} \pi_{i, j}^{(n)} P\left(X_{0}=i\right), \quad j \in S
$$

We are now interested in determining the convergence in distribution of X_{n}.

Theorem 10.50. Let S be irreducible and aperiodic. Then,

$$
\lim _{n \rightarrow+\infty} \pi_{i, j}^{(n)}=\frac{1}{\tau_{j}}, \quad i, j \in S
$$

and

$$
\lim _{n \rightarrow+\infty} P\left(X_{n}=j\right)=\frac{1}{\tau_{j}}
$$

See the proof in section 8.1.
Theorem 10.51. Let S be irreducible and aperiodic.
(1) If $S=T$ or $S=R_{0}$, then X_{n} diverges in distribution.
(2) If $S=R_{+}=E$, then X_{n} converges in distribution to the unique stationary distribution.

Proof. Recall that if S is transient or null recurrent, then $\tau_{j}=$ $+\infty$ for all $j \in S$. So, $\pi_{i, j}^{(n)} \rightarrow 0$ for all $i, j \in S$. So, according to Theorem 10.50, $\lim _{n \rightarrow+\infty} P\left(X_{n}=j\right)=0$ for all j. Hence, it can not be a distribution. In these cases there are no limit distributions.

If the $S=R_{+}$, its unique stationary distribution is

$$
P\left(X_{n}=j\right)=\frac{1}{\tau_{j}}, \quad n \geq 0, \quad j \in S
$$

Using again Theorem 10.50, the limit distribution is equal to the stationary distribution.

Remark 10.52.
(1) When S is aperiodic and positive recurrent is said to be ergodic. That is why the previous theorem is usually called the ergodic theorem.
(2) Since the limit distribution for irreducible ergodic Markov chains does not depend on the initial distribution, we say that these chains forget their origins.

Example 10.53. Consider the transition matrix

$$
T=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

The chain is irreducible and ergodic. Thus, there is a unique stationary distribution which is the limit distribution. From the fact that $T^{n}=T$ we have $\pi_{i, j}^{(n)}=\frac{1}{2} \rightarrow \frac{1}{2}$ we know that $\alpha_{1}=\alpha_{2}=\frac{1}{2}$ and $\tau_{1}=\tau_{2}=2$.

Example 10.54. Let now

$$
T=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0
\end{array}\right]
$$

The chain is irreducible and finite, hence $S=R_{+}$. The period is 2 and $\alpha=\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$ is the unique stationary distribution. On the other hand, $\pi_{1,2}^{(n)}$ is zero iff n is even. This implies for example that $\lim _{n \rightarrow+\infty} \pi_{1,2}^{(n)}$ does not exist. The aperiodicity condition imposed in Theorem 10.50 is therefore essential.
8.1. Proof of Theorem 10.50. Fix $j \in S$ and consider the successive visits to j given for each $k \geq 1$ by

$$
R_{k}=\min \left\{n>R_{k-1}: X_{n}=j\right\} \quad \text { and } \quad R_{0}=\min \left\{n \geq 0: X_{n}=j\right\}
$$

Notice that $R_{0}=0$ means that $X_{0}=j$. Otherwise, $R_{0}=t_{j}$. Also, $X_{n}=j$ is equivalent to the existence of some $k \in \mathbb{N}$ satisfying $R_{k}=n$. Moreover, there is only a finite number of visits to j iff $R_{k}=\infty$ for some $k \in \mathbb{N}_{0}$.

So,

$$
\pi_{j, j}^{(n)}=P\left(\bigcup_{k}\left\{R_{k}=n\right\} \mid R_{0}=0\right)
$$

On the other hand, we have

$$
\pi_{i, j}^{(n)}=\sum_{k=1}^{n} P\left(t_{j}=k \mid X_{0}=i\right) \pi_{j, j}^{(n-k)}
$$

EXERCISE 10.55. Show that $\lim _{n \rightarrow+\infty} \pi_{i, j}^{(n)}=\lim _{n \rightarrow+\infty} \pi_{j, j}^{(n)}$
Exercise 10.56. Show that R_{k} is a homogeneous Markov chain with transition probabilities

$$
f_{n}:=P\left(R_{1}=m+n \mid R_{0}=m\right)=P\left(t_{j}=n \mid X_{0}=j\right)
$$

for any $n \in \mathbb{N} \cup\{\infty\}$, which is the same for every $m \in \mathbb{N}_{0}$.
Notice that

$$
\tau_{j}=E\left(t_{j} \mid X_{0}=j\right)=\sum_{n \geq 1} n f_{n}+\infty \cdot f_{\infty}
$$

Suppose that

$$
f_{\infty}=P\left(R_{1}=\infty \mid R_{0}=m\right)=P\left(t_{j}=\infty \mid X_{0}=j\right)>0
$$

so that j is transient for the chain X_{n} with mean recurrence time $\tau_{j}=\infty$. Also,

$$
\lim _{n \rightarrow+\infty} \pi_{j, j}^{(n)}=0
$$

which means that it is equal to $1 / \tau_{j}$.
It remains to be proved that for $f_{\infty}=0$ we have

$$
\lim _{n \rightarrow+\infty} \pi_{j, j}^{(n)}=\frac{1}{\tau_{j}}
$$

Take first the sup limit

$$
a_{0}=\limsup \pi_{j, j}^{(n)}
$$

By considering a subsequence for which the limit is a_{0}, we use the diagonalization argument to have a subsequence for which there exists

$$
a_{k}=\lim \pi_{j, j}^{\left(k_{n}-k\right)} \leq a_{0}
$$

for any $k \in \mathbb{N}$. Here we make the assumption that $\pi_{j, j}^{(k)}=0$ for any $k \leq-1$.

Recall that

$$
\pi_{j, j}^{(n)}=\sum_{m=1}^{n} f_{m} \pi_{j, j}^{(n-m)}
$$

Taking the limit along the sequence k_{n}, by the dominated convergence theorem, we get

$$
a_{0}=\sum_{m=1}^{+\infty} f_{m} a_{m} .
$$

Since $\sum_{k} f_{k}=1$ and $a_{k} \leq a_{0}$, then $a_{k}=a$ for every $k \in D=\{n \in$ $\left.\mathbb{N}: f_{n}>0\right\}$. Similarly,

$$
a_{k}=\lim \sum_{m=1}^{k_{n}-k} f_{m} \pi_{j, j}^{\left(k_{n}-k-m\right)}=\sum_{m=1}^{+\infty} f_{m} a_{k+m}
$$

and $a_{k}=a$ for all $k \in D \oplus D=\left\{n_{1}+n_{2} \in \mathbb{N}: n_{1}, n_{2} \in D\right\}$. Proceeding by induction and using the fact that the gcd of D is 1 , we get that $a_{k}=a$ for k sufficiently large. This implies that $a_{k}=a$ for all k.

Exercise 10.57. Show that

$$
\sum_{k=1}^{n} \sum_{i=k-1}^{+\infty} f_{i} \pi_{j, j}^{(n-k+1)}=\sum_{k=1}^{n} f_{k} .
$$

Taking the limit along k_{n} the above equality becomes

$$
\lim \sup \pi_{j, j}^{(n)} \sum_{k=1}^{+\infty} \sum_{i=k-1}^{+\infty} f_{i}=1
$$

Exercise 10.58. Show that

$$
\sum_{k=1}^{+\infty} \sum_{i=k-1}^{+\infty} f_{i}=\tau_{j}
$$

So,

$$
\lim \sup \pi_{i, j}^{(n)}=\frac{1}{\tau_{j}}
$$

The same idea can be used for the liminf proving that the limit exists. This completes the proof of Theorem 10.50.

CHAPTER 11

Martingales

1. The martingale strategy

In the 18th century there was a popular strategy to guarantee a profit when gambling in a casino. We assume that the game is fair, for simplicity it is the tossing of a fair coin. Starting with an initial capital K_{0} a gambler bets a given amount b. Winning the game means that the capital is now $K_{1}=K_{0}+b$ and there is already a profit. A loss implies that $K_{1}=K_{0}-b$. The martingale strategy consists in repeating the game until we get a win, while doubling the previous bet at each time. That is, if there is a first loss, at the second game we bet $2 b$. If we win it then $K_{2}=K_{0}-b+2 b=K_{0}+b$ and there is a profit. If it takes n games to obtain a win, then

$$
K_{n}=K_{n-1}+2^{n-1} b=K_{0}-\sum_{i=1}^{n-1} 2^{i-1} b+2^{n-1} b=K_{0}+b
$$

and there is a profit.
In conclusion, if we wait long enough until getting a win (and it is quite unlikely that one would obtain only losses in a reasonable fair game), then we will obtain a profit of b. It seems a great strategy, without risk. Why everybody is not doing it? What would happen if all players were doing it? What is the catch?

The problem with the strategy is that the capital K_{0} is finite. If it takes too long to obtain a win (say n times), then

$$
K_{n-1}=K_{0}-\left(2^{n-1}-1\right) b .
$$

Bankruptcy occurs when $K_{n-1} \leq 0$, i.e. waiting n steps with

$$
n \geq \log _{2}\left(K_{0} / b+1\right)+1
$$

For example, if we start with the Portuguese GDP in 2015 ${ }^{1}$:

$$
K_{0}=€ 198920000000
$$

and choosing $b=€ 1$, then we can afford to loose 38 consecutive times.
On the other hand, if we assume that getting 10 straight losses in a row is definitely very rare and are willing to risk, then we need to assemble an initial capital of $K_{0}=€ 511 b$.

[^11]We can formulate the probabilistic model in the following way. Consider τ to be the first time we get a win. We call it stopping time and denote by

$$
\tau=\min \left\{n \geq 1: Y_{n}=1\right\}
$$

where the Y_{n} 's are iid random variables with distribution

$$
P\left(Y_{n}=1\right)=\frac{1}{2} \quad \text { and } \quad P\left(Y_{n}=-1\right)=\frac{1}{2}
$$

(the tossing of a coin). Notice that if $Y_{n}=-1$ for every $n \in \mathbb{N}$, then we set $\tau=+\infty$.

EXERCISE 11.1. Show that $\tau: \Omega \rightarrow \mathbb{N} \cup\{+\infty\}$ is a random variable.
At time n the capital K_{n} is thus the random variable

$$
K_{n}=K_{0}+b \sum_{i=1}^{\tau \wedge n} 2^{i-1} Y_{i}
$$

where

$$
\tau \wedge n=\min \{\tau, n\}
$$

The probability of winning in finite time is

$$
\begin{aligned}
P(\tau<+\infty) & =P\left(\bigcup_{n=1}^{+\infty}\left\{Y_{n}=1\right\}\right) \\
& =1-P\left(\bigcap_{n=1}^{+\infty}\left\{Y_{n}=-1\right\}\right) \\
& =1-\prod_{n=1}^{+\infty} P\left(Y_{i}=-1\right) \\
& =1
\end{aligned}
$$

So, with full probability the gambler eventually wins. Since

$$
P(\tau=n)=P\left(Y_{1}=-1, \ldots, P_{n-1}=-1, Y_{n}=1\right)=\frac{1}{2^{n}}
$$

we easily determine the mean time of getting a win is

$$
E(\tau)=\sum_{n \in \mathbb{N}} n P(\tau=n)=\sum_{n \in \mathbb{N}} \frac{n}{2^{n}}=2 .
$$

So, on average it does not take too long to get a win. However, what matters to avoid ruin is the mean capital just before a win. Whilst
$E\left(K_{\tau}\right)=K_{0}+b$, we have

$$
\begin{aligned}
E\left(K_{\tau-1}\right) & =K_{0}-E\left(b \sum_{i=1}^{\tau-1} 2^{i-1}\right) \\
& =K_{0}-b E\left(2^{\tau-1}-1\right) \\
& =K_{0}-b \sum_{n=1}^{+\infty} P(\tau=n)\left(2^{n-1}-1\right) \\
& =K_{0}-b \sum_{n=1}^{+\infty} \frac{1}{2^{n}}\left(2^{n-1}-1\right) \\
& =-\infty .
\end{aligned}
$$

That is, the mean value for the capital just before winning is $-\infty$.
Notice also that $E\left(K_{1}\right)=K_{0}$. In general, for any n, since $K_{n+1}=$ $K_{n}+2^{n} b Y_{n+1}$ and Y_{n+1} is independent of $K_{n}\left(K_{n}\right.$ is a sum involving only Y_{1}, \ldots, Y_{n} and the sequence Y_{n} is independent) we have

$$
E\left(K_{n+1} \mid K_{n}\right)=K_{n}+2^{n} b E\left(Y_{n+1} \mid K_{n}\right)=K_{n} .
$$

The martingale strategy is therefore an example of a fair game in the sense that knowing your capital at time n, the best prediction of K_{n+1} is actually K_{n}. There is therefore no advantage but only risk.

2. General definition of a martingale

Let (Ω, \mathcal{F}, P) be a probability space. An increasing sequence of σ-subalgebras

$$
\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \cdots \subset \mathcal{F}
$$

is called a filtration.
A stochastic process X_{n} is a martingale with respect to a filtration \mathcal{F}_{n} if for every $n \in \mathbb{N}$ we have that
(1) X_{n} is \mathcal{F}_{n}-measurable (we say that X_{n} is adapted to the filtration \mathcal{F}_{n})
(2) X_{n} is integrable (i.e. $E\left(\left|X_{n}\right|\right)<+\infty$).
(3) $E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}, P$-a.e.

Remark 11.2.
(1) Given a stochastic process X_{n}, the sequence of σ-algebras

$$
\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)
$$

is a filtration and it is called the natural filtration. Notice that

$$
\sigma\left(X_{1}, \ldots, X_{n}\right) \subset \sigma\left(X_{1}, \ldots, X_{n+1}\right)
$$

(2) It is simple to check that the expected value of the random variables X_{n} in a martingale is constant:

$$
E\left(X_{n}\right)=E\left(E\left(X_{n+1} \mid \mathcal{F}_{n}\right)\right)=E\left(X_{n+1}\right) .
$$

(3) Since X_{n} is \mathcal{F}_{n}-measurable we have that $E\left(X_{n} \mid \mathcal{F}_{n}\right)=X_{n}$. So, $E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}$ is equivalent to $E\left(X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right)=0$.

A sub-martingale is defined whenever

$$
X_{n} \leq E\left(X_{n+1} \mid \mathcal{F}_{n}\right), \quad P \text {-a.e. }
$$

and a super-martingale requires that

$$
X_{n} \geq E\left(X_{n+1} \mid \mathcal{F}_{n}\right), \quad P \text {-a.e. }
$$

So, $E\left(X_{n}\right)$ decreases for sub-martingales and it increases for supermartingales.

In some contexts a martingale is known as a fair game, a submartingale is a favourable game and a super-martingale is an unfair game. The interpretation of a martingale as a fair game (there is risk, there is no arbitrage) is very relevant in the application to finance.

3. Examples

Example 11.3. Consider a sequence of independent and integrable random variables Y_{n}, and the natural filtration $\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$.
(1) Let

$$
X_{n}=\sum_{i=1}^{n} Y_{i}
$$

Then X_{n} is \mathcal{F}_{n}-measurable since any Y_{i} is \mathcal{F}_{i}-measurable and $\mathcal{F}_{i} \subset \mathcal{F}_{n}$ for $i \leq n$. Furthermore,

$$
E\left(\left|X_{n}\right|\right) \leq \sum_{i=1}^{n} E\left(\left|Y_{i}\right|\right)<+\infty
$$

i.e. X_{n} is integrable. Since all the Y_{n} 's are independent,

$$
E\left(X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right)=E\left(Y_{n+1} \mid Y_{1}, \ldots, Y_{n}\right)=E\left(Y_{n+1}\right)
$$

Therefore, X_{n} is a martingale iff $E\left(Y_{n}\right)=0$ for every $n \in \mathbb{N}$.
(2) Let

$$
X_{n}=Y_{1} Y_{2} \ldots Y_{n} .
$$

It is also simple to check that X_{n} is \mathcal{F}_{n}-measurable for each $n \in \mathbb{N}$. In addition, because the Y_{n} 's are independent as well as the $\left|Y_{n}\right|$'s,

$$
E\left(\left|X_{n}\right|\right)=E\left(\left|Y_{1}\right|\right) \ldots E\left(\left|Y_{n}\right|\right)<+\infty .
$$

Now,

$$
E\left(X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right)=X_{n} E\left(Y_{n+1}-1\right)
$$

Thus, X_{n} is a martingale iff $E\left(Y_{n}\right)=1$ for every $n \in \mathbb{N}$.
(3) Consider now the stochastic process

$$
X_{n}=\left(\sum_{i=1}^{n} Y_{n}\right)^{2}
$$

assuming that Y_{n}^{2} is also integrable. Clearly X_{n} is \mathcal{F}_{n}-measurable for each $n \in \mathbb{N}$. It is also integrable since

$$
E\left(\left|X_{n}\right|\right) \leq n \sum_{i=1}^{n} E\left(\left|Y_{i}\right|^{2}\right)<+\infty
$$

where we have use the Cauchy-Schwarz inequality. Finally,

$$
\begin{aligned}
E\left(X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right) & =E\left(2\left(Y_{1}+\cdots+Y_{n}\right) Y_{n+1} \mid \mathcal{F}_{n}\right)+E\left(Y_{n+1}^{2}\right) \\
& \geq 2\left(Y_{1}+\ldots Y_{n}\right) E\left(Y_{n}\right) .
\end{aligned}
$$

So, X_{n} is a sub-martingale if $E\left(Y_{n}\right)=0$ for every $n \in \mathbb{N}$.
Example 11.4 (Doob's process). Consider an integrable random variable Y and a filtration \mathcal{F}_{n}. Let

$$
X_{n}=E\left(Y \mid \mathcal{F}_{n}\right)
$$

By definition of the conditional expectation X_{n} is \mathcal{F}_{n}-measurable. It is also integrable since

$$
E\left(\left|X_{n}\right|\right)=E\left(\left|E\left(Y \mid \mathcal{F}_{n}\right)\right|\right) \leq E\left(E\left(|Y| \mid \mathcal{F}_{n}\right)\right)=E(|Y|)
$$

Finally,
$E\left(X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right)=E\left(E\left(Y \mid \mathcal{F}_{n+1}\right)-E\left(Y \mid \mathcal{F}_{n}\right) \mid \mathcal{F}_{n}\right)=E\left(Y-Y \mid \mathcal{F}_{n}\right)=0$.
That is, X_{n} is a martingale.

4. Stopping times

Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{F}_{n} a filtration. A function $\tau: \Omega \rightarrow \mathbb{N} \cup\{+\infty\}$ is a stopping time iff $\{\tau=n\} \in \mathcal{F}_{n}$ for every $n \in \mathbb{N}$.

Proposition 11.5. The following propositions are equivalent:
(1) $\{\tau=n\} \in \mathcal{F}_{n}$ for every $n \in \mathbb{N}$.
(2) $\{\tau \leq n\} \in \mathcal{F}_{n}$ for every $n \in \mathbb{N}$.
(3) $\{\tau>n\} \in \mathcal{F}_{n}$ for every $n \in \mathbb{N}$.

Exercise 11.6. Prove it.
Proposition 11.7. τ is a random variable (\mathcal{F}-measurable).
Exercise 11.8. Prove it.

Example 11.9. Let X_{n} be a stochastic process, $B \in \mathcal{B}(\mathbb{R})$ and \mathcal{F}_{n} is a filtration such that for each $n \in \mathbb{N}$ we have that X_{n} is \mathcal{F}_{n}-measurable. Consider the time of the first visit to B given by

$$
\tau=\min \left\{n \in \mathbb{N}: X_{n} \in B\right\}
$$

Notice that $\tau=+\infty$ if $X_{n} \notin B$ for every $n \in \mathbb{N}$. Hence,

$$
\begin{aligned}
\{\tau=n\} & =\left\{X_{1} \notin B, \ldots, X_{n-1} \notin B, X_{n} \in B\right\} \\
& =\left\{X_{n} \in B\right\} \cap \bigcap_{i=1}^{n-1}\left\{X_{i} \in B^{c}\right\} \in \mathcal{F}_{n} .
\end{aligned}
$$

That is, τ is a stopping time.
Exercise 11.10. Show that

$$
\begin{equation*}
E(\tau)=\sum_{n=1}^{+\infty} P(\tau \geq n) \tag{11.1}
\end{equation*}
$$

5. Stochastic processes with stopping times

Let X_{n} be a stochastic process and \mathcal{F}_{n} is a filtration such that for each $n \in \mathbb{N}$ we have that X_{n} is \mathcal{F}_{n}-measurable. Given a stopping time τ with respect to \mathcal{F}_{n}, we define the sequence X_{n} stopped at τ by

$$
Z_{n}=X_{\tau \wedge n}
$$

where $\tau \wedge n=\min \{\tau, n\}$.
Exercise 11.11. Show that

$$
Z_{n}=\sum_{i=1}^{n-1} X_{i} \mathcal{X}_{\{\tau=i\}}+X_{n} \mathcal{X}_{\{\tau \geq n\}}
$$

Proposition 11.12.

$$
E\left(Z_{n+1}-Z_{n} \mid \mathcal{F}_{n}\right)=E\left(X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right) \mathcal{X}_{\{\tau \geq n+1\}} .
$$

Exercise 11.13. Prove it.
Remark 11.14. From the above result we can conclude that:
(1) If X_{n} is a martingale, then Z_{n} is also a martingale.
(2) If X_{n} is a submartingale, then Z_{n} is also a sub-martingale.
(3) If X_{n} is a supermartingale, then Z_{n} is also a super-martingale.

Consider now the term in the sequence X_{n} corresponding to the stopping time τ,

$$
X_{\tau}=\sum_{i=1}^{+\infty} X_{n} \mathcal{X}_{\{\tau=n\}}
$$

Clearly, it is a random variable.

Recall that a sequence Z_{n} of random variables is dominated if there is an integrable function $g \geq 0$ such that $\left|Z_{n}\right| \leq g$ for every $n \in \mathbb{N}$.

Theorem 11.15 (Optional stopping). Let X_{n} be a martingale. If
(1) $P(\tau<+\infty)=1$
(2) $X_{\tau \wedge n}$ is dominated,
then $E\left(X_{\tau}\right)=E\left(X_{1}\right)$.
Proof. Since $P(\tau<+\infty)=1$ we have that $\lim _{n \rightarrow+\infty} X_{\tau \wedge n}=$ $X_{\tau} P$-a.e. Hence, by the dominated convergence theorem using the domination,

$$
E\left(X_{\tau}\right)=E\left(\lim _{n \rightarrow+\infty} X_{\tau \wedge n}\right)=\lim _{n \rightarrow+\infty} E\left(X_{\tau \wedge n}\right)=E\left(X_{\tau \wedge 1}\right)=E\left(X_{1}\right),
$$

where we have used the fact that $X_{\tau \wedge n}$ is also a martingale.
The domination condition that is required in the optional stopping theorem above is implied by other conditions that might be simpler to check.

Proposition 11.16. If any of the following holds:
(1) there is $k \in \mathbb{N}$ such that $P(\tau \leq k)=1$
(2) $E(\tau)<+\infty$ and there is $M>0$ such that for any $n \in \mathbb{N}$

$$
E\left(\left|X_{n+1}-X_{n}\right| \mid \mathcal{F}_{n}\right) \leq M,
$$

then $X_{\tau \wedge n}$ is dominated.
Exercise 11.17. Prove it.
A related result to the above optional stopping theorem (not requiring to have a martingale) is the following.

Theorem 11.18 (Wald's equation). Let Y_{n} be a sequence of integrable iid random variables, $X_{n}=\sum_{i=1}^{n} Y_{i}, \mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$ and τ a stopping time with respect to \mathcal{F}_{n}. If $E(\tau)<+\infty$, then

$$
E\left(X_{\tau}\right)=E\left(X_{1}\right) E(\tau)
$$

Proof. Recall that

$$
X_{\tau}=\sum_{n=1}^{+\infty} Y_{n} \mathcal{X}_{\{\tau \geq n\}} .
$$

So,

$$
E\left(X_{\tau}\right)=\sum_{n=1}^{+\infty} E\left(Y_{n} \mathcal{X}_{\{\tau \geq n\}}\right)
$$

Recall that $\mathcal{X}_{\{\tau \geq n\}}=1-\mathcal{X}_{\{\tau \leq n-1\}}$, which implies that

$$
\sigma\left(\mathcal{X}_{\{\tau \geq n\}}\right) \subset \mathcal{F}_{n-1} .
$$

Since \mathcal{F}_{n-1} and $\sigma\left(Y_{n}\right)$ are independent, it follows that Y_{n} and $\mathcal{X}_{\{\tau \geq n\}}$ are independent random variables.

Finally, using (11.1),

$$
E\left(X_{\tau}\right)=E\left(Y_{1}\right) \sum_{n=1}^{+\infty} P(\tau \geq n)=E\left(X_{1}\right) E(\tau)
$$

APPENDIX A

Things that you should know before starting

1. Notions of mathematical logic

1.1. Propositions. A proposition is a statement that can be qualified either as true (T) or else as false (F) - there is no third way.

Example A.1.
(1) $p=$ "Portugal is bordered by the Atlantic ocean" (T)
(2) $q=$ "zero is an integer number" (T)
(3) $r=$ "Sevilla is the capital city of Spain" (F)

Remark A.2. There are statements that can not be qualified as true or false. For instance, "This sentence is false". If it is false, then it is true (contradiction). On the other hand, if it is true, then it is false (again contradiction). This kind of statements are not considered to be propositions since they leads us to contradiction (simultaneously true and false). Therefore, they will not be the object of our study.

The goal of the mathematical logic is to relate propositions through their logical symbols: T or F. We are specially interested in those that are T .
1.2. Operations between propositions. Let p and q be propositions. We define the following operations between propositions. The result is still a proposition.

- $\sim p$, not p (p is not satisfied).
- $p \wedge q, p$ and q (both propositions are satisfied).
- $p \vee q, p$ or q (at least one of the propositions is satisfied).
- $p \Rightarrow q, p$ implies q (if p is satisfied, then q is also satisfied).
- $p \Leftrightarrow q, p$ is equivalent to q (p is satisfied iff q is satisfied).

Example A.3. Using the propositions p, q and r in Example A.1,
(1) $\sim p=$ "Portugal is not bordered by the Atlantic Ocean" (F)
(2) $p \wedge q=$ "Portugal is bordered by the Atlantic Ocean and zero is an integer number" (T)
(3) $p \vee r=$ "Portugal is bordered by the Atlantic Ocean or Sevilla is the capital city of Spain" (T)

Example A. 4.
(1) "If Portugal is bordered by the Atlantic Ocean, then Portugal is bordered by the sea" (T)
(2)" $x=0$ iff $|x|=0 "$ (T)

The logic value of the proposition obtained by operations between propositions is given by the following table:

p	q	$\sim p$	$p \wedge q$	$p \vee q$	$p \Rightarrow q$	$\sim q \Rightarrow \sim p$	$\sim p \vee q$	$p \Leftrightarrow q$	$(\sim p \wedge \sim q) \vee(p \wedge q)$
T	T	F	T	T	T	T	T	T	T
T	F	F	F	T	F	F	F	F	F
F	T	T	F	T	T	T	T	F	F
F	F	T	F	F	T	T	T	T	T

Exercise A.5. Show that the following propositions are true
(1) $\sim(\sim p) \Leftrightarrow p$
(2) $(p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)$
(3) $\sim(p \wedge q) \Leftrightarrow(\sim p) \vee(\sim q)$
(4) $\sim(p \vee q) \Leftrightarrow(\sim p) \wedge(\sim q)$
(5) $((p \Rightarrow q) \wedge(q \Rightarrow p)) \Leftrightarrow(p \Leftrightarrow q)$
(6) $p \wedge(q \vee r) \Leftrightarrow((p \wedge q) \vee(p \wedge r))$
(7) $p \vee(q \wedge r) \Leftrightarrow((p \vee q) \wedge(p \vee r))$
(8) $(p \Leftrightarrow q) \Leftrightarrow((\sim p \wedge \sim q) \vee(p \wedge q))$

Example A.6. Consider the following propositions:

- $p=$ "Men are mortal"
- $q=$ "Dogs live less than men"
- $r=$ "Dogs are not imortal"

So, the relation $((p \wedge q) \Rightarrow r) \Leftrightarrow(\sim r \Rightarrow(\sim p \vee \sim q))$ can be read as:
Saying that "if men are mortal and dogs live less than men, then dogs are mortal ", is the same as saying that "if dogs are imortal, then men are imortal or dogs live more than men".
1.3. Symbols. In the mathematical writing it is used frequently the following symbols:

- \forall for all.
- \exists there is.
- : such that.
- , usually means "and".

Example A.7.

(1) $\forall_{x \geq 0} \exists_{y \geq 1}: x+y \geq 1$. "For any x non-negative there is y greater or equal to 1 such that $x+y$ is greater or equal than 1 ". (T)
(2) $\forall y$ multiple of $4 \exists x \geq 0:-\frac{1}{2}<x+y<\frac{1}{2}$. "For any y multiple of 4 there is $x \geq 0$ such that $x+y$ is strictly between $-\frac{1}{2}$ and $\frac{1}{2}$ ". (F)

We can apply the \sim operator

$$
\sim \exists_{x} p(x) \Leftrightarrow \forall_{x} \sim p(x)
$$

where p is a proposition that depends on x.
1.4. Mathematical induction. Let $p(n)$ be a proposition that depends on a number n that can be $1,2,3, \ldots$ We want to show that $p(n)$ is T for any n. The mathematical induction principle is a method that allows to prove for any such n in just two steps:
(1) Show that $p(1)$ is T.
(2) Suppose that $p(m)$ is T for a fixed m, then show that the next proposition $p(m+1)$ is also T .
This method works because if it is T for $n=1$ and for the consecutive propostion of any that it is T , then is T for $n=2,3, \ldots$.

Example A.8. Consider the propositions $p(n)$ given for each n by

$$
1+2+\cdots+n=\frac{(n+1) n}{2}
$$

For $n=1$, we have that $p(1)$ reduces simply to $1=1$ that is clearly T. Suppose now that $p(m)$ for a fixed m. I.e. assume that $1+2+\cdots+m=$ $\frac{(m+1) m}{2}$. Thus,

$$
1+\cdots+m+(m+1)=\frac{(m+1) m}{2}+(m+1)=\frac{(m+1)(m+2)}{2}
$$

That is, we have just showed that $p(m+1)$ is T. Therefore, $\forall_{n} p(n)$ is T.

This is one of the most popular methods in all sub-areas of mathematics, in computacional sciences, in economics, in finance and all sciences that use quantitative methods. A professional mathematician has the obligation to master it.

Exercise A.9. Show the binomial theorem: for any $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$ we have

$$
(a+b)^{n}=\sum_{k=0}^{n} C_{k}^{n} a^{k} b^{n-k}
$$

where

$$
C_{k}^{n}=\frac{n!}{k!(n-k)!}
$$

1.5. Mathematical writing and proofs. What really distinguishes Mathematics from any other science are 'proofs'. These are logical constructions to show that a proposition is true beyond any doubt. This reliability is unique to Mathematics.

The mathematical literature is in general based on presenting definitions and then demonstrating propositions yielding several consequences and properties that can be useful. A proposition is called either a Lemma, a Proposition or a Theorem by increasing order of importance (but in many cases it mostly depends on the subjective choice of the writer). A Corollary is a simple consequence of a Theorem. A Conjecture is just a guess that can turn into a Theorem if proved to be correct.

2. Set theory notions

2.1. Sets. A set is a collection of elements represented in the form:

$$
\Omega=\{a, b, c, \ldots\}
$$

where a, b, c, \ldots are the elements of Ω. The dots are added to replace all other elements that one does not bother or is not able to write, similarly to the use of the abbreviation etc.

A subset A of Ω is a set whose elements are also in Ω, and we write $A \subset \Omega$. We also write $\Omega \supset A$ to mean the same thing.

Instead of naming all the elements of a set (an often impossible task), sometimes it is necessary to define a set through a given property that we want satisfied. So, we also use the following representation for a set:

$$
\Omega=\{x: p(x)\}
$$

where $p(x)$ is a proposition that depends on x. This can be read as " Ω is the set of all x such that $p(x)$ holds".

We write

$$
a \in A
$$

to mean that a is an element of A (a is in A). Sometimes it is convenient to write instead $A \ni a$. If a is not in A we write $a \notin A$.

Example A. 10.
(1) $1 \in\{1\}$
(2) $\{1\} \notin\{1\}$
(3) $\{1\} \in\{\{1\},\{1,2\},\{1,2,3\}\}$.

A subset A of Ω corresponding to all the elements x of Ω that satisfy a proposition $q(x)$ is denoted by

$$
A=\{x \in \Omega: q(x)\} .
$$

If a set has a finite number of elements it is called finite. Otherwise, it is an infinite set. The set with zero elements is called the empty set and it is denoted by $\}$ or \emptyset.

Example A. 11.
(1) $A=\{0,1,2, \ldots, 9\}$ is finite (it has 10 elements).
(2) The set of natural numbers

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

is infinite.
(3) The set of integers

$$
\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}
$$

is infinite.
(4) The set of rational numbers (ratio between integers)

$$
\mathbb{Q}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{N}\right\}
$$

is infinite.
(5) The set of real numbers \mathbb{R} consists of numbers of the form

$$
a_{0} \cdot a_{1} a_{2} a_{2} \ldots
$$

where $a_{0} \in \mathbb{Z}$ and $a_{i} \in\{0,1,2, \ldots, 9\}$ for any $i \in \mathbb{N}$, is also infinite.
2.2. Relation between sets. Let A and B be any two sets.

- $A=B(A$ equals $B)$ iff $(x \in A \Leftrightarrow x \in B) \vee(A=\emptyset \wedge B=\emptyset)$.
- $A \subset B(A$ is contained in $B)$ iff $(x \in A \Rightarrow x \in B) \vee A=\emptyset)$.

Example A.12. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.
Properties A. 13 .
(1) $\emptyset \subset A$
(2) $(A=B \wedge B=C) \Rightarrow A=C$
(3) $A \subset A$
(4) $(A \subset B \wedge B \subset A) \Rightarrow A=B$
(5) $(A \subset B \wedge B \subset C) \Rightarrow A \subset C$

Remark A.14. If

$$
\begin{equation*}
A=\{x: p(x)\} \quad \text { and } \quad B=\{x: q(x)\} \tag{A.1}
\end{equation*}
$$

then

$$
A=B \Leftrightarrow \forall_{x}(p(x) \Leftrightarrow q(x)) \quad \text { and } \quad A \subset B \Leftrightarrow \forall_{x}(p(x) \Rightarrow q(x)) .
$$

2.3. Operations between sets. Let $A, B \subset \Omega$.

- $A \cap B=\{x: x \in A \wedge x \in B\}$ is the intersection between A and B.
- $A \cup B=\{x: x \in A \vee x \in B\}$ is the union between A and B.

Representing the sets as in (A.1), we have
$A \cap B=\{x: p(x) \wedge q(x)\} \quad$ and $\quad A \cup B=\{x: p(x) \vee q(x)\}$.
Example A.15. Let $A=\{x \in \mathbb{R}:|x| \leq 1\}$ and $B=\{x \in \mathbb{R}: x \geq$ $0\}$. Thus, $A \cap B=\{x \in \mathbb{R}: 0 \leq x \leq 1\}$ and $A \cup B=\{x \in \mathbb{R}: x \geq-1\}$.

Properties A.16. Let $A, B, C \subset \Omega$. Then,
(1) $A \cap B=B \cap A$ and $A \cup B=B \cup A$ (commutativity)
(2) $A \cap(B \cap C)=(A \cap B) \cap C$ and $A \cup(B \cup C)=(A \cup B) \cup C$ (associativity)
(3) $A \cap(B \cup C)=(A \cap B) \cup(B \cap C)$ and $A \cup(B \cap C)=(A \cup$ $B) \cap(B \cup C)$ (distributivity)
(4) $A \cap A=A$ and $A \cup A=A$ (idempotence)
(5) $A \cap(A \cup B)=A$ and $A \cup(A \cap B)=A$ (absortion)

Let $A, B \subset \Omega$.

- $A \backslash B=\{x \in \Omega: x \in A \wedge x \notin B\}$ is the difference between A and $B(A$ minus $B)$.
- $A^{c}=\{x \in \Omega: x \notin A\}$ is the complementary set of A in Ω.

As in (A.1) we can write:

$$
A \backslash B=\{x: p(x) \wedge \sim q(x)\} \quad \text { and } \quad A^{c}=\{x: \sim p(x)\} .
$$

Properties A.17.
(1) $A \backslash B=A \cap B^{c}$
(2) $A \cap A^{c}=\emptyset$
(3) $A \cup A^{c}=\Omega$.

It is also possible to define without difficulties the intersection and union of infinitely many sets. Let I to be a set, which we will call index set. This corresponds to the indices of a family of sets $A_{\alpha} \subset \Omega$ with $\alpha \in I$. Hence,

$$
\bigcap_{\alpha \in I} A_{\alpha}=\left\{x: \forall_{\alpha \in I} x \in A_{\alpha}\right\} \quad \text { and } \quad \bigcup_{\alpha \in I} A_{\alpha}=\left\{x: \exists_{\alpha \in I} x \in A_{\alpha}\right\} .
$$

Example A. 18.
(1) Let $A_{n}=[n, n+1] \subset \mathbb{R}$, with $n \in \mathbb{N}$ (notice that $I=\mathbb{N}$). Then

$$
\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset, \quad \bigcup_{n \in \mathbb{N}} A_{n}=[1,+\infty[.
$$

(2) Let $A_{\alpha}=[0,|\sin \alpha|], \alpha \in I=\mathbb{R}$. Then

$$
\bigcap_{\alpha \in \mathbb{R}} A_{\alpha}=\{0\}, \quad \bigcup_{\alpha \in \mathbb{R}} A_{\alpha}=[0,1] .
$$

Proposition A. 19 (Morgan laws).

$$
\begin{equation*}
\left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c}=\bigcup_{\alpha \in I} A_{\alpha}^{c} \tag{1}
\end{equation*}
$$

(2)

$$
\left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}=\bigcap_{\alpha \in I} A_{\alpha}^{c}
$$

Exercise A.20. Prove it.
If two sets do not intersect, i.e. $A \cap B=\emptyset$, we say that they are disjoint. A family of sets $A_{\alpha}, \alpha \in I$, is called pairwise disjoint if for any $\alpha, \beta \in I$ such that $\alpha \neq \beta$ we have $A_{\alpha} \cap A_{\beta}=\emptyset$ (each pair of sets in the family is disjoint).

3. Function theory notions

Given two sets A and B, a function f is a correspondence between each $x \in A$ to one and only one $y=f(x) \in B$. It is also called a map or a mapping.

Representation:

$$
\begin{aligned}
f: A & \rightarrow B \\
x & \mapsto y=f(x) .
\end{aligned}
$$

Notation:

- A is the domain of f.
- $f(C)=\{f(x) \in B: x \in C\}$ is the image of $C \subset A$.
- $f^{-1}(D)=\{x \in A: f(x) \in D\}$ is the pre-image of $D \subset B$.

Example A. 21.
(1) Let $A=\{a, b, c, d\}, B=\mathbb{N}$ and f a function $f: A \rightarrow B$ defined by the following table:

$$
\begin{array}{r|c|c|c|c}
x & a & b & c & d \\
\hline f(x) & 3 & 5 & 7 & 9
\end{array}
$$

Then, $f(\{b, c\})=\{5,7\}, f^{-1}(\{1\})=\emptyset, f^{-1}(\{3,5\})=\{a, b\}$, $f^{-1}\left(\left\{n \in \mathbb{N}: \frac{n}{2} \in \mathbb{N}\right\}\right)=\emptyset$.
(2) A function whose domain is \mathbb{N} is called a sequence. For example, consider $u: \mathbb{N} \rightarrow\{-1,1\}$ given by $u_{n}=u(n)=(-1)^{n}$. Then, $u(\mathbb{N})=\{-1,1\}, u^{-1}(\{1\})=\{2 n: n \in \mathbb{N}\}, u^{-1}(\{-1\})=$ $\{2 n-1: n \in \mathbb{N}\}$.
(3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)= \begin{cases}|x|, & x \leq 1 \\ 2, & x>1\end{cases}
$$

Thus, $f(\mathbb{R})=\mathbb{R}_{0}^{+}, f\left(\left[1,+\infty[)=\{1,2\}, f^{-1}([2,+\infty[)=]-\right.\right.$ $\infty,-2] \cup] 1,+\infty\left[, f^{-1}(\{1,2\})=\{-1,-2\} \cup[1,+\infty[\right.$.
(4) For any set ω, the identity function is $f: \Omega \rightarrow \Omega$ with $f(x)=$ x. We use the notation $f=\mathrm{Id}$.
(5) Let $A \subset \Omega$. The indicator function is $\mathcal{X}_{A}: \Omega \rightarrow \mathbb{R}$ with

$$
\mathcal{X}_{A}(x)= \begin{cases}1, & x \in A \\ 0, & x \notin A .\end{cases}
$$

The pre-image behaves nicely with the union, intersection and complement of sets. Let I to be the set of indices of $A_{\alpha} \subset A$ and $B_{\alpha} \subset B$ with $\alpha \in I$.

Proposition A.22.

$$
\begin{equation*}
f\left(\bigcup_{\alpha \in I} A_{\alpha}\right)=\bigcup_{\alpha \in I} f\left(A_{\alpha}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f\left(\bigcap_{\alpha \in I} A_{\alpha}\right) \subset \bigcap_{\alpha \in I} f\left(A_{\alpha}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
f^{-1}\left(\bigcup_{\alpha \in I} B_{\alpha}\right)=\bigcup_{\alpha \in I} f^{-1}\left(B_{\alpha}\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
f^{-1}\left(\bigcap_{\alpha \in I} B_{\alpha}\right)=\bigcap_{\alpha \in I} f^{-1}\left(B_{\alpha}\right) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
f^{-1}\left(B_{\alpha}^{c}\right)=f^{-1}\left(B_{\alpha}\right)^{c} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& f\left(f^{-1}\left(B_{\alpha}\right) \subset B_{\alpha}\right. \tag{6}\\
& f^{-1}\left(f\left(A_{\alpha}\right)\right) \supset A_{\alpha}
\end{align*}
$$

Exercise A.23. Prove it.
3.1. Injectivity e surjectivity. According to the definition of a function $f: A \rightarrow B$, to each x in the domain it corresponds a unique $f(x)$ in the image. Notice that nothing is said about the possibility of another point x^{\prime} in the domain to have the same image $f\left(x^{\prime}\right)=f(x)$. This does not happen for injective functions. On the other hand, there might be that B is different from $f(A)$. This does not happen for surjective functions.

- f is injective (one-to-one) iff $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
- f is surjective (onto) iff $f(A)=B$.
- f is a bijection iff it is injective and surjective.
3.2. Composition of functions. After computing $g(x)$ as the image of x by a function g, in many situations we want to apply yet another function (ot the same) to $g(x)$, i.e. $f(g(x))$. It is said that we are composing two functions. Let $g: A \rightarrow B$ and $f: C \rightarrow D$. We define the composition function in the following way

$$
\begin{aligned}
f \circ g: g^{-1}(C) & \rightarrow D \\
(f \circ g)(x) & =f(g(x))
\end{aligned}
$$

(read as f composed with g or f after g).
Example A.24. Let $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=1-2 x$ and $f:[1,+\infty[\rightarrow \mathbb{R}$, $f(x)=\sqrt{x-1}$. We have that $g^{-1}\left(\left[1,+\infty[)=\mathbb{R}_{0}^{-}\right.\right.$. So, $\left.\left.f \circ g:\right]-\infty, 0\right] \rightarrow$ $\mathbb{R}, f \circ g(x)=f(1-2 x)=\sqrt{-2 x}$.

An injective function $f: A \rightarrow B$ is also called invertible because we can find its inverse function $f^{-1}: f(A) \rightarrow A$ such that

$$
\forall_{x \in A} f^{-1}(f(x))=x \quad \text { and } \quad \forall_{y \in f(A)} f\left(f^{-1}(y)\right)=y
$$

Example A. 25.
(1) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$. Is not invertible since, e.g. $f(1)=$ $f(-1)$. However, if we restrict the domain to \mathbb{R}_{0}^{+}, it becomes invertible. I.e. $g: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}, g(x)=x^{2}$ is invertible and $g\left(\mathbb{R}_{0}^{+}\right)=\mathbb{R}_{0}^{+}$. From $y=x^{2} \Leftrightarrow x=\sqrt{y}$, we write $g^{-1}: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}, g(x)=\sqrt{x}$.
(2) Let $\sin : \mathbb{R} \rightarrow \mathbb{R}$ be the function sine. This function is invertible if restricted to certain sets. For example, $\sin :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ is invertible. Notice that $\sin \left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)=[-1,1]$. Then, we define the function arc-sine $\arcsin :[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that to each $x \in[-1,1]$ corresponds the angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is x. Finally, we have that $\arcsin (\sin x)=\sin (\arcsin x)=x$.
(3) When restricted to $[0, \pi]$ the cosine can also be inverted. The arc-cosine function arccos: $[-1,1] \rightarrow[0, \pi]$ at $x \in[-1,1]$ is the angle whose cosine is x. Consequently, $\arccos (\cos x)=$ $\cos (\arccos x)=x$.
(4) The tangent function in] $-\frac{\pi}{2}, \frac{\pi}{2}[$ has the inverse given by the $\operatorname{arc-tangent}$ function $\operatorname{arctg}: \mathbb{R} \rightarrow]-\frac{\pi}{2}, \frac{\pi}{2}[$ such that $\operatorname{arctg}(\operatorname{tg} x)=$ $\operatorname{tg}(\operatorname{arctg} x)=x$.
(5) The exponential function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{x}$ is invertible and $f(\mathbb{R})=\mathbb{R}^{+}$. Its inverse is the logarithm function $f^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}, f^{-1}(x)=\log x$.

Proposition A.26. If f and g are invertible, then $f \circ g$ is invertible and

$$
(f \circ g)^{-1}=g^{-1} \circ f^{-1}
$$

Proof.

- If $f \circ g\left(x_{1}\right)=f \circ g\left(x_{2}\right) \Leftrightarrow f\left(g\left(x_{1}\right)\right)=f\left(g\left(x_{2}\right)\right)$, then as f is invertible, $g\left(x_{1}\right)=g\left(x_{2}\right)$. In addition, as g is invertible, it implies that $x_{1}=x_{2}$. So, $f \circ g$ is invertible.
- We can now show that $g^{-1} \circ f^{-1}$ is the inverse of $f \circ g$:
$-g^{-1} \circ f^{-1}(f \circ g(x))=g^{-1}\left(f^{-1}(f(g(x)))\right)=g^{-1}(g(x))=x$,
$-f \circ g\left(g^{-1} \circ f^{-1}(x)\right)=f\left(g\left(g^{-1}\left(f^{-1}(x)\right)\right)\right)=f\left(f^{-1}(x)\right)=x$,
where we have used the fact that f^{-1} and g^{-1} are the inverse functions of f and g, respectively.
- It remains to show that the inverse is unique. Suppose that there is another inverse function of $f \circ g$ namely u different from $g^{-1} \circ f^{-1}$. Hence, $f \circ g(u(x))=x$. If we apply the function $g^{-1} \circ f^{-1}$, then $g^{-1} \circ f^{-1}(f \circ g(u(x)))=g^{-1} \circ f^{-1}(x) \Leftrightarrow u(x)=$ $g^{-1} \circ f^{-1}(x)$.
3.3. Countable and uncountable sets. As seen before, we can classify sets in terms of its number of elements, either finite or infinite. There is a particular case of an infinite set: the set of natural numbers \mathbb{N}. This set can be counted in the sense that we can have an ordered sequence of its elements: given any element we know what is the next one.

A set A is countable if there is a one-to-one function $f: A \rightarrow \mathbb{N}$. Countable sets can be either finite (f only takes values in a finite subset of \mathbb{N}) or infinite (like \mathbb{N}). A set which is not countable is called uncountable.

Exercise A.27. Let $A \subset B$. Show that
(1) If B is countable, then A is also countable.
(2) If A is uncountable, then B is also uncountable.

Example A.28. The following are countable sets:
(1) \mathbb{Q}, by choosing a sequence that covers all rational numbers. Find one that works.
(2) \mathbb{Z}, because $\mathbb{Z} \subset \mathbb{Q}$.

Example A.29. The following are uncountable sets:
(1) $[0,1]$, by the following argument. Suppose that $[0,1]$ is countable. This implies the existence of a sequence that covers all the points in $[0,1]$. Write the sequence as $x_{n}=0 . a_{n, 1} a_{n, 2} \ldots$ where $a_{n, i} \in\{0,1,2, \ldots, 9\}$. Take now $x \in[0,1]$ given by $x=0 . b_{1} b_{2} \ldots$ where $b_{i} \neq a_{i, i}$ for every $i \in \mathbb{N}$. In order to avoid the cases of the type $0.1999 \cdots=0.2$, whenever $a_{i, i}=9$ we choose $b_{i} \neq 9$ and also $b_{i} \neq 0$. Thus, x is different from every point in the sequence. So, $[0,1]$ can not be countable.
(2) \mathbb{R}, because $[0,1] \subset \mathbb{R}$.

Proposition A.30. Let A and B to be any two sets and $h: A \rightarrow B$ a bijection between them. Then,
(1) A is finite iff B is finite.
(2) A is countable iff B is countable.
(3) A is uncountable iff B is uncountable.

Exercise A.31. Prove it.
Consider an index set I and a family of sets A_{α} with $\alpha \in I$. If I is finite, we say that

$$
\bigcap_{\alpha \in I} A_{\alpha}
$$

is a finite intersection. If I is infinite but countable, the above is a countable intersection. Otherwise, whenever I is uncountable, it is called an uncountable intersection. Similarly, we use the same type of nomenclature for unions.

4. Topological notions in \mathbb{R}

4.1. Distance. The usual distance between two points $x, y \in \mathbb{R}$ is given by

$$
\begin{equation*}
d(x, y)=|x-y| . \tag{A.2}
\end{equation*}
$$

We can easily deduce the following properties.
Properties A.32. For all $x, y, z \in \mathbb{R}$,
(1) $d(x, y) \geq 0$
(2) $d(x, y)=0 \Leftrightarrow x=y$
(3) $d(x, y)=d(y, x)$ (symmetry)
(4) $d(x, z) \leq d(x, y)+d(y, z)$ (triangular inequality).

In fact, we could have defined distance ${ }^{1}$ only using the above properties, since they are the relevant ones. An example of another distance d on \mathbb{R} satisfying the same properties is:

$$
d(x, y)=\frac{|x-y|}{1+|x-y|}
$$

Notice that with this distance we have $d(0,1)=d(1,2)=\frac{1}{2}$ and that $d(0,2)=\frac{2}{3}$. On the other hand, there are no points whose distance between each other is more than 1.

We will restrict our study to the usual distance in (A.2). However, with some care we could have developped our study for a generic distance.
4.2. Neighbourhood. One of the main consequences of the ability to measure distances is the notion of proximity. Let $a \in \mathbb{R}$ and $\varepsilon>0$. An ε-neighbourhood of a is the set of points which are at a distance less than ε from a. That is,

$$
V_{\varepsilon}(a)=\{x \in \mathbb{R}: d(x, a)<\varepsilon\}
$$

For the usual distance we obtain

$$
\left.V_{\varepsilon}(a)=\right] a-\varepsilon, a+\varepsilon[\text {. }
$$

Proposition A. 33 .
(1) If $0<\delta<\varepsilon$, then $V_{\delta}(a) \subset V_{\varepsilon}(a)$ and $V_{\delta}(a) \cap V_{\varepsilon}(a)=V_{\delta}(a)$.
(2) $\bigcap_{\varepsilon>0} V_{\varepsilon}(a)=\{a\}$ is not a neighbourhood of a.
(3) If $a \neq b$, then $V_{\delta}(a) \cap V_{\varepsilon}(a)=\emptyset \Leftrightarrow \delta+\varepsilon \leq|b-a|$.
4.3. Interior, boundary and exterior. With the notion of neighbourhood of a point, we can distinguish the points that are in the "interior" of a set. Let $A \subset \mathbb{R}$ and $a \in \mathbb{R}$.

- a is an interior point of A iff there is a neighbourhood of a contained in A, i.e.

$$
\exists_{\varepsilon>0} V_{\varepsilon}(a) \subset A .
$$

- a is an exterior point of A iff it is an interior point of A^{c}.
- a is a boundary point of A iff it is neither interior nor exterior.

The set of interior points of A is denoted by int A, the exterior by $\operatorname{ext} A$ and the boundary by front A. So,

$$
\mathbb{R}=\operatorname{int} A \cup \text { front } A \cup \operatorname{ext} A
$$

Example A. 34.
(1) $\operatorname{int}[0,1[=] 0,1[$, front $[0,1[=\{0,1\}$, $\operatorname{ext}[0,1[=\mathbb{R} \backslash[0,1]$.

[^12](2) $\operatorname{int} \emptyset=$ front $\emptyset=\operatorname{ext} \mathbb{R}=$ front $\mathbb{R}=\emptyset, \operatorname{ext} \emptyset=\operatorname{int} \mathbb{R}=\mathbb{R}$.
(3) int $\mathbb{Q}=\operatorname{ext} \mathbb{Q}=\operatorname{int}(\mathbb{R} \backslash \mathbb{Q})=\operatorname{ext}(\mathbb{R} \backslash \mathbb{Q})=\emptyset$, front $\mathbb{Q}=$ $\operatorname{front}(\mathbb{R} \backslash \mathbb{Q})=\mathbb{R}$.

Proposition A. 35 .
(1) $\operatorname{int}\left(A^{c}\right)=\operatorname{ext} A$.
(2) $\operatorname{ext}\left(A^{c}\right)=\operatorname{int} A$.
(3) $\operatorname{front}\left(A^{c}\right)=$ front A.
(4) $\operatorname{int} A \subset A$.
(5) $\operatorname{ext} A \subset A^{c}$.
4.4. Open and closed sets. The closure of $A \subset \mathbb{R}$ is

$$
\bar{A}=\operatorname{int} A \cup \text { front } A .
$$

Therefore, $\mathbb{R}=\bar{A} \cup \operatorname{ext} A$ and

$$
\operatorname{int} A \subset A \subset \bar{A}
$$

In cases one has equalities, we label the set A as:

- open iff int $A=A$.
- closed iff $A=\bar{A}$.

Example A. 36.
(1) $] 0,1[$ is open, $[0,1]$ is closed, $] 0,1]$ is neither open nor closed, $]-\infty, 1]$ is closed.
(2) \mathbb{N} and \mathbb{Z} are closed, \mathbb{Q} and $\mathbb{R} \backslash \mathbb{Q}$ are neither open nor closed.
(3) \emptyset and \mathbb{R} are open and closed.

Proposition A. 37 .
(1) $A \subset \mathbb{R}$ is open iff A^{c} is closed.
(2) If $A, B \subset \mathbb{R}$ are open, then $A \cap B, A \cup B$ are open.
(3) If $A, B \subset \mathbb{R}$ are closed, then $A \cap B, A \cup B$ are closed.
(4) If $A \neq \emptyset$ is bounded and closed (compact), then it has a maximum and a minimum.

Proof.

(1) A open \Leftrightarrow front $A \subset A^{c} \Leftrightarrow$ front $A^{c} \subset A^{c} \Leftrightarrow A^{c}$ closed.
(2) Let $a \in A \cap B$. Then, as A and B are open, there are $\varepsilon_{1}, \varepsilon_{2}>0$ such that

$$
V_{\varepsilon_{1}}(a) \subset A \quad \text { e } \quad V_{\varepsilon_{2}}(a) \subset B .
$$

Choosing $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$, we have that

$$
V_{\varepsilon}(a) \subset V_{\varepsilon_{1}}(a) \cap V_{\varepsilon_{2}}(a) \subset A \cap B .
$$

Same idea for $A \cup B$.
(3) A and B closed $\Leftrightarrow A^{c}$ and B^{c} open $\Rightarrow A^{c} \cup B^{c}$ open $\Leftrightarrow(A \cap B)^{c}$ open $\Leftrightarrow A \cap B$ closed. Same idea for $A \cup B$.
(4) A bounded from above $\Rightarrow \sup A \in$ front A. As A is closed, i.e. front $A \subset A$, we have that $\sup A \in A$. Thus, $\max A=\sup A$. Same idea for inf and min.

Remark A.38. The following example

$$
\left.\bigcap_{n=1}^{+\infty}\right]-\frac{1}{n}, \frac{1}{n}[=\{0\}
$$

shows that the infinite intersection of open sets might not be an open set In the previous proposition it is only proved that the finite intersection of open sets is an open set. The infinite union of closed sets might not also be a closed set. For example,

$$
\left.\bigcup_{n=1}^{+\infty}\left[-1+\frac{1}{n}, 1-\frac{1}{n}\right]=\right]-1,1[.
$$

Proposition A.39. Any open set is a countable union of pairwise disjoint open intervals.

Proof. Let $U \subset \mathbb{R}$ be an open set and $x \in U$. Then there is a neighbourhood V of x contained in U. Write $\left.I_{x}=\right] a, b[$ where

$$
a=\inf \{\alpha:] \alpha, x[\subset U\} \quad \text { and } \quad b=\sup \{\beta:] x, \beta[\subset U\} .
$$

So, I_{x} is the maximal interval in U containing x. Choose a rational number r in I_{x} and denote it by I_{r}. It is easy to see that $I_{r}=I_{x}$. In particular, for any other rational number $r^{\prime} \in I_{r}$ we have $I_{r^{\prime}}=I_{r}$. In addition, if for given rationals r, r^{\prime} we have $I_{r} \neq I_{r^{\prime}}$, then $I_{r} \cap I_{r^{\prime}}=\emptyset$.

Since any $x \in U$ is inside some I_{r} with $r \in \mathbb{Q} \cap U$,

$$
U \subset \bigcup_{r \in \mathbb{Q} \cap U} I_{r} .
$$

Moreover, $I_{r} \subset U$ for every $r \in \mathbb{Q} \cap U$, so

$$
\bigcup_{r \in \mathbb{Q} \cap U} I_{r} \subset U .
$$

Hence they are the same set.
4.5. Accumulation points. Note first that for $A \subset \mathbb{R}$ and $a \in \mathbb{R}$:

$$
a \in \bar{A} \Leftrightarrow \forall_{\varepsilon>0} V_{\varepsilon}(a) \cap A \neq \emptyset .
$$

I.e. a point a belongs to the closure of A (in its interior or at the boundary) iff any neighbourhood of a intersects A.

We are now interested in the closure points of A having for sure closeby other points of the set. In other words, that are not isolated points:

- $a \in A$ is an isolated point of A iff $\exists_{\varepsilon>0} V_{\varepsilon}(a) \cap(A \backslash\{a\})=\emptyset$.

So, we define

- a is an accumulation point of A iff $\forall_{\varepsilon>0} V_{\varepsilon}(a) \cap(A \backslash\{a\}) \neq \emptyset$.

Accumulation points are thus elements of the closure of A minus the isolated ones. The set of accumulation points is denoted by A^{\prime}.

Example A. 40.
(1) $\left(\left[0,1[)^{\prime}=[0,1]\right.\right.$.
(2) $(\{0,1\})^{\prime}=\emptyset$.
(3) $\left(\left\{\frac{1}{n}: n \in \mathbb{N}\right\}\right)^{\prime}=\{0\}$.
(4) $\mathbb{Q}^{\prime}=\mathbb{R},(\mathbb{R} \backslash \mathbb{Q})^{\prime}=\mathbb{R}$.
4.6. Numerical sequences and convergence. A numerical sequence (or simply sequence for short) is a real valued function defined on \mathbb{N}, i.e. $u: \mathbb{N} \rightarrow \mathbb{R}$. Its expression is usually written as u_{n} instead of $u(n)$. Each n is said to be an order of the sequence and the respective value u_{n} is the term of order n.

Whenever we have a strictly increasing sequence k_{n} we write $k_{n} \nearrow$ ∞. This allows us to define a subsequence of u_{n} by $u_{k_{n}}$.

A sequence u_{n} is said to converge to $b \in \mathbb{R}$ (or b is the limit of u_{n}) iff

$$
\forall_{\varepsilon>0} \exists_{p \in \mathbb{N}} \forall_{n \geq p} u_{n} \in V_{\varepsilon}(b) .
$$

In this case we write $u_{n} \rightarrow b$ as $n \rightarrow+\infty$ or $\lim _{n \rightarrow+\infty} u_{n}=b$.
A sequence might not have a limit. In that case there is still a possibility that subsequences have limits. The sublimits of u_{n} are the limits of its subsequences. The infimum of this set is denoted by $\lim \inf u_{n}$, and its supremum is $\lim \sup u_{n}$. These are also computable by

$$
\lim \inf u_{n}=\sup _{n \geq 1} \inf _{k \geq n} u_{n}=\lim _{n \rightarrow+\infty} \inf _{k \geq n} u_{n}
$$

and

$$
\lim \sup u_{n}=\inf _{n \geq 1} \sup _{k \geq n} u_{n}=\lim _{n \rightarrow+\infty} \sup _{k \geq n} u_{n} .
$$

Consider now the sum of the first n terms of a sequence u_{n} given by a new sequence

$$
S_{n}=\sum_{i=1}^{n} u_{i}
$$

A numerical series is the limit of S_{n} as $n \rightarrow+\infty$ and it is denoted by

$$
\sum_{i=1}^{+\infty} u_{i}=\lim _{n \rightarrow+\infty} \sum_{i=1}^{n} u_{i}
$$

4.6.1. Diagonal argument. Consider a sequence $u_{n, m}$ that depends on two variables $n, m \in \mathbb{N}$.

Theorem A. 41 (Diagonal argument). If there is $M>0$ such that $\left|u_{n, m}\right|<M$ for all $n, m \in \mathbb{N}$, then there is $k_{n} \nearrow \infty$ with $k_{n} \in \mathbb{N}$ such that

$$
a_{m}:=\lim _{n \rightarrow+\infty} u_{k_{n}, m}
$$

exists for every $m \in \mathbb{N}$.
Proof. Notice that $u_{n, 1}$ is a bounded sequence, thus there exists a subsequence $u_{k_{n}^{(1)}, 1}$ which converges to a_{1}. Choose now $k_{n}^{(2)}$ to be a subsequence of $k_{n}^{(1)}$ so that $u_{k_{n}^{(2)}, 2}$ converges to a_{2}. By induction we obtain a subsequence $k_{n}^{(j)}$ of $k_{n}^{(j-1)}$ so that $u_{k_{n}^{(j)}, j}$ converges to a_{j}. Therefore, $u_{k_{n}^{(j)}, i}$ converges for every $i \leq j$.

Finally, take $k_{n}=k_{n}^{(n)}$ which is called the diagonal subsequence. Hence, $u_{k_{n}, m}$ converges for every m.

5. Notions of differentiable calculus on \mathbb{R}

Consider a function $f: A \rightarrow \mathbb{R}$ where $A \subset \mathbb{R}$. We say that the limit of f at $a \in \bar{A}$ is b iff

$$
\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in V_{\delta}(a) \cap A \backslash\{a\}} f(x) \in V_{\varepsilon}(b) .
$$

In this case we write $f(x) \rightarrow b$ as $x \rightarrow a$ or $\lim _{x \rightarrow a} f(x)=b$. This is also equivalent to say that for any sequence u_{n} with values in A that converges to a we have $f\left(u_{n}\right)$ converging to b.

Sometimes it is convenient to consider limits at a point when restricting the function to a subset of its domain. The limit of f at a from values in $D \subset \mathbb{R}$ is b iff

$$
\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in V_{\delta}(a) \cap A \cap D \backslash\{a\}} f(x) \in V_{\varepsilon}(b) .
$$

In particular, if $D=] a,+\infty$ [we say that the limit is from the right (or from above). We usually write it in any of the following ways:

$$
f\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a, x>a} f(x)
$$

We define in a similar way the limit of f at a from the left (or from below), using $D=]-\infty, a[$, and denote it by

$$
f\left(a^{-}\right)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a, x<a} f(x) .
$$

Notice that the limit of f at a is b iff $f\left(a^{+}\right)=f\left(a^{-}\right)=b$.
We say that f is continuous at a iff $\lim _{x \rightarrow a} f(x)=f(a)$. Moreover, f is continuous in A if it is continuous at every point of A.

Now, if $a \in A$ and A is an open set, let

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

If the above limit exists we say that f is differentiable at a and it is called the derivative of f at a. The function is differentiable in A if it is differentiable at every point of A. The function $f^{\prime}: A \rightarrow \mathbb{R}$ is the derivative of f and it can also be differentiable. In this case we can compute the second derivative $f^{\prime \prime}$ and so on. If performing the derivative k times we write $f^{(k)}$ as the k-th derivative of f. The 0 -th derivative corresponds to f itself.

The set of all continuous functions in A is denoted by $C^{0}(A)$. The functions that are differentiable in A whose derivatives are continuous form the set $C^{1}(A)$. More generally, $C^{k}(A)$ is the set of k-times differentiable functions whose k-th derivative is continuous. Finally, $C^{\infty}(A)$ corresponds to the set of all functions which are infinitely times differentiable.

Any $f \in C^{k+1}(A)$ can be approximated by its Taylor polynomial around $x_{0} \in A$:

$$
P(x)=\sum_{i=0}^{k} \frac{f^{(i)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{i},
$$

with an error given by

$$
f(x)-P(x)=\frac{f^{(k+1)}(\xi)}{n!}\left(x-x_{0}\right)^{k+1}
$$

for some ξ between x and x_{0}. If $k=0$ we can write

$$
f(x)-f\left(x_{0}\right)=f^{\prime}(\xi)\left(x-x_{0}\right)
$$

which is known as the mean value theorem.

6. Greek alphabet

Letter	lower case	upper case
Alpha	α	A
Beta	β	B
Gamma	γ	Γ
Delta	δ	Δ
Epsilon	$\epsilon \varepsilon$	E
Zeta	ζ	Z
Eta	η	E
Theta	$\theta \vartheta$	Θ
Iota	ι	I
Kappa	κ	K
Lambda	λ	Λ
Mu	μ	M
Nu	ν	N
Xi	ξ	Ξ
Omicron	\circ	O
Pi	$\pi \varpi$	Π
Rho	$\rho \varrho$	R
Sigma	$\sigma \varsigma$	Σ
Tau	τ	T
Upsilon	v	Υ
Phi	$\phi \varphi$	Φ
Chi	χ	X
Psi	ψ	Ψ
Omega	ω	Ω

Bibliography

[1] M. Capinski and E. Kopp. Measure, Integral and Probability Springer, 2005.
[2] H. L. Royden. Real Analysis. Macmillan, 3rd Ed, 1988.
[3] W. Rudin. Real and Complex Analysis. McGraw-Hill, 3rd Ed, 1987.
[4] S. R. S. Varadhan. Probability Theory AMS, 2001.

[^0]: ${ }^{1}$ Test your luck at http://random.org/dice/

[^1]: ${ }^{1}$ Notice that this condition is always satisfied if \mathcal{A} is a σ-algebra.
 ${ }^{2} \mu$ is called an outer measure in case it is σ-subadditive.

[^2]: ${ }^{3}$ It is also often called atomic measure or degenerate measure.

[^3]: ${ }^{4}$ Sets with exactly one element.

[^4]: ${ }^{5} x \in[0,1]$ in base b is written as $x=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{b}$ where $a_{i} \in\{0, \ldots, b\}$. We can recover the decimal expansion by $x=\sum_{i=1}^{+\infty} a_{i} b^{-i}$.
 ${ }^{6}$ Notice that $(0.02222 \ldots)_{3}=(0.10000 \ldots)_{3}=1 / 3$. We use the first representation so that this point is in A. The same choice for any point with a similar tail.

[^5]: ${ }^{1}$ or simply, f_{n} converges to f

[^6]: ${ }^{1}$ It is also known as expectation, mathematical expectation, mean value, mean, average or first moment. It is sometimes denoted by $E[X], \mathbb{E}(X)$ or $\langle X\rangle$.

[^7]: ${ }^{1}$ It is also known as the Fourier transform of α. Notice that if α is absolutely continuous then ϕ is the Fourier transform of the density function.

[^8]: ${ }^{1}$ In particular $E(X \mid \mathcal{F})=X$.

[^9]: ${ }^{1}$ from Greek stochastikó meaning able to guess.
 ${ }^{2}$ It can be seen as a vector of random variables.

[^10]: ${ }^{3}$ That might be variable, as usually in FCP and SCP matches.

[^11]: ${ }^{1}$ cf. PORDATA http://www.pordata.pt/

[^12]: ${ }^{1}$ In some literature it is called a metric.

