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Abstract 

Autocallable contingent income securities, or autocalls, are a relatively new type of structured 
finance security whose payout is contingent on the performance of an underlying asset and that 
give investors an opportunity to earn high yields in a low interest environment. We collect data 
on autocalls issued in the US and describe their contractual properties and the properties of their 
underlying assets at issuance. We find that autocalls are issued on underlying assets displaying 
high volatility, negative skewness and high prices. We then model a typical autocall under 
different assumptions about the price of the underlying asset and (i) analyze the rationale behind 
the characteristics of the underlying asset at issuance, and (ii) discuss valuation of autocalls in 
the various models. While the literature consistently finds that structured products are 
overpriced, we find that incorporating stochastic volatility into the pricing model can help 
explain some of the overpricing routinely reported in prior studies.  
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1. Introduction 

The low yield environment, driven by four successive rounds of quantitative easing 

since 2008, has provided the incentive for major financial institutions to develop and sell a new 

class of structured notes characterized by apparently high yields to the investor. The structured 

notes market is the fastest growing sector of the US investment-grade fixed-income market 

(Fabozzi (2005)) and is also fast growing worldwide. Bergstresser (2008) estimates that the 

total worldwide amount of structured notes outstanding more than doubled every 18 months 

since 2003 to reach a peak of $4.5 trillion in 2006, dropping to $3.4 trillion in 2008. 

This growth not-withstanding, financial advisors that help intermediate the sale of these 

products often associate the high yield of these securities with their complexity and are careful 

to promote them outside of their high-net-worth client pool and those sophisticated investors 

having a view of the market (Purnell (2012)). Recent investment regulation in Europe 

(European Commission MiFID II Directive), the U.S. (Dodd-Frank Act), the U.K. (Financial 

Conduct Authority (2013)), and in other countries (see references in Chang et al. (2013)) has 

pushed for greater investor protection including the separation between independent and non-

independent advice, limitations on receipt of commissions and even the prohibition of 

marketing and distribution of certain products (suitability requirements). 

The purpose of this paper is to further our understanding of these seemingly 

contradictory features of the marketplace for structured products by presenting an analysis of 

the pricing and return characteristics of these product. There are two main challenges in a study 

of the pricing of structured notes. First, these are extremely complex products with many payoff 

features to consider. Second, the panoply of variations on offerings of structured notes implies a 

pricing model that is almost unique to the issuing security. By virtue of these challenges, 
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important, large-scale studies that speak to the overpricing or underpricing of structured notes 

(e.g., Bergstresser (2008) and Célérier and Vallée (2014)) cannot distill the causes for the 

observed pricing from the properties of the notes. In this paper we propose to take a different 

path, namely to inspect the payoff properties of a specific product called Autocallable 

Contingent Income Securities, or autocalls. Autocalls have experienced considerable growth in 

the U.S. market and are a part of a body of structured finance offerings called reverse 

convertibles, whose payoff is positively linked to the performance of an underlying asset. While 

our analysis pertains to autocalls, our conclusions have implications for the study of this broader 

market of structured notes.  

Consider as an example the Morgan Stanley July 16, 2012 autocall with Apple, Inc. as 

the underlying asset.1 Apple, Inc. stock on July 16, 2012 opened at $605.12, within 7% of its 

prior all time high of $644 reached on April 10, 2012. With a maturity of three years, the 

autocall offered a coupon of 3.525% per quarter,2 (approximately 14% per year) significantly 

higher than was currently available in the marketplace. The investor receives the coupon only if 

Apple’s stock price on each quarterly determination date is greater than or equal to a threshold 

level, which in this case is $450 or 75% of the initial share price of $600. In addition, if Apple’s 

stock price on any determination date is greater than the initial stock price, then the security is 

automatically called and the investor receives the principal. At maturity, if the stock is at or 

above $450, the investor receives the full amount of the principal and the final interest payment, 

otherwise, and this is the reverse convertible feature, the investor receives only a fraction of the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!In 2012 more than 450 Apple-linked structured products were brought to market, with at least 75% of them 
issued when the stock was at least $550 (Zweig (2013)). Through mid 2013, we find 68 contingent income 
autocalls issued on Apple based on SEC securities registration data.!
2 The preliminary prospectus indicates a payment in the range of 3.25% to 4.25% of the stated principal amount 
per quarter. The final coupon offered was 3.525%. The free writing prospectus can be found at 
http://www.sec.gov/Archives/edgar/data/895421/000095010312003734/dp31778_fwp-ps257.htm. !
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principal, namely shares of Apple stock based on a purchase price of $600 or the current cash 

value of those shares.  

We hand collect data on all autocallable contingent income securities listed on SEC’s 

EDGAR from June 2009 to June 2013, totaling $9.6 billion of notional value. In terms of 

product contractual characteristics, we find that two thirds of all autocalls differ at least in one 

of the many product features as compared to the plain vanilla example of the Apple autocall.3 

We also find that the median annualized coupon rate is 10% and the median maturity is 1 year. 

In terms of characteristics of the underlying asset, we find that in two thirds of all autocalls the 

underlying asset is the stock of a publicly listed company; about 60% of the autocalls are issued 

at times when the underlying asset’s 1-year option-implied volatility (from options available at 

the date of the issue) is higher than its historical implied volatility after adjusting for movements 

in volatility of the S&P (a similar result is found in Henderson and Pearson (2011) for 

SPARQS, interest paying callable notes that are exchanged for shares in the underlying asset 

upon maturity); about 57.5% of all autocalls have underlying assets that display negatively 

skewed returns; and, in 50% of the autocalls the price of the underlying security at the issue 

date is within 12% of the underlying’s 52-week high price (a similar result is found also in 

Henderson and Pearson (2011) for SPARQS).  

We value the autocall under three alternative price processes for the underlying asset. 

We start by assuming that the underlying asset’s price follows a geometric Brownian motion, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!Using a dataset from Bloomberg that includes autocalls issued outside the U.S., Deng, McCann and Mallett 
(2011) find that the autocall market has reached an annualized rate of more than $30 billion in 2010 and is growing 
at an average of about 60% per year. Autocalls in the U.K. are frequently based on the FTSE, while those in 
continental Europe are often based on the Eurostoxx 50 and other major indices from Europe and elsewhere.  Like 
autocalls in the U.S., European autocalls have varied structures, with different and often multiple types of 
underlying assets, different payoffs, different levels of contingent protection barriers and different degrees of 
liquidity for the investor. In Japan, Uridash autocalls have been popular instruments for the retail investor and have 
grown significantly over the last decade partly because they are a cost efficient way for retail investors to engage in 
the foreign exchange carry trade. These autocalls have benefitted from the low interest rates available to Japanese 
Yen deposits and the fact that they are denominated in a foreign currency.!
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which is the workhorse model in the literature. We find that the Apple autocall described above 

has a fair market price of $9.86, or 1.4% below the actual price. We then depart from the 

geometric Brownian motion model in evaluating autocalls—and thus depart from the vast 

majority of the literature—and study in turn a model of stochastic volatility and a model of 

mean reversion in prices. We believe that the geometric Brownian motion is not an appropriate 

model for the underlying assets’ price because of several factors. These include (i) our empirical 

findings, those of Henderson and Pearson (2011), those of Bergstresser (2008), and  practitioner 

discussions (Millers (2013)) regarding the underlying assets’ price characteristics at issuance 

that suggest that underwriters do not choose underlying assets at random; (ii) the large body of 

evidence of stochastic volatility showing differences in short and long run volatility and, (iii) 

the vast evidence suggesting reversals in stock prices.  

When the underlying asset’s price displays stochastic volatility à la Heston (1993), the 

impact of relatively high volatility at issuance (i.e., short-run volatility) on the valuation of 

autocalls can differ from long-run volatility, which is not possible under the geometric 

Brownian motion model where volatility is constant. We show that under reasonable parameters 

for the Heston model the fair market price of the Apple autocall becomes $9.98, which implies 

an overpricing of only 0.2%. Our last model, where the underlying asset’s price follows a mean 

reverting process, allows us to rationalize the systematic use by the underwriters of underlying 

assets that trade at high prices at issuance. This is not possible under the geometric Brownian 

motion model where future returns do not depend on the initial price. When prices are allowed 

to mean revert, we find that the fair market price of the Apple autocall becomes $9.72, an 

overpricing of 2.8%.  
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We conclude from our analysis that the choice of underlying asset or the timing of 

issuance does not appear to be random and that the pricing of autocalls, and structured products 

more generally, by adopting models that cannot accommodate changing volatility and mean 

reversion in prices, can lead to significant biases including overstating the amount of 

overpricing in these products. These conclusions, however, suggest that there may be clients 

with certain views regarding price and volatility dynamics on the underlying assets for which 

these securities are sensible investment vehicles. 

Our valuation analysis ignores two important features that unambiguously lead to an 

increase in the costs to the investor. One feature is the credit risk of the issuer. These securities 

are backed by the credit of the issuer, not the credit of the underlying asset or that of the 

distributor.  For example, if an autocall is issued by JPMorgan Chase structured with Ford stock 

as the underlying security, the credit would be that of JPMorgan Chase, not Ford. Because not 

all banks have the same credit quality and because autocalls are not rated, retail investors are 

faced with the issue of considering the quality of the issuing bank to determine the value of the 

security.  Pereira da Silva and Silva (2013) in a study of the Portuguese structured retail product 

market find that this hidden credit cost averages 4.9% per year. Deng, Huali and McCann 

(2009) find that with the increased borrowing costs faced by Lehman leading up to its distress, 

the bank issued an increasing number of structured products without compensating the retail 

investors for the increased credit risk (see also Deng, Mallett and McCann (2011)). The other 

feature is the potential lack of liquidity of these assets. In the US there is generally little 

liquidity for the investor prior to maturity or the redemption date, although some issuers provide 

daily liquidity for the autocalls they have issued. European autocalls also have virtually no 

secondary market. However, many UK autocalls provide for daily liquidity through market-
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making by the issuer or the London Stock Exchange (London Stock Exchange (2014)). Overall 

the evidence in this paper supports the regulatory efforts to strengthen investor protection. 

We contribute to the literature by studying the properties of the underlying asset’s price 

at the issuance of the structured notes. To our knowledge, only two other papers study these 

properties. Bergstresser (2008) studies a vast array of notes with call and put like options 

embedded and Henderson and Pearson (2011), like us, study a specific product, SPARQS. 

The literature suggests that traditional (i.e. non-autocallable) structured products are 

overpriced. Two approaches have been followed. The most popular approach is to assume a 

model for the underlying asset’s price from which the value of the structured product can be 

derived. The preferred model in the literature is the geometric Brownian motion model (e.g., 

Burth et al. (2001), Henderson and Pearson (2011), Stoimenov and Wilkens (2005)). To our 

knowledge only two papers deviate from this benchmark besides ours. Pereira da Silva and 

Silva (2013) also use a Heston model and Célérier and Vallée (2014) use a local volatility 

model, but neither paper calibrates their models to reflect the discrepancy between long-run 

volatility and volatility at the issuance date that we and others find.4 The other approach values 

the structured product by replicating its payoff using bonds and options traded (e.g., Burth et al. 

(2001) and Wilkens et al. (2003)). The advantage of this later approach is that it is model free. 

The disadvantage is the difficulty in accounting for transaction costs necessary for replication.  

Using the geometric Brownian motion as a model for the underlying asset’s price, the 

literature generally finds that underwriters overprice the structured products they sell (e.g., 

Wilkens et al. (2003), Bergstresser (2008), Henderson and Pearson (2011), Bernard et al. 

(2011), and Deng et al. (2014)). Whereas we point to an explanation for overpricing that has to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4!Szymanowska et al. (2009) use a constant elasticity variance model, but as in the geometric Brownian motion 
model, volatility is constant in this model as well.!
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do with the initial conditions of the underlying asset and the biases generated by the model used 

for the price of the underlying, the literature points to clientele explanations and behavioral 

explanations. Clientele explanations include hedging needs and taxes but also transactions cost 

explanations that rely on the inability of retail investors to trade in certain markets (e.g., futures 

and options markets) at the same prices that large institutions can. The general sense is that 

these are not large enough to explain the findings (e.g., Bergstresser (2008) and Henderson and 

Person (2011)). Another usual clientele explanation for the demand for high-yielding structured 

products is the low rate environment and the ability to achieve some degree of capital protection 

(e.g., Burth et al. (2001), Stoimenov and Wilkens (2005), Coval et al. (2009), Szymanowska et 

al. (2009), and Stein (2013)).  

Several behavioral explanations have been advanced including investor irrationality or 

bounded rationality, framing, and overweighting of small probability events (see Breuer and 

Perst (2007), Bergstresser (2008), Hens and Rieger (2008), Bernard et al. (2011), Henderson 

and Pearson (2011), Das et al. (2013)).  Interestingly, studies of structured finance securities 

trading in the secondary market reveal that the overpricing disappears over time and pricing 

reverts to the theoretical price of the security (see Stoimenov and Wilkens (2005)).  Product 

complexity is often advanced as a behavioral explanation to explain the cross-sectional 

variation in prices in this market (Stoimenov and Wilkens (2005), Pereira da Silva and Silva 

(2013), and Célérier and Vallée (2014)), but it is less clear why it would predict overpricing.  

Section 2 presents a description of the properties of autocalls and Section 3 presents the 

model of the autocall that we study. Sections 4, 5 and 6 present the autocall pricing results when 

the underlying asset’s price follows a geometric Brownian motion, the underlying asset’s price 



! 8!

displays stochastic volatility, and the underlying asset’s price is mean reverting, respectively. 

Section 7 concludes. The Appendix contains the mathematical formulations of the models. 

 

2. Autocall Sample Characteristics 

2.1 Characteristics unrelated to the underlying asset   

We collect the universe of contingent income autocallable securities from the SEC’s 

EDGAR database from June 18, 2009 through June 4, 2013. We search all the prospectuses 

during the observation period using form 424(b)(2) and the search terms “autocallable” and 

“contingent income” resulting in 1,162 autocalls. Table 1 provides summary statistics of our 

autocall data. Panel A shows that the number of autocalls has increased significantly over time 

with the principal value over the period exceeding nine billion dollars.5 Panel B of Table 1 lists 

the underwriters. There are two main bank underwriters, JPMorgan Chase and Morgan Stanley, 

representing 73% of all issuances and 57% of the issued dollar volume. 

 
[INSERT TABLE 1 HERE] 

 

 There are many variations on the plain vanilla autocall described in the Introduction. 

The standard, or plain vanilla autocall has a single underlying asset, has a fixed coupon rate, can 

be automatically called if certain conditions hold, has a fixed threshold below which the coupon 

is not received, has a fixed final payment conditioned on whether the underlying asset is above 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5!The SEC search only permits a four-year historical window to be searched. Prior to 2009, using Bloomberg, we 
were able to find 29 autocalls registered with the SEC representing $226 million. Because prior to 2009 there are 
so few autocalls, we constrained our data to the autocalls having form 424(b)(2) available on EDGAR to assure 
ourselves of the comparability and quality of the data provided. Deng, Mallet and McCann (2011) instead search 
the Bloomberg database for autocalls and are able to obtain a significantly larger sample than ours. Their larger 
sample is explained mostly by the inclusion of autocallable securities issued outside the U.S.!
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or below the threshold level, and has the possibility of early redemption.  Panel C of Table 1 

shows that roughly 2/3 of all autocalls differ in at least one feature from the vanilla autocall. 

 Panel D of Table 1 shows that 25% of all autocalls in the sample, or 38% of the total 

principal value, have a threshold of 80%. Panel E presents the coupon rates, expressed on a per 

annum basis, by percentile and their distribution moments. As the autocalls were developed to 

provide investors with an opportunity to generate above market yields, it is not unexpected that 

the median coupon is as high as 10% p.a. and that even at the 25th percentile, the autocall 

coupon, 8.50%, is still significantly higher than corporate bond yields. The positive skewness of 

1.44 indicates that the coupon distribution has a fat positive tail. Figure 1 plots the frequency 

distribution of the coupon rates showing that the right tail extends to a coupon rate of 33% p.a. 

Panel F of Table 1 shows that the mode and median maturity is one year, with 43.3% of the 

autocalls having a one-year maturity. The next most frequent maturity range is between 1.01 

and 4.99 years, with 23.2% of the autocalls in the sample.  

 
[INSERT FIGURE 1 HERE] 

 
2.2 Characteristics related to the underlying asset   

Panel G of Table 1 shows that the most common underlying asset is an individual 

company stock (e.g. Apple, Inc.), representing 64.7% of all issues, or 75% of the principal 

amount underwritten. The next most frequently underwritten securities are equity indices and 

commodities. Figure 2 identifies the most frequent underlying assets to be the Russell 2000 

Index (17.6%), the S&P 500 Index (15.4%), and Apple, Inc. (5.9%).  

Panel H presents statistics computed based on the stock’s volatility relative to its 

historical volatility. We calculate the ratio (underlying asset’s implied volatility / underlying 

asset’s historical implied volatility) / (S&P’s implied volatility / S&P’s historical implied 
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volatility). This ratio is used to investigate whether the securities that are chosen for autocalls 

have high volatility, controlling for changes in aggregate volatility. We find that in about 60% 

of the cases volatility is higher than historical, with 25% of the autocalls having ratios greater 

than 1.08 and 25% having ratios less than 0.97. This result can also be observed in Figure 3, 

which provides the complete frequency distribution of the above described volatility ratio.6 Our 

result complements the evidence in Henderson and Pearson (2011) for SPARQS that volatility 

(weakly) affects positively the choice of the underlying security, but differs from the evidence 

in Bergstresser (2008) that uses a sample of all structured products and finds mixed evidence on 

the effect of volatility on the likelihood of the choice of the underlying security. Our evidence 

thus suggests that the underlying securities are generally very volatile at the time of issuance. 

We cannot identify the cause for the higher volatility, whether firm specific or market-wide. 

Indeed, practitioners often suggest that these securities are only issued at times of high market 

volatility (e.g. Millers (2013)). We use this evidence below to justify the consideration of 

models with stochastic volatility to price autocalls. 

 
[INSERT FIGURES 2 AND 3 HERE] 

 
Panel I of Table 1 presents the percentiles and distribution moments associated with the 

ratio of the price of the underlying at the time of issuance of the autocall to its prior 52-week 

high.  This analysis is performed for those securities with a single underlying asset (e.g. the 

Russell 2000 or Apple stock).  The analysis helps gauge how closely the underlying securities’ 

prices are to their most recent highs. A ratio of 1 reflects the fact that an offering was issued 

precisely at the 52-week-high price.  We find that 25% of the autocalls are issued within 4% of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6!The general tone of these results is unchanged if we use realized historical return data and robust measures of 
variance, the interquartile range and the median absolute deviation. Results are available upon request.!
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the 52-week-high price and 50% are issued within 12% of the 52-week-high price of the 

underlying security. Figure 4 graphically depicts the frequency distribution of the ratio of the 

price of the underlying security at the time of issuance to its prior 52-week high. This evidence 

demonstrates that underwriters appear to choose to issue autocalls on underlying assets whose 

prices at the issue dates are near their 52-week high levels. We repeat the analysis using the 

variable (initial price of underlying security / underlying security’s 52 week high) / (S&P 500 

value at issuance / S&P 500 52-week high) that adjusts for market movements. The histogram 

of this variable using our autocall data looks very similar to that obtained in Figure 4, 

suggesting that markets have been rising during the time of issuance. 7 The fact that markets 

have been rising during the time of the study supports the view that there are an increasing 

number of autocalls issued during periods of market strength.8!! Similarly, Henderson and 

Pearson (2011) find an increased likelihood of choice of an underlying asset with high past 12-

month performance. This evidence leads us to consider models of mean reversion in prices 

when pricing autocalls. Bergstresser (2008) finds mixed evidence regarding the past 

performance of underlying assets at issuance. We present a possible explanation for this 

discrepancy in Section 6. Finally, Panel J shows that mean skewness is negative at -0.31 and 

57.5% of all underlying assets display negative skewness. This is striking as firm level stock 

returns are vastly positively skewed (see Albuquerque (2012)).  

 
 [INSERT FIGURE 4 HERE] 

 

3. Framework for Analysis 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7!Available from the authors upon request.!
8!Oyo (2013) suggests that the improved prospects of the U.S. economy following the crisis drove usage of U.S. 
indices as underlying assets, where the deteriorating prospects of the European economies drove usage away from 
the more stagnant European-based indices (see also Thin (2014) on market shares). !
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The contingent income autocallable security that we analyze is of the plain vanilla kind. 

Payouts are a function of the price performance of an underlying asset as described next (the 

Appendix gives a formal description of the payouts). At each determination date the security is 

called if the underlying asset’s price at that date is higher than the price at issuance, in which 

case the investor gets paid the coupon and principal and no further cash flows, or is not called, 

in which case the investor gets the coupon if the underlying asset’s price at that date is higher 

than the threshold level or zero otherwise. The threshold level is defined as a fraction, say 80%, 

of the price at issuance. At maturity, if the autocall is still alive, it pays coupon plus principal if 

the underlying asset’s price at that date is higher than the threshold, otherwise it pays either one 

unit of the underlying asset or its current cash value. If the underlying asset is received, the 

investor has a capital loss. 

Without the autocall feature, this structured product is best described as a combination 

of a long position in a plain vanilla bond with fixed coupon payments at every determination 

date and redemption of the principal at par at maturity, plus several short positions. These short 

positions include several European digital options, each maturing at a different determination 

date, and one European digital option and one European put option both with a maturity that 

coincides with the maturity of the autocall. Because of the value associated with all the 

embedded options given to the underwriter by the investor, which expose the investor to the 

downside risk of the underlying asset but not to its upside potential, the underwriter is able to 

offer a higher coupon rate.  

The autocall feature significantly complicates this structure because it makes the value 

of the embedded options contingent on the price of the underlying stock at each of the 

determination dates. However, it is still true that the investor gives contingent options to the 
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underwriter and the underwriter can use the value of these options to offer a better coupon rate 

to the investor. 

 

4. Geometric Brownian Motion Model of Underlying Asset Prices 

In this section we present results describing the properties of the autocall under the 

assumption that the price of the underlying asset follows a geometric Brownian motion. Under 

this assumption, and without the autocall feature, it is possible to write the value of the security 

in closed form. However, in the presence of the autocall feature there is no known exact, closed-

form expression for the value of the autocall security and we must, therefore, resort to 

numerical methods to determine the properties of the investment return. For concreteness, we 

simulate the properties of the plain vanilla autocall using the Apple autocall described in the 

Introduction. We calibrate several model parameters: the maturity of the contract is set to 3 

years; the contract has quarterly determination dates and pays an effective coupon rate of 

3.525% quarterly; the threshold level in the contract is 75% of the initial stock price; the risk 

free rate is set to 1.8% p.a., which equals the average annualized nominal 3-month T-bill rate in 

the period 2005-2012; the mean growth of the price process is set to 6.3% p.a., which can be 

decomposed as the sum of a risk premium of 4.5% and a risk free rate of 1.8%; and the 

volatility of the price process is set to 30%, which is the implied volatility of Apple’s stock 

return on options with 1 year maturity at the time of the issue.9 The investors’ required rate of 

return on the autocall is set to 6.12%. This rate equals the risk free rate of 1.8% p.a. plus the risk 

premium of 4.5% p.a. times Apple’s CAPM beta, that at the time of the issue was equal to 0.96 

relative to the S&P 500. The investors’ required rate of return is only used to compute the fair 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9!To compute implied volatility we chose 1 year for the option maturity instead of 3 years to match the maturity of 
the autocall due to a lack of liquidity on long-dated options. 
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market price of the autocall and as a benchmark for the internal rate of return of the autocall. 

For our purposes the initial stock price is arbitrary and is set to 10. We simulate 50,000 price 

paths to ensure the accuracy of our results. With these parameters the fair market value of the 

security according to our model should have been $9.86, representing an overpricing of 1.4% 

relative to the actual sale price. The corresponding unconditional expected annualized internal 

rate of return of this autocall is 4.3% p.a., below the assumed required rate of return of 6.12%. 

 

4.1 Survival probabilities 

Table 2 presents the simulated unconditional and conditional probabilities of survival. 

The row indicated in bold “Baseline case” refers to simulations that use the parameters defined 

above. To understand the relevance of the various parameters to the value of the autocall, the 

table also gives the unconditional and conditional probabilities of survival under several other 

models: low and high volatility (respectively, 15% and 40%), low and high threshold level of 

the initial stock price (respectively, 60% and 85%), short and long maturity (respectively, 1 year 

and 15 years), and low and high coupon (respectively, 8% p.a. and 25% p.a.). These alternative 

models were constructed based on the evidence presented in Section 2.  

Consider the unconditional probability that the security is called at the first 

determination date, which occurs if the stock price at that determination date is above the initial 

stock price. In the baseline case seen in Table 2, this probability is 51.2%. The probability that 

the security is called at either the first or second determination dates is 64% (equal to 51.2% 

plus 12.8%). To understand these numbers, note that with our calibration the mean of arithmetic 

returns is equal to 0.018. Since the mean of arithmetic returns is positive, the probability that 

the stock price is larger than the initial stock price at the first determination date is greater than 
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50%. Therefore, investors with a view that the price will grow will have an incentive to invest 

in these securities given the high yield paid. The probability that the security is called at the 

second determination date equals 12.8% (equal to the probability that it is not called by the first 

determination date, 1-0.512, times the conditional probability that it is called by the second 

date, given that it was not called at the first date, 26.4%). The conditional probability of being 

called by the second determination date is considerably lower than 50% because a condition for 

surviving the first determination date is that the price be strictly lower than the initial stock 

price.  Further, we note that the unconditional probability that it is called at any determination 

date after the first year is quite low at 3% or less. The probability of not being called at any 

determination date prior to maturity, namely the probability of reaching maturity, is 15% in the 

baseline model calibration.  

Consider now the scenario where stock price volatility is higher and equal to 40% and 

all else remains equal. The increase in volatility lowers the mean of arithmetic returns to 

negative 0.017, which lowers the probability that the security is called at the first determination 

date to 49.2%. In general higher stock price volatility lowers the probability that the security is 

called at any determination date and raises the probability that the security reaches maturity. 

The fact that the security is more likely to reach maturity also implies that the stock price is 

more likely to be below the threshold level at maturity and hence that the investor takes a 

capital loss.  

The remaining scenarios considered in Table 2 consider different threshold values, 

different maturities and different coupons, but share with the baseline case the same probability 

that the security is called. This is because these dimensions of the autocall do not change the 
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price process or the price level that triggers the autocall. They will, however, impact the value 

of the autocall as explained next. 

 
[INSERT TABLE 2 HERE] 

 
4.2 Internal Rate of Return  

To further analyze the return properties of the autocall we calculate ex-post internal rates 

of return. That is, for each simulated price path, we calculate the corresponding IRR. These are 

ex-post IRRs because they are calculated based on specific realizations of the stock price. These 

rates naturally differ from the ex-ante IRR reported above that was calculated using expected 

cash flows across all simulated paths. In addition, the average of the ex-post IRRs is also 

different from the ex-ante IRR because the IRR results from a nonlinear calculation. 

Because of the autocall feature a security that is called at the first determination date has 

a maturity one quarter shorter relative to another security that is called at the second 

determination date, and so on. To deal with the issue of heterogeneity in the effective maturity 

of the cash flows across simulated paths we assume that after the security is called the notional 

value from the autocall is reinvested at the risk free rate through the maturity of the autocall.10  

Figure 5 displays properties of the IRR associated with the Apple autocall (baseline 

case) and with the other scenarios described above. The top row (panel A) in Figures 5A to 5D 

is common as it displays the results for the baseline case. Figure 5A also depicts the low and 

high volatility scenarios, Figure 5B depicts the low and high threshold level scenarios, Figure 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10!Alternatively, we calculate the ex-post IRR without assuming reinvestment of capital after the security is called. 
Quantitatively, IRRs calculated in this fashion are higher than those reported in the paper because the risk-free rate 
is lower than the coupon rate used to calibrate the model, but qualitatively the properties of both IRRs are quite 
similar. Because the reported measure is more relevant for investors and to conserve on space we omit the 
presentation of the results under this alternative approach to calculate the ex-post IRR. 
!
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5C depicts the short and long maturity scenarios, and Figure 5D depicts the low and high 

coupon scenarios.  

The first column in each figure presents the unconditional frequency distribution (across 

all simulated paths) or histogram of IRRs. In each of the histograms in all panels of Figure 5A-

5D the tallest bar is explained by the probability that the security is called at the first 

determination date, pays the coupon and then earns the risk-free rate up to maturity. To its right, 

the histogram depicts the events where the security was not called until at least the second 

determination date and is likely to have paid coupons until called.  

The riskiness of the autocall can be seen in the significant left tail of the histogram. The 

distribution of ex-post IRRs is considerably left skewed with non-negligible probabilities of 

extremely low ex-post IRRs. In the baseline case the IRR is negative in 10.6% of the simulated 

price paths and is below -5% in 9.6% of the simulated price paths. The negative skewness is 

more pronounced when volatility is high (negative IRR in 15% of paths and IRR below -5% in 

14.4% of paths), the threshold level is high (negative IRR in 12.5% of paths and IRR below -

5% in 11.4% of paths), the maturity is shorter (negative IRR in 11.8% of paths and IRR below -

5% in 11.8% of paths), or the coupon is lower (negative IRR in 10.9% of paths and IRR below -

5% in 10.6% of paths).  

 
 [INSERT FIGURE 5 HERE] 

 

To better understand the negative skewness of the IRR distribution consider column two 

in Figures 5A-5D. The plots in this column present the average IRR across sample paths 

conditioned on the security surviving a given determination date. The left-most bars in the plots, 
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indicated by determination date 0, give the unconditional mean of the ex-post IRR across all 

paths. In the baseline case the unconditional mean IRR is 1.91% annually.  

There is a generalized downward pattern of the mean IRR when measured against the 

determination date survived by the security. Intuitively, a necessary condition for the security to 

have survived each past determination date is for the stock price to be below the initial stock 

price at each of the determination dates. In the geometric Brownian motion model, because the 

mean return is constant, the expected value of future prices decreases as the price goes down. 

Therefore, the expected payoff to the investor at maturity at that time is also expected to be 

lower. The mean IRR of autocalls that reach maturity is always low because the investor bears 

the downside of the stock price at maturity. This pattern of IRRs explains the negative skewness 

in the distribution of IRRs and the reported overpricing. As a result, the investor incurs the risk 

of significant losses should the autocall not be called soon after issuance, with the mean IRR 

approximately -10% per year for those autocalls not called by the 11th determination date (33 

months after issuance).  

If the stock price displays higher volatility, keeping all else constant, the probability that 

the security is called at the first determination date decreases (see Table 2). Therefore the 

likelihood that the investor is paid the coupon decreases. Also, from Table 2, the probability 

that the security survives till maturity increases. Because higher volatility in stock prices 

increases the probability of prices being below the threshold level, the likelihood that the 

investor takes a capital loss at maturity increases. IRRs decrease relative to the baseline case.11 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11!In the low volatility case, the mean IRRs display a hump-shaped pattern against the determination date. The 
reason is that with low volatility, the stock price remains closer to the initial price and if the security is not called, 
then the investor receives the coupon, which is better than having the security be called earlier on and having to 
reinvest the proceeds at the risk-free rate as assumed. Eventually, if the security is not called, the probability that 
the price is below the threshold is large enough putting downward pressure on the IRRs and giving rise to the 
decreasing part of the hump.!
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The effect of the increased likelihood of reaching maturity and of the price of the underlying 

being below the threshold level significantly reduces the mean IRR to approximately -20% per 

year at the 11th determination date. 

Figure 5B depicts the effects of changing the threshold level. Consider panel C first. The 

high threshold level does not affect the probability of the security being called (see Table 2), but 

strictly lowers the cash flows from the autocall.  This is because there are price paths that would 

generate payouts at certain determination dates that no longer generate those payouts. This 

results because the threshold level is now higher than the price at those determination dates. The 

IRRs therefore uniformly decrease relative to the baseline case (panel A), all else constant. In 

contrast, in the low threshold case (panel B) the fact that more price paths now involve a 

payment of a coupon partly offsets the negative effect of the capital loss at maturity and 

generates an increasing pattern in IRRs for the first few determination dates.  

Figure 5C depicts the effects of changing maturity. Consider first panel B. The shorter 

maturity does not affect the probability that the security is called but increases the likelihood of 

it reaching maturity (see Table 2). While the probability that the stock price is below the 

threshold value at a certain date is not affected by the maturity of the asset, the increased 

likelihood of reaching maturity increases investors’ expected capital loss and lowers IRRs. This 

effect is quantitatively very large with the IRR at maturity reaching a whopping -6% per year. 

This compares with an IRR in the baseline case of about -3% per year at the same date (see 

panel A). Extending the maturity of the autocall to 15 years (panel C) creates the possibility of 

very high IRRs at the early determination dates because the effect of the capital loss at maturity 

is quite far off. But again, a large negative IRR arises as the security reaches maturity. Finally, 
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lowering the coupon (Figure 5D) also strictly lowers the payout relative to the baseline case and 

shifts all mean IRRs down.   

The value of the capital loss faced by the investor at maturity can be further assessed. 

Consider the worst possible outcome for the investor that buys an autocall: it results from the 

stock price being below the threshold level at all determination dates and also at maturity in 

which case the investor receives the underlying stock and earns a capital loss. The return in this 

case can be easily computed as the IRR of the following present value: 

−10+ !!
!!!"" !" = 0, 

where !!  is the stock price at maturity T. The solution is approximately equal to !"" =
!
!" log !!/10 . The expectation of this value is difficult to calculate analytically because it 

requires knowledge of a distribution that is conditioned on the price being below the initial price 

at every determination date. However, the fact that the stock price at maturity can be close to 

zero and the fact that the probability of receiving the stock at maturity is high (10.9% in the 

baseline case) help explain the negative skewness in the return distribution.12  

In summary, we find that the distribution of ex-post IRRs is highly left skewed; that left 

skewness reflects the investors’ capital loss if the security reaches maturity that is embedded in 

the short option positions; and, that left skewness is greatly affected by several model 

parameters including the volatility of the underlying asset. Investors therefore have much to 

gain in the autocall that is called early in its life and to lose in the autocall that survives to 

maturity. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12!The best possible outcome for the investor is to have the stock price lie between the threshold level and the 
initial stock price at every determination date and for the stock price to be above the threshold level at maturity. In 
this case, the investor receives the coupon every determination date and principal plus coupon at maturity, 
equivalent to a 3.525% quarterly IRR over three years in the baseline case. This event is unlikely, occurring with a 
probability of 0.2% in the baseline model.!
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5. Volatility Exposure through Autocalls 

An important assumption of the model in Section 4 is that of constant volatility. This 

assumption simplifies the problem at hand but is at odds with the volume of evidence on 

stochastic volatility in asset returns. In the presence of stochastic volatility autocalls become 

vehicles to obtain exposure to volatility risk, and pricing of an autocall must differentiate 

between short-dated volatility and long-dated volatility because of the combination of options 

of different maturities that are embedded in the autocall. To preview our results in this section, 

issuance of autocalls at times of high volatility on the underlying asset tends to produce higher 

valued autocalls if this volatility is expected to decrease over time.  

To operationalize these ideas we simulate the stochastic volatility model developed by 

Heston (1993) (the Appendix contains the model details). This model distinguishes between the 

conditional variance of stock returns, which we can label as short-dated variance, and the long-

term mean of the conditional variance of returns, which we can label as long-dated variance. 

The process for variance has mean reversion and shocks to variance, with the shocks to variance 

assumed to be correlated with the shocks to the stock price.  

To analyze the potential effects of stochastic volatility on the price of the autocall, recall 

from Section 3 that this structured product is best described as a combination of a long position 

in a plain vanilla bond and short positions in several digital options and in a put option, with the 

options having different maturities and the same underlying asset. The digital options, like the 

put option, pay if the underlying asset’s price is low enough, and for all purposes behave 

similarly to put options. As described in Section 3, these options are out-of-the money at the 
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time of issuance of the structured product, and may even be far-out-of-the money for a low 

enough threshold.  

Consider a period of high volatility in which short-dated variance is above long-dated 

variance as suggested by the evidence in Section 2. Then the value of the options embedded in 

the autocall is lower relative to the model with constant volatility if volatility were always at the 

highest level. The magnitude of this effect depends on the persistence of shocks to volatility. 

When shocks to volatility last only one period, volatility quickly reverts down to its long-dated 

level, lowering the value of the options and raising the value of the autocall relative to the 

constant volatility model. When shocks to volatility are very persistent, then short-dated 

volatility can move away from its long-dated level for many periods. If the maturity of the 

autocall is sufficiently small, then the high persistence of variance of stock returns implies that 

the price of the autocall in the stochastic volatility model is close to the price in the constant 

volatility model of Section 4. Quantitatively, we show later in this section that these effects 

appear to be important determinants in the pricing of autocalls. 

Heston (1993) shows that the volatility of volatility parameter controls the kurtosis of 

stock returns. Increasing volatility of volatility has the effect of increasing kurtosis, thus 

generating fatter tails in stock returns with the consequence that far-out-of-the money put option 

prices increase and near-the-money put option prices decrease, relative to the constant volatility 

model. Provided the threshold level on the autocall is sufficiently high, given the volatility in 

stock returns, the autocall represents a short position in near-the-money options and therefore 

we expect the price of the autocall to increase with a higher volatility of volatility, all else equal.  

Heston (1993) shows that the correlation between shocks to the stock price and shocks 

to variance controls the skewness in stock returns. When this correlation is negative, stock 
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returns display a “leverage effect” according to which low returns tend to be associated with 

high volatility and the distribution of stock returns is negatively skewed. Heston shows that then 

out-of-the money put option prices increase relative to the constant volatility model. We 

therefore expect the options in the autocall to increase in value when the correlation is negative. 

Therefore, the leverage effect is expected to lower the price of the autocall, all else equal.  

We proceed to quantify the significance of these effects on the pricing of the Apple 

autocall that we have been studying. We let all parameters common to the model in Section 4 

take on the same values and therefore assume that the short-dated volatility is 30%.!In line with 

the evidence in Section 2, we consider two values for the unconditional volatility, 20% in the 

base case scenario and 30%. We calibrate the mean reversion parameter to match the mean 

value of persistence in asset volatility estimated in Engle and Siriwardane (2014). Following 

Engle and Siriwardane (2014), we set the mean reversion parameter to 0.4. Besides this base 

case, we also report results using a higher value of mean reversion of 3. When volatility reverts 

more rapidly to its mean it therefore displays less persistence. The magnitude of this parameter 

becomes critical when short-dated volatility and long-dated volatility differ significantly. 

In the base case, we report results assuming no leverage effect, i.e. zero correlation. 

Because Apple’s stock returns were negatively skewed at the date of issuance we also discuss 

cases with negative correlation. Finally, as we find that increasing volatility of volatility 

increases the value of the autocall, we calibrate the volatility of volatility to 12%. This value is 

the highest value that is consistent with the Feller condition that ensures that volatility is 

positive (see the discussion of the continuous-time version of the Heston model in Dragulescu 

and Yakovenko (2002)). 
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Table 3 presents the fair market value of the Apple autocall under several parameter 

combinations. The model is simulated using 50,000 price paths. In the baseline calibration, the 

fair market price is $9.98, which implies a discount relative to the actual price of 0.2%. When 

we add a leverage effect by setting correlation to −0.2 we find that the fair market price drops to 

9.95, representing an overpricing of 50 basis points. At the largest leverage effect, correlation of 

−1, the autocall overpricing is 1.3%. The relatively small overpricing in the base case 

calibration is due to the lower expected mean volatility, and to the presence of fat tails induced 

via volatility of volatility. Investors therefore appear to benefit from selling exposure to 

volatility risk to the underwriting institution.  

[INSERT TABLE 3 HERE] 

To understand the sources of gains to investors in this model relative to the model with 

constant volatility, we vary mean reversion and long-dated volatility. Increasing mean reversion 

in volatility produces a large increase in the value of the autocall for both values of the 

correlation. Intuitively, since long-dated volatility is lower than short-dated volatility, as would 

be expected in a scenario of relatively higher current volatility, the more rapidly volatility 

reverts back down to its long-dated level, the lower the value of the options embedded in the 

autocall and the higher the value of the autocall. Likewise, increasing long-dated volatility 

toward the short-dated level not only makes the value of mean reversion less relevant for the 

calibration, but also significantly lowers the value of the autocall because the value of the 

options in the autocall increases. But, the value of the autocall when long-dated volatility is 

30% is only slightly higher than in the model with constant volatility indicating that the fat tails 

in the model produce a positive but small effect on the price of the autocall.  

 
[INSERT TABLE 4 HERE] 
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To conclude, we discuss the patterns in conditional and unconditional probabilities that 

the security is called and the patterns in the simulated IRRs in the base case scenario. Table 4 

presents the unconditional and conditional probabilities of the security being called in this 

model, also in the baseline case (from Table 2) and in the mean reversion case which will be 

discussed in the next section. There is a decline in the probability that the security is called after 

the first determination date due to the lower long-dated volatility, but this effect is not very 

large given the high persistence in volatility.  

 
[INSERT FIGURE 6 HERE] 

 

Figure 6 depicts the mean IRR conditional on survival for three models, the geometric 

Brownian motion of Section 4 (left plot) repeated from Figure 5A, the stochastic volatility 

model (center plot), and the model of mean reversion in price from Section 6 (right plot). For 

the stochastic volatility model, the unconditional mean IRR at the time of issue is 2.5%, higher 

than that in the constant volatility model or baseline case. This reflects the higher valuation and 

lower overpricing discussed above. The mean IRR conditional on survival declines as the 

expected capital loss at maturity increases. In the paths where the security is never called (right-

most bars), the mean IRR is negative but less so than for the baseline model. This reflects the 

lower value of the options (including the put option at maturity) due to the mean reversion of 

volatility that appears to dominate the effect that volatility of volatility would have in 

generating a higher value for the options and hence a lower value for the autocall. 

 

6. Price-level Effects on Autocall    
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The underlying asset price models studied in the previous sections have no role for price 

level effects. In this section we assume that the price of the underlying asset follows a mean 

reverting process, also known as an arithmetic Ornstein-Uhlenbeck process (see Dixit and 

Pindyck (1994)) (the Appendix contains the formal details). This price process allows for prices 

to fluctuate around a long-term mean, and to revert to that long-term mean at a fixed rate. To 

simulate this model, we calibrate the mean reversion parameter to 0.75, and the long-term mean 

of the price to 20% below the price at the issue date. According to this long-run mean, the seller 

of the autocall believes that there is a significant probability that the stock price will fall. In 

addition, noting that the volatility in this model is the volatility of the stock price and not the 

volatility of the stock return as in the previous geometric Brownian model, we adjust volatility 

to 0.317 so that the volatility of the stock price is matched in both models.  

Simulating this model (also with 50,000 price paths) yields a fair market price of $9.72, 

which implies a discount relative to the actual price of 2.8%, and an IRR computed using the 

expected cash flows across all simulated paths of 3.6% p.a., significantly lower than the 

required rate of 6.12%. The reason that the discount is so much larger relative to that under the 

baseline model of Section 4 (of 1.4%), and that the IRR is lower, is that the stock price at the 

issue date is significantly higher than its long run mean of $8 which then has two main 

consequences: (i) the security is less likely to be called and to pay coupon plus interest at the 

first determination date; and, (ii) while it pays interest whenever the stock price is between $7.5 

and $10, it is also more likely to drop below the threshold and result in a capital loss to the 

investor (note that the long run mean of the stock price is $8 and the threshold is $7.5). Table 4 

contains the realized conditional and unconditional probabilities that the security is called. The 

unconditional probability of the security being called at the first determination date is only 
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37.2% and of being called in any of the first two determination dates is 47.6% (down from 64% 

in the baseline case). Also significant is that the unconditional probability that the security 

reaches maturity is 29% (up from 15% in the baseline case).  

In Figure 6 we plot the mean IRR conditional on survival (right plot). The unconditional 

mean IRR at the time of issue (left-most bar) is 2.1% in the mean reversion model, higher than 

the 1.91% in the baseline model. Like in the baseline model, the mean IRR conditional on 

survival declines as the expected capital loss at maturity increases. This result explains the 

negative skewness in the IRR distribution and relies on the options embedded in the autocall.  

Our results can explain the mixed evidence in Bergstresser (2008) on the effect of the 

recent past performance of the underlying asset on the likelihood of issuance. Whether issuance 

of a security is positively related with past performance of the underlying asset should depend 

on whether the structured security has embedded call-type options or put-type options. Because 

Bergstresser pools both call-like and put-like structured securities in his analysis of the 

likelihood of issuance, it is possible that the mixed evidence is caused by the lack of 

consideration of the separate and opposite effects of mean reversion in prices. 

 

7. Conclusion 

This paper describes the financial characteristics of a relatively new type of structured 

finance security, the autocallable contingent income security that has received significant 

attention because of the opportunity it gives investors to earn high coupons in a low yield 

environment. Yet, financial advisors that help sell these products often associate the high yield 

of these securities with their complexity and are careful in promoting these products to less 

sophisticated investors. These seemingly contradictory statements are the focus of this paper. 
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We offer two main takeaways. First, we document that underwriters of autocalls do not 

appear to choose underlying assets in a random fashion or to issue these securities at random 

times: the underlying security displays high volatility and is generally performing well in the 

stock market displaying prices at or near the 52-week high value. Second, we use this evidence 

and evidence from other financial markets to argue the inappropriateness of the workhorse 

model, the geometric Brownian motion, of the underlying asset’s price used in the literature that 

values structured products. We show that when other models are considered that incorporate 

information from the underlying assets’ characteristics at issuance of the note, specifically a 

model that allows for stochastic volatility, the valuation of autocalls appears fairly priced. These 

conclusions affect the valuation of structured products at large because we know from 

Bergstresser (2008) and Henderson and Pearson (2011) that our findings regarding the price 

characteristics of underlying assets at issuance apply also to other structured products. A 

broader study of price properties at the issuance of structured products is left for future research.  

It is therefore possible that investors’ views regarding price and volatility dynamics on 

the underlying assets may justify the overall interest in these securities and the growth in the 

market. Not-withstanding the finding that the appropriate choice of pricing model can 

approximate the fair value of the autocall to its actual price, private wealth managers and 

financial advisors in general should be aware of the potentially significant (remaining) 

overpricing due to the issuer’s credit risk. We deliberately excluded consideration of this effect, 

but as the Lehman case suggests it can be large.  

We leave one final remark from our analysis to financial analysts. Issuing banks engage 

in significant hedging of the exposures created by selling these structured products. Bennett and 

Gil (2012) alert for a potential “vicious circle” where a decrease in prices in equity markets 
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associated with an increase in implied volatility can create a need to buy volatility as part of 

hedging by banks that in turn leads to an overshoot of volatility in a crisis. This effect may be 

particularly significant with underlying assets that have limited turnover in derivatives markets 

that can be used for hedging or at times when liquidity in these markets dries out (e.g. Millers 

(2013)). 
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Table 1: Sample Statistics 
 

Panel A: Distribution by Year of Issuance 

Issuance Year Principal Value Number of Autocalls 

2009 (from 6/18) $506,713,900 24 

2010 $1,951,037,280 159 

2011 $2,259,470,780 231 

2012 $2,979,390,270 443 

2013 (through 6/04) $1,932,100,117 305 

Total $9,628,712,347 1,162 
 

Panel B: Underwriters of Autocallable Securities 

Underwriter Principal Value Number of Autocalls 

JPMorgan Chase & Co. $1,301,207,530 463 

Morgan Stanley $4,224,542,690 385 

Citigroup Inc. $2,874,140,487 172 

Royal Bank of Canada $477,715,980  57 

UBS AG $349,743,840 38 

Barclays PLC $284,412,680 24 

Eksportfinans ASA $26,100,000  10 

HSBC USA Inc. $81,580,960 9 

Bank of America Corporation $5,000,000 3 

Credit Suisse AG  $4,264,580 1 

Total $9,628,712,347 1,162 



! 35!

Panel C: Categories of Autocallable Securities 

Category Principal Value Number of Autocalls 

1 $2,875,308,600 338 

2 $264,926,000 162 

3 $302,505,530 52 

4 $144,399,610 30 

5 $254,244,020 29 

6 $14,685,000 28 

7 $28,895,920 9 

8 $88,421,000 5 

9 $20,389,320 3 

10 $2,785,000 1 

11 $1,462,000 1 

Multiplea   

2, 4, 11 $3,541,213,957 151 

2, 7, 11 $237,050,000 116 

4, 6, 11 $573,581,900 70 

2, 4 $340,201,040 31 

Total $8,742,655,997 1,026 

Notes: (a) Only multiple category combinations used in more than 30 issues are shown. 

Categories: 1 – Standard autocall; 2 – Guaranteed coupon payment; 3 – Non-callable time span; 4 – No 
early redemption; 5 –Variable redemption level; 6 – No coupon payment; 7 –Multiple underlying assets; 
8 –Maturity payment different; 9 – Variable coupon payment; 10 –Variable threshold level; 11 – Variable 
final payment 
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Panel D: Threshold Level Frequency Distribution 
Threshold 

Level Frequency Percent 
Cumulative 
Percentage  

Percent of  
Total Principal Value 

80% 296 25.47 25.47 38.48 

75% 236 20.31 45.78 23.88 

70% 215 18.50 64.29 15.92 

65% 108 9.29 73.58   7.67 

60% 102 8.78 82.36   3.85 

90% 46 3.96 86.32   2.27 

50% 39 3.36 89.67   2.42 

85% 13 1.12 90.79   1.18 

55% 12 1.03 91.82   0.20 

Notes: Excludes autocalls with threshold levels observed fewer than 5 times. 
 
Panel E: Coupon Rates in % per annum by Percentile and Coupon Rate Distribution 
Moments 

E-1: Percentiles 25% 50% 75% Min Max 
Total 

Number 

Coupon rates 8.50 10.00 12.28 2.50 33.00 997 
 

E-2: Distribution Moments Mean Variance Skewness 

 
10.863 12.667 1.436 

 
Note: Excludes autocalls with a variable coupon or no coupon payment. 
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Panel F: Autocall Maturity (in years) by Percentile and Maturity Distribution Moments 

F-1: Years Principal Amount Number of Autocalls 

< 1 $3,490,610,227 202 

1 $2,792,102,730 504 

1-4.99 $2,007,633,910 270 

5 $496,067,480 73 

5-9.99 $202,536,000 26 

10 $85,794,000 16 

10-14.99 $5,100,000 1 

15 $393,471,000 46 

18 $1,336,000 1 

20 $154,061,000 25 

Total $9,628,712,347 1,162 
 

F-2: Percentiles 25% 50% 75% Min Max 
Total 

Number 

Years 1 1 3 0.5 20 1,162 
 

F-3: Distribution Moments Mean Variance Skewness 

 
2.777 16.365 2.857 

 

Panel G: Number of Autocalls Issued by Type of Underlying Asset 

Type of Underlying Asset Principal Amount Number of Autocalls 

Company $7,233,029,787 748 

Equity Index $2,294,068,560 392 

Commodity $92,914,000 19 

Currency $8,700,000 3 

Total $9,628,712,347 1,162 
 
Note: Of the autocalls that use companies as an underlying asset, 97.9% use a single company as the 
underlying asset with a principal of $7,184,776,267. 
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Panel H: Ratio of (Underlying Asset Implied Volatility/Underlying Asset Historical Implied 
Volatility) to (S&P Implied Volatility/S&P Historical Implied Volatility) 

H-1: Percentiles 25% 50% 75% Min Max 
Total 

Number 

Ratio of volatilities 0.97 1.02 1.08 0.71 2.31 838 
 

H-2: Distribution Moments Mean Variance Skewness 

% obs. 
With 

Ratio>1 

 
1.028 0.011 1.164 58.0 

 
Note: There are 89 autocalls with the S&P 500 as the underlying asset, or 7.66%, of the data set. 
Bloomberg was used to obtain the 12-month implied volatility of both the underlying asset and the S&P implied 
volatility.  The historical implied volatilities were obtained by using the respective historical average of the most 
recent 252-day implied volatilities. The total number of autocalls used in Panels H-1 and H-2 was reduced 
to 838 due to the elimination of those autocalls with multiple underlying assets, those having the S&P as 
the underlying asset, and those where the implied volatility was unavailable. 
 

Panel I: Autocall Offering Price / 52-Week High with Single Underlying Asset 

I-1: Percentiles 25% 50% 75% Min Max 
Total 

Number 

Offering price/52-week high 0.76 0.88 0.96 0.24 1 969 
 

I-2: Distribution Moments Mean Variance Skewness 

 
0.846 0.019 -1.183 

 
Notes: Excludes autocalls with multiple underlying securities.  
 

Panel J: Skewness of Log Returns 

J-1: Percentiles 25% 50% 75% Min Max 
Total 

Number 

Skewness -0.41 -.09 .16 -15.79 15.53 975 
!
J-2: Distribution Moments Mean Variance Skewness % obs. >0 

 
-0.310 3.458 -3.230 57.5 

 
Note: Excludes autocalls with multiple underlying assets and those where the pricing data was 
unavailable. 
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Table 2: Properties of Probabilities of Security Being Auto-Called 

             
 Model simulation of the probability that the security is called at any determination date. Baseline model is the Apple security presented in the text. 

Parameters in the baseline case are: risk free rate of 1.8% p.a., volatility of stock return of 30%, maturity of security of 3 years with quarterly 
determination dates, threshold level of 75% and coupon rate of 3.525% paid quarterly.  

 
  
  

 Notes: (a) Refers to the probability of reaching maturity. (b) Determination date 4 gives the probability of reaching maturity. (c) Probabilities after 
determination date 10 are omitted and determination 12 refers to maturity of the auto-call.  

 
Unconditional Probabilities 

Determination date 1 2 3 4 5 6 7 8 9 10 11 12(a) 

Model 
            

Baseline case 0.5118 0.1286 0.0639 0.0397 0.0270 0.0209 0.0164 0.0128 0.0110 0.0098 0.0074 0.1507 
             

Low volatility (15%) 0.5708 0.1352 0.0668 0.0411 0.0280 0.0213 0.0161 0.0126 0.0105 0.0084 0.0076 0.0816 

High volatility (40%) 0.4916 0.1244 0.0606 0.0386 0.0281 0.0198 0.0168 0.0129 0.0113 0.0088 0.0077 0.1794 
             

Low threshold (60%) 0.5118 0.1286 0.0639 0.0397 0.0270 0.0209 0.0164 0.0128 0.0110 0.0098 0.0074 0.1507 

High threshold (85%) 0.5118 0.1286 0.0639 0.0397 0.0270 0.0209 0.0164 0.0128 0.0110 0.0098 0.0074 0.1507 
             

Short maturity (1 year) (b) 0.5118 0.1286 0.0639 0.2957         

Long maturity (15 years) (c) 0.5118 0.1286 0.0639 0.0397 0.0270 0.0209 0.0164 0.0128 0.0110 0.0098 ... 0.0549 
             

Low coupon (8% p.a.) 0.5118 0.1286 0.0639 0.0397 0.0270 0.0209 0.0164 0.0128 0.0110 0.0098 0.0074 0.1507 

High coupon (25% p.a.) 0.5118 0.1286 0.0639 0.0397 0.0270 0.0209 0.0164 0.0128 0.0110 0.0098 0.0074 0.1507 
             ! !
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Conditional Probabilities 

Determination date 1 2 3 4 5 6 7 8 9 10 11 12(a) 

Model 
            

Baseline case 0.5118 0.2635 0.1778 0.1344 0.1055 0.0911 0.0789 0.0666 0.0615 0.0584 0.0466 0.0463 
             

Low volatility (15%) 0.5708 0.3150 0.2273 0.1808 0.1507 0.1348 0.1177 0.1043 0.0970 0.0859 0.0850 0.0799 

High volatility (40%) 0.4916 0.2447 0.1577 0.1193 0.0988 0.0770 0.0711 0.0585 0.0547 0.0447 0.0414 0.0365 
             

Low threshold (60%) 0.5118 0.2635 0.1778 0.1344 0.1055 0.0911 0.0789 0.0666 0.0615 0.0584 0.0466 0.0463 

High threshold (85%) 0.5118 0.2635 0.1778 0.1344 0.1055 0.0911 0.0789 0.0666 0.0615 0.0584 0.0466 0.0463 
             

Short maturity (1 year) (b) 0.5118 0.2635 0.1778 0.1296         

Long maturity (15 years) (c) 0.5118 0.2635 0.1778 0.1344 0.1055 0.0911 0.0789 0.0666 0.0615 0.0584 ... 0.0120 
             

Low coupon (8% p.a.) 0.5118 0.2635 0.1778 0.1344 0.1055 0.0911 0.0789 0.0666 0.0615 0.0584 0.0466 0.0463 

High coupon (25% p.a.) 0.5118 0.2635 0.1778 0.1344 0.1055 0.0911 0.0789 0.0666 0.0615 0.0584 0.0466 0.0463 
!
! !
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Table 3: Autocall Prices in the Stochastic Volatility Model 
 
Unless otherwise noted model parameters are: initial volatility of stock price of 30%, long- 
run mean volatility (!) of 20%, mean reversion (λ) of 0.4, correlation between stock price shocks 
and volatility shocks (ρ) of 0, and volatility of variance (θ) of 12%. 
 
 θ=0.12 
  λ=0.4  λ=3 

!!/! = 0.2     
ρ=0  9.98  10.17 

ρ=-0.5  9.93  10.15 
     

!!/! = 0.3     
ρ=0  9.87  9.89 

ρ=-0.5  9.85  9.86 
     

! !
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!
Table 4: Properties of Probabilities of Security Being Auto-Called 

             
 

Model simulation of the probability that the security is called at any determination date. Baseline model parameters are as indicated in Table 2.  
Stochastic volatility model parameters: initial volatility of stock price of 30%, long-run mean volatility of 20%, mean reversion of 0.4, correlation  
between stock price shocks and volatility shocks of 0, and volatility of variance of 12%.  
Mean reversion model parameters: volatility of stock price of 31.7%, long run mean price 20% below price of underlying at issuance, and parameter  
controlling the speed of adjustment equals 0.75.   
 
 

 
  

  

 
Notes: (a) Refers to the probability of reaching maturity. 
  

 
Unconditional Probabilities 

Determination date 1 2 3 4 5 6 7 8 9 10 11 12(a) 
Model 

            Stochastic Volatility  0.5129 0.1242 0.0619 0.0386 0.0271 0.0194 0.0167 0.0121 0.0109 0.0095 0.0080 0.1588 
Mean Reversion 0.3719 0.1043 0.0568 0.0379 0.0298 0.0245 0.0216 0.0181 0.0170 0.0150 0.0131 0.2900 
Baseline case 0.5118 0.1286 0.0639 0.0397 0.0270 0.0209 0.0164 0.0128 0.0110 0.0098 0.0074 0.1507 
             

 
Conditional Probabilities 

Determination date 1 2 3 4 5 6 7 8 9 10 11 12(a) 
Model 

            Stochastic Volatility  0.5129 0.2550 0.1706 0.1284 0.1031 0.0823 0.0772 0.0607 0.0580 0.0537 0.0482 0.0467 
Mean Reversion case 0.3719 0.1661 0.1084 0.0812 0.0694 0.0615 0.0576 0.0513 0.0508 0.0472 0.0431 0.0435 
Baseline case 0.5118 0.2635 0.1778 0.1344 0.1055 0.0911 0.0789 0.0666 0.0615 0.0584 0.0466 0.0463 



!

 
Figure 1: Coupon Rate Distribution 
 

 
Note: Excludes autocalls without a constant coupon payment. 
!
Figure 2: Top 10 Most Frequent Underlying Assets for Autocall Securities 
 

!
Note: iShares® Russell 2000 Index Fund is categorized together with Russell 2000 Index. 
!
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Figure 3: Ratio of (Underlying Asset’s Implied Volatility / Underlying Asset’s Historical Implied 
Volatility) to (S&P’s Implied Volatility / S&P’s Historical Implied Volatility)  
 

!
Note: Excludes autocalls with multiple underlying assets, those having the S&P as an underlying asset, and those where the 
implied volatility was unavailable. 
!
Figure 4: Ratio of Initial Price of Underlying Asset to 52-Week High 

!
Note: Excludes autocalls with multiple underlying assets. 
! !



! 45!

Figure 5A: Simulated IRRs of the Contingent Income Autocallable Security: Baseline Model and 
Low and High Volatility Models 

 
Note: The six plots are organized in the following manner. The first column contains plots labeled “Histogram of IRR” that 
depict the frequency distribution (in %) of the annualized IRR across all simulated paths. The second column contains plots 
labeled “Mean IRR” that depict the average annualized IRR (in %) computed across all simulated paths that survive a given 
determination date. 
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Figure 5B: Simulated IRRs of the Contingent Income Autocallable Security: Baseline Model and 
Low and High Threshold Models 

 
Note: Refer to notes in Figure 5A.
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Figure 5C: Simulated IRRs of the Contingent Income Autocallable Security: Baseline Model and 
Short and Long Maturity Models 

 
Note: Refer to notes in Figure 5A. In the corner, right-most plot determination dates jump from date 10 to the last determination 
date, date 59, to make the data easier to visualize.  
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Figure 5D: Simulated IRRs of the Contingent Income Autocallable Security: Baseline Model and 
Low and High Coupon Models  

Note: Refer to notes in Figure 5A. 
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Figure 6: Simulated IRRs Under Different Underlying Asset Pricing Models  

!
Note: Mean annualized IRRs by determination date in %. 
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Appendix 

Framework for Analysis 

The contingent income autocallable security that we analyze is of the plain vanilla kind 

and has the following features:  

• Let ! denote time, ! = 0 be the issue date and ! = ! be the autocall’s maturity; 

• Payouts are a function of the price performance of an underlying asset; the price 

of the underlying at the issue date is !!; for simplicity the price and notional value of the 

autocall is ! = !!; 

• At determination date ! = 1,… ,! − 1, the security is called if !! > !!, in which 

case the investor gets 1+ ! ×!, where ! is the coupon rate, and no further cash flows, or is not 

called, in which case the investor gets !×! if !! > !!!, with ! < 1 (!!! is the threshold level);!

• At maturity, the autocall pays 1+ ! ×! if !! > !!!, or otherwise it pays either 

one unit of the underlying asset or its current cash value of !!. Clearly, if the underlying asset is 

received, the investor has a capital loss of !! − !! > 1− ! !!. 

We study pricing of the autocall under three models that describe the price behavior of 

the underlying asset. The first model assumes that the price of the underlying asset, !!, follows 

a geometric Brownian motion: 

!!
!!
= !"# ! − !

!!
! ! + !!! ,       (1) 

where ! is the instantaneous growth rate in prices, ! is the instantaneous return volatility, and 

!! is a Wiener process whose continuous increments are normally distributed with mean zero 

and unit variance. To simulate the process we discretize the process in Equation (1) using13 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13!Deng et al. (2014) provide an approximate analytical solution to the price of an autocall.!
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!!!!!
!!

= !"# ! − !
!!

! Δ! + !"(0,1) Δ! .      (2) 

An important assumption of the geometric Brownian motion model is that of constant 

volatility. The second model we study relaxes this assumption. We let the price process follow 

the Heston (1993) model, which in discretized form is 

!!!!!
!!

= !"# ! − !
! v! Δ! +!! v!Δ! ,  

and the instantaneous variance of the stock return, v!, follows the process14  

v!!!! = v! + λ v− v! Δt+ θ!! v!Δt+ !!! !
!Δ! !!! − 1 .!      (3) 

In this model λ  dictates the speed of mean reversion in variance and θ  is the 

instantaneous volatility of variance. The standard normal shocks in the price equation and the 

variance equation, respectively, !! and !!, are assumed correlated with a correlation coefficient 

of ρ. v! is the conditional variance of stock returns, which we label as short-dated variance. v is 

the long-term mean of the conditional variance, which we label as long-dated variance.  

The third and last model we study allows for price level effects. We let the price of the 

underlying asset follow a mean reverting process, also known as an arithmetic Ornstein-

Uhlenbeck process (see Dixit and Pindyck (1994)): 

!!!!! = exp
ln !! exp −!Δ! + ln ! 1− exp −!Δ!

− 1− exp −2!Δ! !!
!! + !

!!!"# !!!!!
!! !(0,1) .        (4) 

In this formula, ! is the parameter that controls the speed of mean reversion (i.e., ln(2)/! is the 

half life of a shock to prices), and ! is the long run mean of the price.  

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14!The discretized variance equation (Equation (3)) in the Heston model does not guarantee that variance is 
nonnegative. Several approaches have been proposed to minimize this concern. In this paper, we use the Milstein 
scheme (see Kahl and Jackel (2006)). The Milstein scheme adds the last term on the right-hand side of the variance 
equation. We simulate the model with various discretizations with similar results across approaches. !


