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the schrödinger-debye system

The Schrödinger-Debye system describes the propagation of an

electromagnetic wave through a medium whose response cannot be

considered instantaneous:

{
iut + 1

2
∆u = uv

µvt + v = λ|u|2.

Here,

• u : (x, t) ∈ Rd × R→ u(x, t) ∈ C;

• v : (x, t) ∈ Rd × R→ v(x, t) ∈ R;

• µ > 0;

• λ = 1 (defocusing) or λ = −1 (focusing).

This last terminology is inherited from the Cubic Schrödinger Equation

(µ = 0).
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linear solutions

Consider a general equation

iut + ∆u = N(u),

that can be solved globally, where N(u) represent nonlinear terms.

The associated linear equation reads

iut + ∆u = 0,

with solutions, for initial data u0, given by S(t)u0 = eit∆u0.

Strichartz Estimates

‖S(t)φ‖Lp
tL

q
x
. ‖φ‖L2∥∥∥ ∫ t

0

S(t− s)f(x, s)ds
∥∥∥
L

p
tL

q
x

. ‖f‖
L

p′
t L

q′
x

for (p, q) admissible, that is

2

p
= d
(1

2
− 1

q

)
and 2 ≤ q ≤ 2d

d− 2
.
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the schrödinger-debye system: conserved quantities

• The quantity M(t) =

∫
|u(t)|2 is conserved.

• Furthermore, the Schrödinger-Debye admits the pseudo-energy

d

dt
E(t) = 2λµ

∫
v2
t ,

where

E(t) =

∫
|∇u|2 + 2v|u|2 − λv2.
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the schrödinger-debye system: global well-posedness

Adán Corcho, Jorge D. Silva & FO

Proceedings of the AMS, vol. 141, pp 3485 - 3499, 2013.

Theorem
Let (u0, v0) ∈ H1(R2)×L2(R2) and λ = ±1. Then, for all T > 0, there exists

a unique solution

(u, v) ∈ C([0;T ], H1(R2)× L2(R2))

to the Initial Value Problem associated to the Schrödinger-Debye system.
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scattering for the schrödinger-debye system

We say that u scatters to the scattering state u+ if

lim
t→+∞

S(t)u+ − u = 0.

In other words, the nonlinear solution u behaves as the linear solution

S(t)u+ for large times.
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scattering for the schrödinger-debye system

(Simão Correia & FO, Nonlinearity, Vol 31, 7, 2018)

Scattering of small solutions in dimension d = 4

Let

(X,Y ) ∈ {(L2(R4), L2(R4)), (H1(R4), H1(R4)), (Σ(R4), H1(R4))}.

There exists ε > 0 such that, if (u0, v0) ∈ X×Y satisfies ‖u0‖X +‖v0‖Y < ε,

then the corresponding solution (u, v) of the Schrödinger-Debye system is

global and scatters, that is, there exists u+ ∈ X such that

‖u(t)− S(t)u+‖X → 0 and ‖v(t)‖Y → 0, t→∞. (1)

In the particular case (X,Y ) = (Σ(R4), H1(R4)), the following decay

estimate holds:

‖u(t)‖Lp(R4) .
C(‖u0‖Σ(R4), ‖v0‖H1(R4))

t

(
2− 4

p

) , t > 0, 2 < p < 4. (2)
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scattering for the schrödinger-debye system

(Simão Correia & FO, Nonlinearity, Vol 31, 7, 2018)

Scattering of small solutions in dimensions d = 2, 3

There exists δ > 0 such that, if (u0, v0) ∈ Σ(Rd)×H1(Rd), d = 2, 3, satisfies

‖u0‖H1(Rd) + ‖v0‖H1(Rd) < δ, then the corresponding solution (u, v) of the

Schrödinger-Debye System scatters, that is, there exists u+ ∈ Σ(Rd) such

that

‖u(t)− S(t)u+‖Σ(Rd) → 0, ‖v(t)‖H1(Rd) → 0, t→∞.

Furthermore,

‖u(t)‖Lp(Rd) .
C(‖u0‖Σ(Rd), ‖v0‖H1(Rd))

t
d
(

1
2
− 1

p

) , t > 0, 2 < p < 2d/(d−2)+. (3)
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scattering for the schrödinger-debye system

(Simão Correia & FO, Nonlinearity, Vol 31, 7, 2018)

Modified Scattering in dimension d = 1

There exists ε > 0 such that, if (u0, v0) ∈ Σ(R)×H1(R) satisfies

‖u0‖H1(R) + ‖v0‖H1(R) < ε, then the corresponding solution (u, v) of the

Schrödinger-Debye system scatters up to a phase correction, that is, there

exists (a unique) u+ ∈ L2(R) such that

‖eiΨ(t) ̂S(−t)u(t)− û+‖L2(R) → 0, ‖v(t)‖L∞(R) → 0, t→∞,

where Ψ(ξ, t) =

∫ t

1

∫ s

1

1

2s′
e−(s−s′)

∣∣∣f̂( s
s′
ξ, s′

)∣∣∣2ds′ds and f = S(−t)u.

Also,

‖u(t)‖L∞(R) .
1

t
1
2

, t→ +∞.
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scattering of small solutions for initial data in dimension 4

We begin by the global well-posedness of solutions for small initial data

(u0, v0) ∈ L2(R4)× L2(R4).

From the local well-posedness theory, we get the following blow-up

alternative:

If [0;T ∗[ is the maximal time interval of existence, lim
t→T∗

h(t) = +∞, where

h(t) = ‖u‖L∞
T
L2

x
+ ‖u‖L2

T
L4

x
.
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duhamel principle - integral formulation of the sd system

{
iut + 1

2
∆u = uv

µvt + v = λ|u|2.

Integral formulation:

v(t) = e−t/µv0 +
λ

µ

∫ t

0

e−(t−s)/µ|u(s)|2ds,

and

u(t) = S(t)u0 +

∫ t

0

S(t− s)u(s)v(s)ds

that is,

u(t) = S(t)u0 + i

∫ t

0

S(t− s)
(
e−s/µv0 +

λ

µ

∫ s

0

e−(s−s′)/µ|u(s′)|2ds′
)
u(s)ds.
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end of the proof

We set f(t) = S(−t)u(t). Since

‖u‖L2((0,∞);L4
x) <∞,

we have

‖f(t)− f(t′)‖L2 = ‖S(t)(f(t)− f(t′))‖L2

. ‖u‖L2((t′,t);L4
x)‖v0‖L2 + ‖u‖3L2((t′,t);L4

x) → 0, t, t′ →∞

Hence there exists u+ := lim
t→∞

S(−t)u(t) ∈ L2(R4).
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