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Third harmonic generation

Under certain conditions a monochromatic beam with frequency w
propagating in a dispersive nonlinear medium generates a second
beam with frequency nw;

||‘ —

Primary Radiation

SHG Output



Third harmonic generation

Under certain conditions a monochromatic beam with frequency w
propagating in a dispersive nonlinear medium generates a second
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Third harmonic generation

In a Kerr-type medium, there is generation of a third harmonic
generation (w — 3w). We present a model to study the interaction
between the two beams (Sammut & al, 1998).
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generation (w — 3w). We present a model to study the interaction
between the two beams (Sammut & al, 1998).
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Third harmonic generation

Using the constitutive law
5 = n260§+ 47‘('605[\/[_,

where ﬁNL is the nonlinear part of the polarization vector and n the
linear refractive index, the identity ppegc® = 1 and noticing that

G xTxEe AE+T(T B,

we get, after neglecting the last term in this identity, the vectorial
wave equation
— H2 82E o 47 8213/\“ 1
2ot 2 a2 (1)




Third harmonic generation

Assuming that the beams propagate in a slab waveguide, in the
direction of the (Oz) axis, we decompose one of the transverse
directions of E in two frequency components as

E = grge(Elei(klz—wt) n E3ei(k3z—3wt))'



Third harmonic generation

Assuming that the beams propagate in a slab waveguide, in the
direction of the (Oz) axis, we decompose one of the transverse
directions of E in two frequency components as

E = grge(Elei(klz—wt) n E3ei(k3z—3wt))'
Inserting in (1), with Py, = x3)E3,

OE; n(w))2w?
AL E 4 2ik al +(( @)

S K )E+X(EE + 2056 + BEeT 79 =0
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Third harmonic generation

Rescaling (Ei1, E3) — (u, w), and for o = k3 /ki,
w=3(ks — 3ky + 0),

1 1
iug + Au—u+ (§|u|2 +2|w|?)u + §H2 =0,

— <

iowe + Aw — pw + (9w |* + 2|u*)w + 5 3=,

where the z direction is now called t.

Notice that at resonance, 0 =3 and = 9.



Hamiltonian structure

Nonlinear Schrodinger system with cubic nonlinearity
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Hamiltonian structure

Nonlinear Schrodinger system with cubic nonlinearity

1 1
iur + Au—u+ (§|u|2 + 2|w[?)u + §E2W =0,

1
iowe + Aw — pw + (9|w|? + 2|u|?)w + §u3 =0.

Defining U = (u, w), J = diag(}, 1) and
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Hamiltonian structure

Nonlinear Schrodinger system with cubic nonlinearity

1 1
iur + Au—u+ (§|u|2 + 2|w[?)u + §E2W =0,

1
iowe + Aw — pw + (9|w|? + 2|u|?)w + §u3 =0.

Defining U = (u, w), J = diag(}, 1) and

i’ io

1
H(uv) = 5 [ (Va2 + 1992 4 uf? + )

1 1
— / <36 u]4 + %|W|4 + ]u|2|wl2 + 9%e(u3w)> ,

Hamiltonian structure and conservation of energy




Conservation of mass and Hamiltonian invariance



Conservation of mass and Hamiltonian invariance

We have for all 6,

H(e"u, e3®w) = H(u, w).



Conservation of mass and Hamiltonian invariance

We have for all 6,
H(e"u, e3®w) = H(u, w).

From this equality we can obtain

Conservation of mass

%M(u, w) =0,

where

(u,v) = /\u\2+30|w|2




Localized solutions and bound states

We look for solutions of the form
u(x,t) = e"“’tP(x)7 w(x, t) = e3"°‘”:Q(x)7

where P and @ are real functions with a suitable decay at cc.



Localized solutions and bound states

We look for solutions of the form
u(x,t) = e"“’tP(x)7 w(x, t) = e:*"'“”:Q(x)7

where P and @ are real functions with a suitable decay at cc.
These functions (bound states) satisfy

Bound States

AP — (w+1)P + (é/ﬂ +2Q2) P+ %PzQ =0,

AQ — (,u—{—3aw)Q +(9Q? +2P2)Q+ éP3 =0.




Action and ground states

We define the action
S(P,Q)=E(P,Q) +wM(P,Q)

and single-out the set of ground states, minimizing the action
among all bound states (B):

G = {(Po, Q) € B: Y(P, Q) € B, S(Po, Q) < S(P, Q)}.



Existence of Ground States

Let1<n<3,0,u>0andw > max{—1,—u/30}. Then the set
of ground states, G(w, i, o) is nonempty.

In addition, there exists at least one ground state (Py, Qo) which is
radially symmetric, Qg is positive and Py is either positive or
identically zero.




Existence of Ground States - Strategy

We consider the set N = {(u,v) # (0,0) : S'(u,v) L2 (u,v)}.
For (u, w) # (0,0) is in N iff

T(u,w) == / IVul? + [Vw|> + (1 + w)u? + (u + 3ow)w?

1
——u* — 4uPw? - owt —

4 3
9 u

w = 0.
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In fact, NV is a complete regular manifold: (0,0) is an isolated point
of the set {7 = 0} and (7/(u, w), (u, w)) # 0 for all (u,w) € N.



Existence of Ground States - Strategy

We consider the set N = {(u,v) # (0,0) : S'(u,v) L2 (u,v)}.
For (u, w) # (0,0) is in N iff

T(u,w) == / IVul? + [Vw|> + (1 + w)u? + (u + 3ow)w?

4
Ut —aPw? —owt — §u3w =0.

In fact, NV is a complete regular manifold: (0,0) is an isolated point
of the set {7 = 0} and (7/(u, w), (u, w)) # 0 for all (u,w) € N.

Furthermore, the minimizers of infyrS are ground states:

Indeed, S'(ug, wo) = A7"(up, wo) = A = 0.



Existence of Ground States - Strategy

The (simplified steps are the following:)
e We consider a minimizing sequence (up, w,) € N;

o We take the Schwarz symmetization (u};, w;;) and project it in
N: for some t, (tuf, tw}) € N;

@ We show that it is still a minimizing sequence;

@ We use the compact injection
Hyg(R") = LP(R") p > 2,

to obtain a minimizer.



Semitrivial vs Nontrivial Ground States

In addition to the assumptions of the existence Theorem:

o If =30 and p > 95
All ground states are nontrivial: P # 0 and Q # 0.

o ifw+1=p+ 3ow:
All ground states of the form (0, Q) and Q is a ground state of

AQ— (p+ 3Jw)Q-|-9Q3 =0.

In particular, up to translation, ground states are unique.




Fully non-trivial Ground States

Let

1 9 1
N(u,w) 2:/<36U4+4W4+U2W2+9U3W>.

K(u,w) = |[Vul2: + |Vw]Z.

and



Fully non-trivial Ground States

Let

1 9 1
N(u,w) ::/<36u4+4w4—|—uzw2+9u3w>.

and
K(u,w) = ||VullZ2 + [ Vw][Z.

We prove the existence of ,t € R and W € H? such that
(tOW, tQ) € N and S(t0W, tQ) < S(0, Q).



Fully non-trivial Ground States

o 2 K(OW, Q)+ (1 +w)M(OW, Q)
- AN(OW, Q)
(tOW,tQ) e N;

o S(tOW,tQ) < S(0, Q) if and only if

assures that

(K(@W, Q)+ (1+w)M(OW, Q))2
< 4N(OW, Q) <K(O, Q) + (w + 1)M(0, Q)).
e Coefficients of #%:

(K(W,0) + (w+ 1)M(W, 0))?

< % (/ W4> (K(o, Q) + (w + 1)M(0, Q)).



Fully non-trivial Ground States

Setting W(x) = Q(Ax), and using the homogeneity of the
functionals, the condition boils down to

np o 4p n/2
f(\) = A°+1-— A .
() 4—n * 9(4 —n) <0




Fully non-trivial Ground States

Setting W(x) = Q(Ax), and using the homogeneity of the
functionals, the condition boils down to

np o 4p n/2
f(\) = A°+1-— A .
() 4—n * 9(4 —n) <0

f has a global minimum at Ao = 972/(4=") and f(\g) = 1 — pu)3.



Local Well-Posedness

Theorem

Let 1 < n <3 and up,wg € HY(R"). Then, the Cauchy problem
admits a unique solution,

U= (u,w) € C((~ T, T*); HY(R™) x H'(R™))

defined in the maximal interval of existence (— T, T*), where

T., T*>0.
In addition, the following blow-up alternative holds: if T* < oo
then
li K =
lim_(K(u, w) = +oo,
where

K(u, w) = | Vullz + [IVwl|Z.




Global Well-posedness

2K(u, w) = 2Ho — / (Jul® + plw?)

1 4,9 2 2, 2 3
[ (Gl + 5wl + Pl + Se@w)).
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1 4,9 2 2, 2 3
[ (Gl + 5wl + Pl + Se@w)).

K(U) < Ho + C(Jlullz + lwllz)
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Global Well-posedness

2K (u,w) =2ty — [ (|uf? + ulwf?)
Loa, 9 u 21,2 2 3
[ (Gl + 5wl + Pl + Se@w)).
K(U) < Ho + C(Jlullz + lwllz)
By the Gagliardo-Nirenberg inequality: ||f||z < C||Vf||5]If]l3~ ",

K(U) < Ho + CM: 2 K(U)3.



Global Well-Posedness - subcritical case n =1

N[

3 1
K(U) < Ho+ CMZ K(U)? < Ho + C(fMS +eK(U)) :
€

(1— Ce)K(U) < Ho + £/\//g.
€



Global Well-Posedness - subcritical case n =1

N[

3 1
K(U) < Ho+ CMZ K(U)? < Ho + C(fMS +eK(U)) :
€

C

(1— Ce)K(U) < Ho + =M.
€

For n =1 and (ug, wo) € H*(R) x HY(R) the Cauchy problem is
globally well-posed.




Global Well-Posedness - critical case n = 2

K(U) < Hy + CMoK(U) < (1 — CMo)K(U) < Ho.



Global Well-Posedness - critical case n = 2

K(U) < Ho + CMoK(U) & (1 — CM)K(U) < Ho.
The problem is related to the best constant C one can place in the

inequality

1
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Global Well-Posedness - critical case n = 2

K(U) < Ho + CMoK(U) & (1 — CM)K(U) < Ho.
The problem is related to the best constant C one can place in the

inequality

1
[ (Gelolt+ S1w 2w+ 2Pl ) < R m)M ()
K(U, W)M(U, W)
W)

% = inf {J(u, w) = : N(u, w) > 0}-



Global Well-Posedness - critical case n = 2

K(U) < Hy + CMoK(U) < (1 — CMo)K(U) < Ho.

The problem is related to the best constant C one can place in the
inequality

1 1
/ ( u]4+ %‘W|4 + ]u|2\W]2 + g\umw\) < CK(u, w)M(u,w) :

36
1. _ K(u,w)M(u,w)
= inf {J(u, w) = N(uw) : N(u,w) > 0}.

In fact, this infimum is achieved at (any) ground state (P, Q) with
u=30 and w = 0.



Global Well-Posedness - critical case n = 2

K(U) < Hy + CMoK(U) < (1 — CMo)K(U) < Ho.

The problem is related to the best constant C one can place in the
inequality

1 1
/ ( u]4+ %‘W|4 + ]uﬂw]z + g\umw\) < CK(u, w)M(u,w) :

36
1. _ K(u,w)M(u,w)
= inf {J(u7 w) = N(uw) : N(u,w) > 0}.

In fact, this infimum is achieved at (any) ground state (P, Q) with
=30 and w = 0. Furthermore,

1



Global Well-Posedness - critical case n = 2

Assume M(ug, wo) < M(P, Q). Then the Cauchy problem is
globally well-posed.




Global Well-Posedness - critical case n = 2

Assume M(ug, wo) < M(P, Q). Then the Cauchy problem is
globally well-posed.

This condition is sharp, at least at resonance.



Global Well-Posedness - supercritical case n = 3

We have .
K(U(t)) < Ho + CMZ K(U(t))3.

1

F(K(U)) > O where f(r) = Ho — r + CMZr3.



Global Well-Posedness - supercritical case n = 3

We can prove:

Theorem

Assume n = 3 and ug, wg € H'(R3). Suppose that
1
H(UO, W())M(Uo, W()) < §H(P7 Q)M(P, Q)

and
K(”Oa WO)M(U07 WO) < K('Da Q)M(P’ Q)?

where (P, Q) is any ground state with w = 0 and . = 30. Then,
as long as the local solution given in exists, there holds

K(u(t), w(t))M(u(t),w(t)) < K(P, Q)M(P, Q).

In particular, this implies that the Cauchy problem is globally
well-posed under these conditions.




Assume
o, wo € X = HY(R™) N L2(R", |x|?dx)

and define
0= [ P + 30lw(0)),

where (u(t), w(t)) is the maximal solution with initial data
(uo, wp), and defined in the maximal time interval [0, T*).

Then V € C2([0, T*)).



Assume
o, wo € X = HY(R™) N L2(R", |x|?dx)

and define

0= [ P + 30lw(0)),

where (u(t), w(t)) is the maximal solution with initial data
(uo, wp), and defined in the maximal time interval [0, T*).

Then V € C2([0, T*)).

If V(t) < 0 for all t, the solution cannot exist globally in time.



Assume
o, wo € X = HY(R™) N L2(R", |x|?dx)
and define

0= [ P(u(e)P + 30lw(0)),

where (u(t), w(t)) is the maximal solution with initial data
(uo, wo), defined in the maximal time interval [0, T*). Then
V e C2([0, T*)). In addition,

V(¢ )—4Im/( (£)x - Vau(t) + 3w()x - Vw(2))




Furthermore,

2 4
V/(t) = / (8\VU|2 +8|Vw|? — 3"|u|4 — ?!w\“ — 8n\u\2!w\2)

+2 (2—4—8) /U\W| x-Vu+ = L (E—12) n§Re/U3w
o 9\ o

_,_1 (2_4 _ 8) §Re/3H2WX~ Vu.
9\ o




For o = 3 (at resonance),

VI(t) = 8nH(uo,W0)+4(2—n)/\Vu\2+|VW]2—4n/|u|2+,u\w|2.



Theorem
Let ug, vo € X := H* N L%(|x|?dx) and ] — T., T*[ the maximal
time interval of existence of the solution given by the

local-wellposedness result.
Forn=23,06=3and u=29, if

2H(ug, wp) < M(uo, wo)

then T, < +00 and T* < +00.




Also,
(i) If2E(ug, wp) = M(up, wp) and

/m/ (Tox - Vg + 3wox - Vwy) < 0,

then T* < oo.
(it) If 2E(uo, wo) = M(uo, wo) and

/m/ (Tox - Vg + 3wox - Vwg) > 0,

then T, < oo.




(iii) /f2H(UO, Wo) > M(UO, Wo) and

\/Elm/(ﬁox . VUo arF 3WOX . VWQ)

< —/n(2E (up, wo) — M(ug, wo)) M(xup, xwp)

then T* < oo.
(iv) /f2H(UQ, Wo) > M(UO, Wo) and

\/Elm/(ﬁox . VUO A 3WOX . VWQ)

> \/n(2E(up, wo) — M(uo, wo))M(xup, xwp)

then T, < oo.




Theorem

Assume n =3, 0 =3, u = 9. Suppose that ug, wy € ¥ and

H(uo, wo)M(to, wo) < %H(P, QM(P, Q) )
and
K(UQ,WQ)M(UQ,WQ) > K(P, Q)M(P, Q), (3)

where (P, Q) is any ground state with w =0 (and = 30). Then
the solution blows up in finite time.




(In)stability of Ground States (e“*P(x), e¥*“t*Q(x))

Recall that the system is invariant by translations and rotations:
If (u, w) is a solution so are

(u(- +y)w(- +y)) and (eu, e*w).
We introduce the orbit generated by (P, Q) is defined by

Opq={(e"P(-+y).€’Q(-+y)): 6€R,yeR"}.



(In)stability of Ground States (e“*P(x), e¥*“t*Q(x))

Definition (Orbital stability)

We say that a standing wave (e/“tP, e3“tQ) is orbitally stable if
for any € > 0 there exists a 6 > 0 with the following property: if
(up, wo) € HY x H* satisfies ||(uo, wo) — (P, Q)| g1x 1 < I then
the solution with initial data (ug, wp) is global and satisfies

sup inf |(u(t), w(t)) = (e%u(-+y), e u(-+y))lmxm <e.
teR (0,y)ERXR"

V.




(In)stability of Ground States (e“*P(x), e¥*“t*Q(x))

Definition (Orbital stability)

We say that a standing wave (e/“tP, e3“tQ) is orbitally stable if
for any € > 0 there exists a 6 > 0 with the following property: if
(up, wo) € HY x H* satisfies ||(uo, wo) — (P, Q)| g1x 1 < I then
the solution with initial data (ug, wp) is global and satisfies

sup inf |(u(t), w(t)) = (e%u(-+y), e u(-+y))lmxm <e.
teR (0,y)ERXR"

4

@ Strong instability: There exists initial data arbitrary close to
(P, Q) such that the corresponding solution blows-up in finite
time.

@ Weak instability: Given any neighbourhood OE;)’Q) of O(p,q)
there exists initial data arbitrary close to (P, Q) such that the

corresponding solution leaves (’)E;) Q) in finite time.



Instability of Ground States (e™“*P(x), et Q(x))

Assume either n =3 and u > 0 or n =2 and p # 30. Then all
real ground states (P, Q) are weakly orbitally unstable.
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Assume either n =3 and u > 0 or n =2 and p # 30. Then all
real ground states (P, Q) are weakly orbitally unstable.

Let

¥ = {(u,w) € HY(R") x HY(R") : M(u,w) = M(P,Q)}.



Instability of Ground States (e™“*P(x), et Q(x))

Assume either n =3 and u > 0 or n =2 and p # 30. Then all
real ground states (P, Q) are weakly orbitally unstable.

Let
¥ = {(u,w) € HY(R") x HY(R") : M(u,w) = M(P,Q)}.

General criterium: The existence of W such that
(i) W belongs to the tangent space T(p g)Z;
(i) (S"(P,Q)V,V¥) < 0;
(iii) + some geometric (straightforward) conditions.



(In)stability of Ground States (e“*P(x), e¥*“t*Q(x))

We will take W = I(0) with

r(6) = (MM (OPO®)), (A E(BQA(E)))

where a7y, and A are smooth functions to be chosen later
satisfying,

a(0) = 7(0) = A(0) = 1

7

and, setting k = 30 [ Q2

vk +a? =k+1.



(In)stability of Ground States (e“*P(x), e¥*“t*Q(x))

S(M(t)) = E(I(t)) + $M(P, Q), because I'(t) C X. Thus,

5 E(() = SZS(F(t)) = (S"(F(0)I' (1), F'(£) +(S'(T (1)), T (1))
Evaluating at t = 0 and using that S’(P, Q) = 0, we see that

(S"(P, Q)W, W) < 0
is equivalent to

d2

ﬁE(F(t)) o <0.



2 1

9 2 2 42 4 _
—%[/( k2P 2 PQ 18Q" + <3k 9

+200)0 [2(30 — 1) / Q°

+(n—2)/<91k —9Q* + (i >P2Q2 <

4 9

1
3k

pne=n) / (;P“ +9Q% +4P2Q? + 4P3Q)

= Aoa% + 2Byag g + Cg)\%

)



