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Abstract

This work proposes several novel methods for inferring competitiveness of motor in-
surance policies in a setting of limited availability of price information. State-space func-
tionalities are employed to filter noise from observations by introducing underlying time-
dependent structures for transition and conversion data. Transition data about the insur-
ance companies of vehicles in the Portuguese insurance market was collected to analyze the
evolution of the incoming transition probabilities of insurers. The binomial hidden Markov
model is somewhat restricted due to its assumption of discrete state-space. The Kalman
smoother is more successful in removing noise from the observations. The smoother pro-
vides intuitive results that are interpretable for a non-technical audience. Furthermore,
conversion data was used to infer weekly segment-specific estimates of competitiveness
changes. We have proposed a penalized regression framework where time is included as a
random walk structure. The model uses credibility weighting on each segment’s changes
using the full portfolio’s changes as the complement. The powerful hierarchical fashion of
the model produces estimates of competitiveness changes that are more interpretable than
those of generalized linear models, where time is included as a categorical variable. More-
over, the proposed method outperforms the generalized linear models in terms of predictive
performance. Both methods can serve as a tool to support the price decision-making pro-
cess by insurers when the availability of reliable price information is limited.

Keywords: Motor insurance, competitiveness, hidden Markov model, Kalman filter,
penalized regression.
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1 Introduction

This report is the result of a curricular internship at the Portuguese insurance company Fidel-
idade that took place between February and June 2020.

1.1 Background

Traditionally, insurers have performed their ratemaking process using a risk-based approach,
where the price of a motor insurance policy is determined solely by the expected costs of the
claims that a policyholder will make. Recently, the increasing level of competition in the in-
surance market has caused a shift towards a more sophisticated system of price determination.
Insurers are looking to optimize the policy premiums to find the right balance in the trade-off
between profitability and growth of the portfolio. To successfully apply price optimization,
it is essential to have a thorough understanding of the market and the behavior of potential
customers.

The first building block in optimization is the aforementioned analysis of a customer’s risk pro-
file. Furthermore, the expected present value of future profits that a customer generates during
his entire future relationship with the insurer should be determined for different premium levels.
Finally, a model for the customer’s reaction to price changes should be created. In an ideal
world, the insurer has perfect information about the individual demand curve of every customer.
The demand curve is directly related to the concept of price elasticity of demand, which is a
measure used in economics to define the responsiveness of the quantity demanded to a change
in the price of that good or service.

Estimating individual demand curves would require a controlled environment which makes it an
infeasible venture in practice. Insurers generally strive to determine demand curves for several
segments of homogeneous risks, the premise being that customers with similar characteristics
will behave similarly when faced with price changes. The most accurate way to gather the
required data is by price tests. A price test works by offering a randomly selected sample of
customers from a segment a different price and analyzing the conversion rate at the different
price levels (Parodi, 2014). Price tests are not meant to test extreme scenarios, but rather focus
on premium levels around the current premium. We measure how the demand varies around
a region where the demand is roughly linear. The slope of this linear approximation of the
demand function is the local elasticity of demand.

1.2 Problem statement

It is not always feasible or desirable to apply price testing for new customers, because of legal
constraints or the cost of reputational damage. Often, we have to resort to observational data
for the determination of demand functions. When there is a lack of knowledge about the price
policy of competitors, determining an accurate demand curve becomes an increasingly difficult
task. While working on demand functions of new customers at Fidelidade, we were facing such
a severe lack of price information. Therefore, it was challenging to objectively determine the
competitiveness of the premium offered to new customers. For an insurer willing to carry out
a successful price decision-making process, it is essential to have reliable information about the
competitiveness of their offer.
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We recognize that the term competitiveness deserves further clarification. In this work, we
consider competitiveness to be the attractiveness of the product and premium offered to new
customers. We stress that a distinction is made between renewals and new business. Compet-
itiveness is broader than simply the relative price level, although it is certainly a component
with a significant impact. Factors such as the attractiveness of a brand and product are also
part of the term competitiveness, including marketing strategy and brand loyalty. Furthermore,
third-party intermediaries can significantly influence customers’ conversion behavior, by steer-
ing them towards a specific insurer or product.

We propose two methods for inferring the competitiveness of auto insurance policies in an
environment of limited historical and present price information. Both methods attempt to
capture changes in competitiveness over time by incorporating state-space model functionalities.
Firstly, we track the competitiveness of the main insurers in the Portuguese market using
data of transitions between insurers. We use several filtering approaches to remove noise from
the data, by introducing an underlying time structure of competitiveness. Secondly, we infer
segment-wise competitiveness levels within the full portfolio using conversion data. We present
a method where time-series components are added within a penalized regression framework to
apply credibility weighting over time and between segments.

1.3 Literature review

Actuaries frequently use generalized linear models to solve a broad range of response modeling
problems. However, the model is not equipped to handle time-dependent structures in an ap-
propriate way, which is important when we are working with data that spans multiple periods.
Time-dependent behavior is best modeled through state-space models, which are powerful in
dealing with time-series because of their flexibility. State-space modeling techniques are used
in this work to filter noise from the observed competitiveness level.

There are numerous instances in actuarial literature where state-space models are employed.
De Jong and Zehnwirth (1983) were the first to adopt a Kalman filtering approach to smooth
development patterns in claims reserving. Similarly, Zehnwirth (1996) uses Kalman filtering
to smooth reserving estimates, and Evans and Schmid (2007) filter measurement errors from
observed severity and frequency data. De Jong (2005) provides a comprehensive overview of
the use of state-space models in actuarial science. He gives an example of an application in
mortality modeling, where age-specific log-mortality rates can be smoothed across time.

Korn (2018) proposes a method for incorporating a subset of state-space model functionality
into a penalized regression framework. The method describes how to add time-dependent pro-
cesses such as a random walk process. The author expresses his criticism at the inclusion of a
time variable as a categorical variable in a generalized linear model, as is common in actuarial
work. When fitting a penalized regression model to such a structure, credibility weighting is
performed against the overall mean, ignoring the relationship between consecutive years. On
the contrary, by including the time variable as a random walk process, the complement of
credibility for each year is the fitted value of the previous year. The author claims that the
method is superior in performance compared to the categorical variable approach. Moreover, it
produces more intuitive results and it is easier to discover trends that may be affecting particu-
lar segments by including an interaction term between the segmentation and the random walk
variable. The method is demonstrated by an example involving yearly loss ratios.
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The penalized regression methods apply a penalty to the value of the coefficients to reduce
the variance of the estimates, accepting a small bias to improve performance and increase
interpretability. Ridge regression (Hoerl and Kennard, 1970) and lasso regression (Tibshirani,
1996) are most commonly used. Ridge and lasso penalize based on the squared value and
absolute value of the coefficients, respectively. A benefit of lasso regression over ridge regression
is that it can aid in variable selection, setting some coefficients equal to zero. On the other hand,
lasso regression is not good at handling strongly correlated variables. Ridge regression does not
shrink variables to zero and will, therefore, report small changes every period, even if no actual
changes have occurred, which greatly reduces the interpretability of the results. Zou and Hastie
(2005) introduced the compromising elastic net model, which is a linear combination of the
ridge and lasso regression. The elastic net model can perform variable selection and handles
correlated variables well, which makes it the preferred choice when dealing with time-series
variables.

1.4 Research objective

This work attempts to contribute to the existing literature by providing several methods to
infer competitiveness of auto insurance policies in an environment of limited or non-existent
price information. We propose two methods using different data sources. Firstly, we observe
transition behavior of customers in the Portuguese market and infer quarterly competitiveness
levels for the main insurers using state-space model functionalities. Secondly, we use conversion
data to infer weekly competitiveness levels of different segments in the portfolio of Fidelidade.
We apply credibility weighting among segments and among periods on the conversion data by
introducing a penalized regression framework. Both methods are capable of handling time-
series effects and stress the relevance of an underlying time structure of competitiveness. The
problem is relevant to insurers because it is often costly, time-consuming, or simply infeasible
to gather price information of competitors. We propose an alternative solution that can be
used to mitigate this loss of information. The methods can help insurers to improve their
decision-making process in situations where price information is lacking. There is currently no
other literature that has provided a similar methodology to infer competitiveness levels, to the
author’s knowledge.

1.5 Outline

Section 2 gives an overview of the methodological approach of this report. We discuss the
collection and manipulation of different data sources. Subsequently, we explain the main ideas
of the methods and models used and their application in this work. Section 3 and 4 describe,
explain, and interpret the results of the conducted methods using the transition and conversion
data, respectively. In Section 5, we discuss the significance of our findings, as well as the
limitations of both methods. In Section 6, we conclude our work and provide several directions
for future research.
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2 Methodology

This section gives an outline of the research methods that were followed. First, we describe
the collection and manipulation of different data sources. We then explain the methodological
approach taken for the main models presented in this work. We explain the methodology for
the competitiveness inference models that are build using transition data. We formulate the
binomial transition framework where we apply a hidden Markov model and Kalman smooth-
ing to remove noise from the observed data. Furthermore, we propose a penalized regression
framework that applies credibility weighting to conversion data. We describe an approach for
customer segmentation and explain elastic net regression. Again, we provide a formal descrip-
tion of the proposed model. Both problems are answered in the setting of the Portuguese auto
insurance market. Finally, we provide a brief overview of the software used to build the models.

2.1 Data collection and manipulation

We collect transition data from a publicly available tool provided by the Portuguese supervisor
Autoridade de Supervisão de Seguros e Fundos de Pensões (ASF), where drivers can check
where a particular license plate is insured in case of an accident. Upon stating a license plate
number and date, the tool returns the insurance provider, the policy number, and the start and
end date of the policy. We collect a random sample of 12,110 license plates issued in 2005. The
query starts on 01/01/2006 and the next query is performed at the date 90 days after the end
date of the previous policy. This procedure is continued until all end dates exceed 31/12/2019.
The data is manipulated into quarterly categorical data, with one insurer sequence for every
unique license plate. Finally, the data is summarized to find the number of transitions from
each insurer to another by quarter. The structure of the transition data after manipulation is
shown in Figure 1.

Figure 1: Structure of the transition data after manipulation.

Furthermore, we use conversion data collected from simulations performed by potential cus-
tomers between 01/01/2018 and 01/10/2019, consisting of ratemaking variables related to the
car and the driver. The data is divided into weeks, where Week 1 corresponds to the first week
of 2018 and Week 81, the last week, corresponds to Week 29 of 2019. Moreover, information
is available on whether or not the customer has converted one of the simulations. In case a
customer has converted at least one simulation, additional information is given on the plan that
was accepted.
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2.2 Inferring competitiveness from transition data

We use state-space models (SSM) to remove noise from the observed time-varying transition
probabilities. We outline the hidden Markov model (HMM) following the notation from the
well-known tutorial by Rabiner (1989). We consult the textbook by Zucchini et al. (2017) for
additional information. Furthermore, we move from discrete to continuous state-space using
Kalman’s seminal paper on Kalman filtering (Kalman, 1960). Finally, we develop a framework
for inferring competitiveness of insurers from transition data. We discuss the application of
HMMs and Kalman smoothing with regard to this framework.

2.2.1 Hidden Markov model

Consider a system that can be, at any time, in one of N distinct states, i.e. one state from the
set of states S = {S1, ..., SN}. We denote the actual state at time t = 1, 2, ... as qt. The Markov
property states that for a discrete, first-order Markov chain, the probabilistic description of the
next state depends only on the current state, i.e.

P ( qt+1 = Sj | qt = Si, qt−1 = Sk, ... ) = P ( qt+1 = Sj | qt = Si )

For details on the properties of Markov processes, we refer to Ross (2014) or other textbooks
on stochastic modelling.

The Markov model assumes that each state corresponds to an observable event and is therefore
too restrictive to be applicable to many real-world problems. The hidden Markov model is an
extension where the observation is a probabilistic function of the state. In other words, the
state is a stochastic process satisfying the Markov property, that can only be observed through
another set of stochastic processes that produce a sequence of observations.

Denote the observation and state at time t as Ot and St, and the observation history and
state history up to and including time t as O(t) and S(t). Then, the conditional independence
property states that

P (Ot | O(t−1), S(t)) = P (Ot | St ).

In other words, the current observation depends only on the current state, and not on the
history of observations and sequences. This process is illustrated in Figure 2.

Figure 2: Illustration of a hidden Markov model.

The elements of an HMM are formally defined in the following way:

1. The number of unobservable ‘hidden’ states N . As in the Markov model, the state space
is S = {S1, ..., SN} and qt is the state at time t.
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2. The set of M observation symbols corresponding to the output of the system, denoted by
V = {v1, ..., vM}.

3. The state transition probability distribution A = {aij} where

aij = P (qt+1 = Sj | qt = Si), 1 ≤ i, j ≤ N

4. The observation symbol probability distribution in state j, B = {bj(k)}, where

bj(k) = P (vk | qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤M.

5. The initial state distribution π = {πi} where

πi = P (q1 = Si), 1 ≤ i ≤ N.

When all elements are appropriately defined, an HMM can be used as a generator of an obser-
vation sequence O = O1, O2, ..., OT . Conversely, we can estimate what HMM was most likely
to generate an observed sequence. We use the following compact notation for the complete
specification of an HMM:

λ = {A,B, π},
where A is the state transition probability matrix, B the observation symbol probability distri-
bution, and π the initial state distribution.

Three problems of HMMs

HMMs raise three fundamental problems. We briefly explain the problems and give an overview
of how a solution can be obtained.

1. Likelihood: Given the observation sequence O = O1, O2, ..., OT and model λ = {A,B, π},
how do we efficiently compute the likelihood function P (O | λ)?

The probability of the observation sequence O for the state sequence Q = q1, ..., qT is

P (O | Q,λ) =

T∏
t=1

P (Ot | Q,λ)

where we assume conditional independence of observations. Hence, we get

P (O | Q,λ) = bq1(O1) · bq2(O2) · · · bqT (OT ).

The probability of state sequence Q is simply given by

P (Q | λ) = πq1aq1q2aq2q3 · · · aqT−1qT

The joint probability of O and Q is given by

P (O,Q | λ) = P (O | Q,λ)P (Q,λ).

By summing over all possible state sequences Q, we obtain the probability of O given by

P (O | λ) =
∏

all Q

P (O | Q,λ)P (Q | λ)

=
∏

q1,...,qT

πq1bq1(O1)aq1q2bq2(O2) · · · aqT−1qT bqT (OT )

The forward-backward procedure is used to calculate the likelihood (Rabiner, 1989). This
procedure is very efficient due to its use of dynamic programming.
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2. Decoding: Given the observation sequence O = O1, O2, ..., OT and model λ = {A,B, π},
how do we find the state sequence Q = q1, q2, ..., qT that describes the observed sequence
in the ‘optimal’ way?

There are several ways to define optimality in this problem, for example by choosing the states
that are individually most likely. The Viterbi algorithm (Viterbi, 1967) finds the state sequence
Q that is most likely to have generated the observation sequence O. It is a dynamic programming
algorithm that maximizes the likelihood function in an efficient way, i.e.:

max
q1,...,qT

P (q1, ..., qT , O1, ..., OT | λ).

3. Learning: How do we choose the parameters λ = {A,B, π} to maximize the likelihood
function P (O | λ)?

The most challenging problem of HMMs is to determine a method to adjust the model parame-
ters λ to maximize the probability of the observations sequence O. The Baum-Welch algorithm
(Baggenstoss, 2001) is a special case of the expectation–maximization algorithm (Dempster
et al., 1977) and performs maximum likelihood estimation of parameters in an HMM using an
iterative procedure.

2.2.2 Kalman filtering and smoothing

In this section, we follow the notation from the book of Durbin and Koopman (2012) and use
the vignette for the KFAS package in R (Helske, 2017). Unlike the discrete state-space HMM,
each hidden state αt in a linear Gaussian state-space model is modeled as a continuous random
variable with a multivariate normal distribution. We denote yt as the observations and αt as a
vector of latent state processes at time t. The linear Gaussian state-space model with continuous
states and discrete time intervals t = 1, ..., n is given by

yt = Ztαt + εt, (observation equation)

αt+1 = Ttαt +Rtηt, (state equation)

where εt ∼ N(0, Ht), ηt ∼ N(0, Qt) and αt ∼ N(a1, P1). We assume that yt, αt+1, and ηt are
vectors of length p, m, and k respectively. We denote p, m, and k as the number of observation
sequences, the number of states, and the number of disturbances, respectively. The system
matrices Zt, Tt, and Rt, together with the covariance matrices Ht, Qt, and P1 depend on the
particular model definition. In most cases, these matrices will be time-invariant.

It is possible to use a state-space model for a distribution from the exponential family (Kitagawa,
1987), using a linear Gaussian approximation based on the iterative weighted least squares
method (Durbin and Koopman, 2012). The model has the same state equation as in the
Gaussian case, but the observation equation has the form

p(yt | θt) = p(yt | Ztαt),

where θt = Ztαt is the signal and p(yt | θt) the observational density. The signal θt is the lin-
ear predictor which is connected to the expected value E(yt) = µt with a link function l(µt) = θt.

The transition data that we use in this work is binomially distributed. For the binomial distri-
bution with size parameter ut and probability parameter πt, a logit-link function can be used
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such that θt = logit(πt). This results in the following properties:

E(yt | θt) = utπt

Var(yt | θt) = utπt(1− πt).

In 1960, R.E. Kalman published his famous paper on the Kalman filter. The Kalman filter is a
set of equations that provides an efficient computational solution of the least-squares method.
In most cases, the primary goal of state-space modelling is to recover the latent states α given
the observations y. Even when the precise model is not completely specified, the Kalman filter
can support estimations of past, present, and future states. It is a recursive Bayesian algorithm,
updating predictions as new information arrives.

We briefly explain the difference between prediciton, filtering, and smoothing in the context of
state-space models. Prediction is an a priori form of estimation of what the state will be at
some point in the future. Filtering extracts information about the state at time t, by using data
measured up to and including time t. Finally, the smoothed estimate is obtained a posteriori
using data measured over the interval [0, T ], where t < T .

We obtain the one-step-ahead predictions and the prediction errors from the Kalman filtering:

at+1 = E(αt | yt, ..., y1)

vt = yt − Ztαt

and the related covariance matrices

Pt+1 = Var(αt+1 | yt, ..., y1)

Ft = Var(vt) = ZtPtZ
T
t +Ht.

Then, the state smoothing equations running backwards in time yield

α̂t = E(αt | yT , ..., y1)

Vt = Var(αt | yT , ..., y1).

We refer to Durbin and Koopman (2012), Kalman (1960), Kitagawa and Gersch (1996) for
details on the algorithm and its technical properties.

2.2.3 Formulation of the proposed framework

We formulate a framework for inferring competitiveness from observed customer transition be-
havior. The observed transition probabilities are a sequence of noisy estimates of true transition
probabilities. We attempt to remove noise from the observations to recover the true time-varying
probability parameter. We asses competitiveness on a quarterly basis, because the current col-
lected data is rather limited. We formulate the framework in a general setting.

Consider license plate k = 1, ..., n insured by insurer i = 1, ...,m at the start of period t = 1, ..., T .
Let ntij be the observed number of transitions from insurer i to insurer j for all license plates
during period t = 1, ..., T . We do not consider any segmentation of license plates.
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We define the exposure eti for insurer i during period t as the total number of outgoing transitions
from all insurers except from the insurer itself, i.e.

eti =
∑
j 6=i

∑
l 6=j

ntjl.

Let xtk be the provider of insurance for license plate k at the start of period t. Suppose there
exists true probability pti,k that license plate k transitioning from an insurer j 6= i during period
t, transitions to insurer i, i.e.

pti,k = P (xtk = i | xt−1
k = j ∧ xtk 6= j), j 6= i.

Again, we assume this probability to be the same for all license plates k, i.e.

pti,k = pti.

Let yti be the total observed number of incoming transitions for insurer i during period t, i.e.

yti =
∑
j 6=i

ntji

which is assumed to be a random draw from a binomial distribution, such that the random
variable Y ti is as follows:

Y ti ∼ B(eti, p
t
i).

Observing a single realization of yti , we find the maximum likelihood estimate of pti to be

p̂ti =
yti
eti
.

In reality, we observe a sequence of transition probabilities over time, instead of observing indi-
vidual realizations. We expect serial time-dependence between observations, with an underlying
time structure in the true transition probability pti. We attempt to capture this using state-
space models. Two different methods will be proposed that use the methodologies previously
discussed.

Method 1: Binomial-HMM

We propose a binomial-HMM for every insurer i consisting of the following elements:

1. An unobserved state parameter process {P ti , t = 1, 2, ...} satisfying the Markov property.
The state sequence is assumed to be a homogeneous Markov chain, i.e.

πj,k = P (P t+1
i = k | P ti = j)

for all t = 1, ..., T and j, k = 1, ..., N . Moreover, we assume stationarity such that δj =
P (Pi

t = j) is constant for all t.

2. A state-dependent process {Y ti , t = 1, 2, ...}, where the distribution of Y ti depends only on
the current state P ti .

9



Suppose that P ti has N possible states for every insurer i, i.e. P ti = {P1, ..., PN} for all t. Then,
pti is the state representing the true incoming transition probability of insurer i during period
t. Again, the state-dependent observation distribution for insurer i at time t is then given by

Y ti ∼ B(eti, p
t
i),

where eti is the exposure of insurer i during period t.

The state transition probability matrix A and the initial state probabilities π are defined as in
the general case. We have assumed stationarity, which means that we effectively impose the
constraint δ = A′δ on the initial state distribution δ = (δ1, ..., δN ). The solutions to the three
fundamental problems are explained for the general case in the previous section.

Method 2: Kalman smoothing

We move from a discrete state-space model to a continuous state-space model by introducing
a Kalman smoother to estimate the true incoming transition probabilities for all insurers over
time. We define the state-space model as follows:

Y ti ∼ B(eti, π
t
i)

πti = logit(pti)

pti = pt−1
i + ηi,t

where ηi,t ∼ N(0, σi,t), with σi,t to be estimated. In other words, the probability parameter
follows a random walk process before the logit transformation. The logit transformation is
necessary to ensure that the probability parameter remains between 0 and 1.

We apply Kalman smoothing to the observed transition probability process Y ti , that now has
continuous state-space, unlike in the Binomial-HMM. We aim to recover the true underlying
transition probability Pi

t for every insurer i.

2.3 Inferring competitiveness from conversion data

We explain how decision trees can be used to perform customer segmentation. Subsequently,
we discuss logistic regression and different penalized regression models. We then formulate a
model that adds a time-dependent structure to a penalized regression model to apply credibil-
ity weighting. Finally, we discuss how the binary classification models that we build can be
evaluated.

2.3.1 Customer segmentation

Customer segmentation is the process of dividing customers into homogeneous groups of similar
characteristics, based on their purchasing behavior. In our work, we use a classification tree
that finds the most relevant variables to perform segmentation. A classification tree is built
by first finding a single variable that bests splits the data in two groups. After the first split,
the process is recursively applied separately to each subgroup, until the subgroups either reach
a minimum size or until no further improvement can be made. We will later explain how the
‘best’ split is defined. Decision trees can be applied to many different kinds of data. In this
work, all the variables used in the decision tree are categorical.
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First, we will briefly introduce some notation regarding decision trees following the vignette
from the R package rpart (Therneau and Atkinson, 2019). The sample population consists of
n observations from C classes. The conversion variable is binary (a customer either converts or
not) and therefore C = 2 in our case. The model breaks the observations into k sub-groups and
each of the groups has a predicted class assigned.

Let πi be the prior probability of class i = 1, ..., C. We define L(i, j) as the loss matrix for
incorrectly identifying a class i observation as a class j observation. Obviously, L(i, i) = 0 as
the observation is correctly identified. The nodes of the tree are defined as A, where τ(A) is
the class assigned to A, if A were to be taken as a final node. Similarly, τ(x) is the true class of
an observation x, where x is the vector of predictor variables. The number of observations in
the sample that are in class i and node A, are ni and nA, respectively. Similarly, the number
of observations from class i that are in node A is denoted by niA.

The probability for a future observation to cross node A is given by

P (A) =

C∑
i=1

πi × P{x ∈ A | τ(x) = i} ≈
C∑
i=1

πi × niA/ni.

It follows that the conditional probability of the true class being i, given that the vector of
predictor variables x crosses node A, is given by

p(i | A) = P{τ(x) = i | x ∈ A}
= πi × P{x ∈ A | τ(x) = i}/P{τ(x)}

≈ πi ×
niA/ni∑C
i=1 niA/ni

.

We define the ‘risk’ of node A as

R(A) =

C∑
i=1

p(i | A)L(i, τ(A))

and the risk of the entire tree T as

T (A) =

k∑
j=1

P (Aj)R(Aj),

where Aj is the subset of nodes that are terminal.

In case of binary classification, it is common to set L(i, j) = 1 for i 6= j. Setting the prior
probabilities πi equal to the observed class frequencies in the sample population, we simply
have p(i | A) = niA/nA and R(T ) is the proportion incorrectly identified.

Several measures of impurity can be used to determine the best possible splits in a tree. Let f
be some impurity function. We define the impurity of a node A as

I(A) =

C∑
i=1

f(piA)
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where piA is the proportion of those in A that belong to class i for future samples. A pure node,
a node with all observations coming from a single class, should have I(A) = 0 and therefore we
want f(0) = f(1) = 0. The Gini impurity measure was used in this work and is defined as

f(p) = p(1− p).

The split with maximal impurity reduction

∆I = p(A)I(A)− p(AL)I(AL)− p(AR)I(AR)

is chosen, where AL and AR are the children nodes of node A.

The question arises how to define the stopping criteria that prevent the model from becoming
too complex. There are several control parameters that can be set to avoid overfitting of the
model. One of them is the minimum number of observations in a node for which the routine
will try to compute a split. Similarly, one can set the minimum number of observations in
a terminal node. Generally the most useful parameter is the complexity parameter, which is
used to control the size of the decision tree and to select the optimal tree size. The complexity
parameter is specified according to the following formula:

Rcp(T ) = R(T ) + cp× |T |×R(T1)

where T1 is the tree with no splits, |T | is the number of splits for a tree, and R is the risk.

The greatest advantage of using a decision tree for segmentation is that the resulting segments
are intuitive and easy to explain to a non-technical audience. The decision tree easily finds the
most important variables in the data. Furthermore, a decision tree does not require scaling
or normalization of the data. Compared to other algorithms, decision trees require less data
pre-processing. A disadvantage is that a small change in the data can cause a large change in
the structure of the decision tree, causing instability in the resulting segments.

2.3.2 Logistic regression

The generalized linear model (GLM) (Nelder and Wedderburn, 1972) is a generalisation of the
classical linear model. GLMs are used to analyse the effect that different covariates or factors
have on a response variable, equivalent to the classical linear model. The additional advantage
is that non-normal data can now be considered. GLMs have many applications and are used
extensively in actuarial work.

A GLM is characterized by the following three components:

1. A dependent variable Yi whose distribution with parameter θi belongs to the exponential
dispersion family.

2. A set of independent variables xi1, ..., xim and a linear predictor ηi =
∑m
j=1 βixij .

3. A linking function θi = g(ηi) connecting the parameter θi of the distribution of Yi with
linear predictor ηi.

We refer to De Jong and Heller (2008) for details on the properties of GLMs.
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Now, consider a binary response variable Y with possible outcomes 0 and 1, where µ = P (Y = 1)
is defined as the probability of success. Hence, Y ∼ Bernouilli(µ) and

fY (y;µ) = µy(1− µ)(1−y)

is the probability function of Y. The Bernouilli distribution belongs to the exponential dispersion
family and can therefore be modelled through a GLM. The choice of the link function should
be such that the probability µ is bound between probability 0 and 1. This is satisfied by the
logit link function, given by

g(η) = ln

(
η

1− η

)
= µ.

A useful guide for applying logistic regression is provided by Hosmer Jr et al. (2013).

2.3.3 Penalized logistic regression

Regression problems with many potential predictor variables require us to perform statistical
model selection to find an optimal model. An optimal model is as simple as possible while
still providing good predictive performance. Traditional stepwise selection methods suffer from
several drawbacks, such as high variability and low prediction accuracy, especially when there
are correlated predictor variables. Penalized regression methods have in recent years shown to
be a good alternative, because of their capacity to predict more accurately while being compu-
tationally efficient. The loss function of a penalized regression can be viewed as a constrained
version of the ordinary least squares (OLS) regression loss function.

We deviate from OLS estimates to increase prediction accuracy. Least squares estimates of-
ten have low bias but large variance. In some cases we can improve the prediction accuracy
of our model by shrinking some coefficients, or by setting them to zero. We accept a small
bias in the estimates in order to reduce the variance of the predicted values. Furthermore, we
can build interpretable models even when we have a large number of predictors, by applying
a penalty factor. We can determine a smaller subset of variables that exhibit the strongest effect.

We briefly explain two penalized regression methods: the ridge regression and the lasso regres-
sion. Then, we introduce the elastic net model, which is a linear combination of the ridge and
lasso regression.

Ridge regression

Ridge regression (Hoerl and Kennard, 1970) shrinks the regression coefficients by imposing a
penalty on their size. The ridge coefficients minimize a penalized residual sum of squares

β̂ridge = argmin
β

N∑
i=1

(yi − g(ηi))
2

subject to

p∑
j=1

β2
j ≤ t

where g(ηi) is the prediction for observation i using the link function g(·) and linear predictor
ηi. Here, t is a pre-specified free parameter that determines the amount of regularisation and p
is the number of covariates.
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Equivalently, the ridge estimation problem can be written in the Lagrangian form as

β̂ridge = argmin
β

1

n

N∑
i=1

(yi − g(ηi))
2

+ λ‖β‖22

where ‖β‖22 =
∑d
j=1 β

2
j is the square 2-norm of the vector β. The penalty λ‖β‖22 is based on

the L2 norm of the parameter and is therefore called the L2 penalty.

Lasso regression

Lasso (least absolute shrinkage and selection operator) regression (Tibshirani, 1996) finds the
regression coefficient by solving the following minimization problem:

β̂lasso = argmin
β

N∑
i=1

(yi − g(ηi))
2

subject to

p∑
j=1

|βj | ≤ t,

where g(ηi) is again the prediction from the GLM. Again, t is a pre-specified free parameter
that determines the amount of regularisation and p is the number of covariates. Note that the
difference between the ridge constraint and the lasso constraint is within the constraint. Be-
cause of the nature of the constraint in the lasso regression, it tends to produce some coefficients
that are exactly 0. Therefore, the lasso regressions give more interpretable results.

Once again, we can rewrite the estimation problem in the Lagrangian form as

β̂lasso = argmin
β

1

n

N∑
i=1

(yi − g(ηi))
2

+ λ‖β‖1

where ‖β‖1 =
∑d
j=1 |βj | is the 1-norm of the vector β. The penalty λ‖β‖1 is based on the L1

norm of the parameter and is therefore called the L1 penalty.

Elastic net regression

In practice, ridge regression has a higher predictive accuracy than lasso regression. Also, ridge
regression does well when there are predictor variables that are highly correlated, by shrinking
the grouped variables proportionally. However, a property of ridge regression is that it does
not reduce the number of variables, i.e. none of the parameter estimates are zero. Often, it is
favorable to eliminate some variables in order to simplify the model. On the other hand, lasso
regression uses penalization where some coefficients are actually set to zero. The elastic net
regression is a compromise between the ridge and the lasso regression, attempting to combine
the advantages of both.

The elastic net regression (Zou and Hastie, 2005) is a linear combination of the ridge and lasso
regression. The problem can be written in the Lagrangian form as follows

β̂elastic net = argmin
β

1

n

N∑
i=1

(yi − g(ηi))
2

+ λ(α‖β‖1 + (1− α)‖β‖22)

where λ is the penalty factor and the parameter α determines whether we use ridge regression(α =
0), lasso regression (α = 1), or a linear combination (0 < α < 1).
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The package glmnet (Friedman et al., 2010) solves the minimization problem

min
β0,β

1

N

N∑
i=1

wil
(
yi, β0 + βTxi

)
+ λ

[
(1− α)‖β‖22/2 + α‖β‖1

]
,

over a grid of values of tuning parameter λ controlling the strength of the penalty. The negative
log-likelihood contribution for observation i is given by l(yi, η). The parameter wi is the weight
of observation i and is normally set to 1 for all observations.

There is a deep link between actuarial credibility and penalized regression, which was demon-
strated and proved by Miller (2015). In this work, we decide to only penalize the variables
related to time. That is, we penalize the time variable in the random walk process and the
interaction of time with the categorical segment variable. The goal of the penalization is to
apply credibility weighting to the variables related to time and segment. When we would apply
penalty factors to the ratemaking variables, we would distort the value of λ. Most likely, λ
would turn out to be significantly lower and in that case, we would not be able to appropriately
apply credibility weighting.

Tuning hyperparameters α and λ

We perform k-fold cross-validation using the glmnet package to determine the hyperparameters
α and λ that maximize the AUC of the elastic net models. We first run an elastic net model on
all the folds, to determine an appropriate sequence of λ’s. After that, we determine k different
models to run them on each of the folds omitted and calculate the average error over the folds.
Since the folds are selected at random, the average error will differ each time. This difference
can be reduced by performing repeated cross-validation, where the errors are averaged. To
perform cross-validation on α, we supply a grid of values while keeping the folds the same.

2.3.4 Formulation of the proposed model

We show in Table 1 how time can be included as a random walk process by changing the dummy
encoding. Table (b) shows how the coefficient for week 2 not only affects that week, but also
subsequent weeks. This structure allows for the fitted value of each week to be used as the
complement of credibility for the following week. This is called ‘credibility weighting’ and it
can be applied when fitting a penalized regression.

Table 1: Dummy encoding for the week variable.

(a) Dummy encoding for week as a categorical variable.

week 2 week 3 week 4

week 1 0 0 0
week 2 1 0 0
week 3 0 1 0
week 4 0 0 1

(b) Dummy encoding for a random walk.

week 2 week 3 week 4

week 1 0 0 0
week 2 1 0 0
week 3 1 1 0
week 4 1 1 1

We formalize the time-dependent structure of the coefficient of the time variable as follows. Let
Xt be the true coefficient of the random walk process for the full portfolio at time t, such that

Xt = Xt−1 + ηt, X0 = 0
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where ηt is the shock in the random walk process for the full portfolio at time t. Similarly, let
Xt,k be the true coefficient of the random walk process for segment k at time t, such that

Xt,k = Xt−1,k + ηt + ηt,k, X0,k = 0

where ηt,k is the segment-specific shock in the random walk process for segment k at time t.

The model assumes that the full portfolio shock ηt affects all segments equally. The segment-
specific shock ηt,k models changes in competitiveness that are specific to segment k.

Again, the true coefficients Xt and Xt,k are observed with some error. Let Yt be the observed
coefficient for the full portfolio at time t, such that

Yt = Xt + εt,

where error term εt is the difference between the observed coefficient Yt and the true coefficient
Xt for the full portfolio at time t.

Similarly, let Yt,k be the observed coefficient for segment k at time t, such that

Yt,k = Xt,k + εt,k,

where error term εt,k is the difference between the observed coefficient Yt,k and the true coeffi-
cient Xt,k for segment k at time t.

The goal of this framework is to infer ηt and ηt,k by fitting an elastic net model that penalizes
the coefficients of the shock terms. The modified dummy encoding makes it easier to model
not only changes of the full portfolio, but also the changes by segment, by including an inter-
action term between the random walk structure and the segmentation. This produces a model
that credibility weights segment changes using the full portfolio’s changes as a complement.
This hierarchical structure should better capture the underlying structure of changes in the
competitiveness level.

2.3.5 Evaluation of binary classification models

The proposed models classify the decision of each customer as either ‘yes’ or ‘no’, based on the
probability of conversion predicted by the model. We introduce two metrics that are used in
this work to evaluate the out-of-sample predictive performance of the different binary classifiers.
The accuracy rate is simply the sum of the number of true positives and true negatives divided
by the total number of observations. The accuracy rate is not a perfect measure when there is
a class imbalance, where one of the classes is more prevalent in the data. In our case, the class
imbalance is not severe and therefore it is appropriate to consider the accuracy rate. However,
there is sufficient reason to introduce another metric that is even more appropriate.

An ROC curve can be created by plotting the true positive rate (sensitivity) against the false
negative rate (1-specificity) at various threshold levels. The threshold level determines the
cutting point for positive predictions. After plotting, the area under the ROC curve (AUC)
can be computed, with a higher value indicating better performance. The AUC can be used
to assess the discriminatory capacity of an individual model. The AUC takes values between
0 and 1, where a perfect predictor gets 1 and a perfectly incorrect predictor gets 0. A realistic
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model will generally score between 0.5 and 1, since a randomly guessing predictor would score
exactly 0.5. The AUC metric is threshold-invariant, since it measures the quality of predictions
irrespective of what classification threshold is chosen.

2.4 Software

Throughout our analysis, we have used R, a free software environment for statistical computing
and graphics. The following packages proved to be particularly helpful and deserve special
recognition:

• Multiple tidyverse packages: tidyr (Wickham and Henry, 2020) for tidying the data, dplyr
(Wickham et al., 2020) for data manipulation, and ggplot2 (Wickham, 2016) for creating
graphics.

• HiddenMarkov (Harte, 2017) for analysis of discrete-time hidden Markov models. It in-
cludes functions for simulation, parameter estimation, and the Viterbi algorithm.

• TraMineR (Gabadinho et al., 2011) for mining, describing and visualizing sequences of
states, and more generally discrete sequence data.

• KFAS (Helske, 2017) for Kalman filtering and smoothing for exponential family state-
space models.

• rpart (Therneau and Atkinson, 2019) for constructing decision trees used for customer
segmentation.

• glmnet (Friedman et al., 2010) for fitting lasso and elastic net regularized generalized
linear models.

• caret (Kuhn, 2020) for training and plotting classification models.

Furthermore, Python was used for the collection of transition data.
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3 Inferring competitiveness from transition data

In this section, we show the results of the different methods we have proposed to infer quarterly
competitiveness levels of insurance policies offered by insurers active in the Portuguese market.
Both methods attempt to recover the true incoming transition probability, by applying a state-
stace modelling approach. The hidden Markov model assumes a discrete state-space, while
the Kalman filter is a continuous state-space method. We explain the reasoning and intuition
behind both approaches and compare the results. We limit our analysis to the insurers in the
Portuguese insurance market that had the highest number of incoming transitions in the period
2007-2020. The names of the insurers are anonymized for confidentiality purposes by renaming
them to insurer A, B, C, D, E, and F.

3.1 Descriptive summary of observed transitions

As discussed in Section 2.2.3, we are interested in the true incoming transition probability pti as
we aim to infer the competitiveness level of insurers for policies offered to new customers. First,
we visualize and discuss the observed transition data to find the observed incoming transition
probability p̂ti. Figure 3 shows the number of incoming transitions on the left side and the
number of outgoing transitions on the right side. We show the outgoing transitions for all
insurers over time to determine the exposure eti. The exposure of an insurer is given by all
outgoing transitions minus the outgoing transitions from the insurers itself. Similarly, we show
the incoming transitions yti for insurer i in period t, which are used to calculate p̂ti. We observe
in Figure 3 that for Fidelidade, the outgoing transitions outnumber the incoming transitions
for almost the entire observation period, although the effect flattens out in most recent years.

Figure 3: Observed quarterly incoming and outgoing transitions.

Several anomalies are observed in the pattern of incoming and outgoing transitions. Firstly,
there is a visible seasonality effect, such that the incoming and outgoing transitions are higher in
the second and fourth quarter. This is because the collected license plates are from the second
and fourth quarter of 2005 and car owners are more likely to change insurer after a full year of
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service. Furthermore, we observe that both the number of incoming and outgoing transitions
is diminishing over time. This is caused by the fact that part of the license plates does not
insure itself anymore after a sufficient number of years, simply because the car is no longer on
the road or because the data is missing in the tool.

Figure 4: Observed quarterly incoming transition probabilities.

Finally, Figure 4 visualizes the evolution of the observed transition probability p̂ti by insurer.
Note that the observed transition probabilities are rather volatile, even for adjacent periods. A
considerable proportion of this volatility can be attributed to noise in the estimate of the true
probability pti. Obviously, it can be challenging to compare the competitiveness of insurers by
this figure alone. Therefore, the remaining analysis is dedicated to removing part of the noise
from the observed incoming transition probability.

3.2 Model 1: Binomial-HMM

Firstly, we fit a binomial-HMM with N = 5 states for all insurers i. This means that we assume
that the true incoming transition probability pti can take on five values that differ between
insurers. Therefore, this method is not suitable to compare competitiveness between insurers,
but rather to see how competitiveness of an individual insurer changes relative to the changes
of competitors. The chosen number of states is arbitrary, but has a clear intuition. The middle
states 2, 3, and 4 represent a state of low, medium, and high competitiveness. The extreme
states 1 and 5 stand for very low and very high competitiveness and are added to capture out-
liers in the observed transition probability.

Table 2 shows the incoming transition probability levels corresponding to the 5 states of compet-
itiveness for all insurers. The Baum-Welch algorithm is used to find the unknown parameters
λ = {A,B, π} of the HMMs. The algorithm finds the parameters that best explain the ob-
served sequence, and therefore the parameters will be different for another set of realizations
from the same underlying process. It is important to point out that the Baum-Welch algorithm
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Table 2: Incoming transition probabilities corresponding to the 5 states of competitiveness.

Insurer Very low Low Medium High Very high

Fidelidade 0.132 0.163 0.190 0.239 0.292
Insurer A 0.178 0.196 0.232 0.253 0.262
Insurer B 0.080 0.103 0.119 0.125 0.142
Insurer C 0.055 0.074 0.101 0.117 0.139
Insurer D 0.073 0.099 0.120 0.154 0.183
Insurer E 0.014 0.048 0.062 0.082 0.122
Insurer F 0.055 0.065 0.073 0.085 0.108
Other insurers 0.153 0.196 0.209 0.229 0.281

is sensitive to initial conditions. We note that the final probabilities corresponding to the five
different levels of competitiveness are indeed inconsistent when changing the starting values.
Therefore, it can be worthwhile to experiment with these values and to repeat the procedure
multiple times. We have aimed to maximize the distance between different transition probabil-
ity levels, to increase the intuition behind a transition from one state to another. We have done
so by looping over a grid of starting conditions, and subsequently choosing the conditions that
maximize the minimal distance between two adjacent states of competitiveness.

Figure 5: Most likely sequence of the quarterly states of competitiveness.

Figure 5 visualizes the most likely sequence of the quarterly states of competitiveness for all
insurers as obtained from the Viterbi algorithm. The corresponding competitiveness levels are
as shown in Table 2. A transition from one state to another is indicated by a change in color.
For example, we observe that Fidelidade (‘FID’) transitions first from medium to high and then
from high to very high competitiveness in the span of two periods, from 2007 Q2 to 2007 Q4.
Similarly, their competitiveness worsens from medium to very low competitiveness in the second
quarter of 2019. At and around that time, we observe that insurer B and C see an increase in
competitiveness from high to very high. It is possibly that those insurers changed their price
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policies in this time frame, which in due course affected the incoming transition probability of
Fidelidade. We observe that the transition sequence of ‘others’ is relatively chaotic, because
this sequence is directly affected by all changes in price policies of the insurers not included in
main ones. In general, the figure does well to point out long-term evolution of competitiveness
of insurers. Moreover, the figure can be used to speculate about changes in price policies and
its effect on competitors.

Figure 6: Observed incoming transition probability of Fidelidade with the state of competitiveness on the background.

Figure 6 projects the most likely sequence of hidden states for Fidelidade on the background.
The observed incoming transition probability is plotted to show which observations are gen-
erated by the true transition probabilities, as given by the results from the Viterbi algorithm.
For example, the entire period between the first quarter of 2011 and the second quarter of 2019
is supposedly generated from the probability corresponding to medium competitiveness, which
is 0.190 as can be seen in Table 2. As previously mentioned, the model is helpful to observe
the long-term evolution of competitiveness, by removing part of the noise from observations.
However, if we are interested in observing smaller changes in competitiveness, we should build
a model that extends the discrete state-space to continuous state-space.

3.3 Model 2: Kalman smoother

We extend the discrete state-space binomial-HMM by proposing a Kalman smoother, which as-
sumes continuous state-space. In the previous model, the true incoming transition probability
could take on five values that were different for every insurer. Now, the true transition prob-
ability can take on any value between 0 and 1. We apply Kalman smoothing to the observed
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transition rates of all insurers using the following state-space model:

Y t ∼ B(et, πt)

πt = logit(pt)

pt = pt−1 + ηt

where ηt ∼ N(0, σt) and σt is unknown. We refer to Section 2.2.3 for details on the methodology.

Figure 7: Comparison of the Kalman smoothed transition probabilities with the observed transition probabilities.
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Figure 7 shows for all insurers the Kalman smoothed transition probability and its 95% confi-
dence interval (blue line and area), together with the observed transition probability sequence
(red line). The Kalman smoother indeed manages to smoothen the observed probabilities and
gives a more interpretable and realistic sequence of estimated true coefficients. We stress that
the 95% confidence interval is under the assumption that the true incoming transition probabil-
ity follows a random walk process, as stated by the model. The random walk process assumes
normally distributed shocks, which could be somewhat unrealistic. This can be one of the rea-
sons that there are many instances where the observed probability falls outside the confidence
interval of the Kalman smoother. However, it is is in no way a testament to the failure of the
Kalman smoother. On the contrary, it underlines that the Kalman smoother is doing well at
removing noise from the observed sequence of probabilities.

An example can be seen in the figure of insurer B, where the observed probability goes back-
and-forth to be above and below the Kalman smoothed probability. In this case, the Kalman
smoothed probability removes noise by being more stable than the observed rate. On the other
hand, we see in the figure of insurer E that the Kalman smoother adapts quickly in case of a big
shock in competitiveness, when the observed probability does not return to its previous level
afterwards.

Figure 8: Kalman smoothed incoming transition probabilities.

Figure 8 shows the evolution of the Kalman smoothed transition probability for the major
insurers in the Portuguese car insurance market. The method is helpful to compare long-term
trends of competitiveness changes between insurers. For example, we observe that the gap in
competitiveness between Fidelidade and insurer B has been increasing in recent years, in favor
of insurer B. In the same period, insurer C has increased its competitiveness in a remarkable
way. The Kalman smoother provides the opportunity to create better insight in how changes
in competitiveness of one insurer affect another. Those insights can be incorporated into the
price decision-making process.
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4 Inferring competitiveness from conversion data

In this section, we propose a new method to infer weekly competitiveness levels of insurers.
We use conversion data from Fidelidade’s motor insurance portfolio gathered between January
2018 and September 2019. We add a time variable as a random walk process to capture the
changes in competitiveness over time. By fitting an elastic net model, we aim to apply credibility
weighting between periods and between segments and the full portfolio. We compare the out-
of-sample predictive performance and interpretability of the new model with the more common
generalized linear model where time is included as a categorical variable.

4.1 Customer segmentation

We perform customer segmentation to divide customers into homogeneous groups of similar
conversion behavior. For details on the methodology, we refer to Section 2.3.1. A brief overview
of the variables considered in the analysis of conversion data is provided in Table 5 in appendix
A. We fit a decision tree model for customer segmentation using the following formula:

convert ∼ brand + engine + cylinder + power + weight + RPP + weight2 + value vehicle+

tariff zone2 + age license2 + age vehicle2 + birthyear + intermediary + bonusmalus.

We stress that we do not aim to maximize predictive performance, in which case the idea would
be to minimize the cross-validated error and select the associated complexity parameter. Rather,
we would like to segment the customers in such a way that the segmentation makes practical
sense from a business perspective, by creating segments that are easily distinguishable by a few
simple rules. Too many segments would diminish the interpretability of the segmentation, while
too few segments would not do justice to the diversity of the portfolio. For these reasons, we
decide not to use a mathematically objective measure for determining the number of clusters.
We set the minimum number of customers in a segment to be 2% of the total number of
customers in the portfolio to avoid creating segments that are very small. Moreover, we use a
complexity parameter of 0.002 to avoid creating segments that are too similar to each other.

Figure 9: Visualization of the decision tree used for segmentation.
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The resulting decision tree is shown in Figure 9. We note that some sensitive information about
the factor levels is left out in this version of the report. The blue nodes represent the decision
nodes where a decision rule is applied to split the customers of the node into two parts. The red
nodes represent the leaf nodes, which do not have any additional nodes coming off them. Each
leaf node represents one segment that covers a different set of customers. The first division
is based on the bonus-malus class of the customer. Bad drivers have a lower conversion rate,
because they are offered a price that is less competitive. After the first split, both nodes are
split by intermediary, who play an important role in the conversion behavior of customers. The
good drivers with bad intermediary are further divided by birthyear. Young drivers turn out
to have a higher conversion rate than older drivers. Finally, the older drivers are split by the
age of their vehicle. The data shows that there is a quadratic relationship between conversion
rate and vehicle age. That is, the conversion rate is relatively high for very young and very old
cars. On the other side of the tree, we see that the bad drivers are separated by the age of their
vehicles. The final decision tree consist of 8 segments.

4.2 Evaluation and comparison of the different models

The following models will be compared based on out-of-sample predictive performance and
interpretability:

1. A generalized linear model without time structure (Model 1).

2. A generalized linear model with time included as a categorical variable (Model 2).

3. A generalized linear model with time included as a categorical variable, interacting with
the segment variable (Model 3).

4. An elastic net model with time included as a random walk process (Model 4).

5. An elastic net model with time included as a random walk process, interacting with the
segment variable (Model 5).

Model 1 is the baseline model that does not include any time structure whatsoever. Model 2
introduces time as a categorical variable, which is the most common way to include time in
actuarial work. Model 3 adds an interaction effect between time and the segment variable to
Model 2, to capture segment-specific competitiveness changes over time. All of these models do
not assume a specific time-dependent structure for the weekly competitiveness levels. Model 4
is the first elastic net model and includes time as a random walk process, so that we can apply
credibility weighting among time periods. Model 5 adds an interaction effect between time and
the segment variable to Model 4. This interaction effect enables us to also apply credibility
weighting among segments and the full portfolio.

We stress that all models include the basic ratemaking variables and the segment variable. We
choose to include these variables consistently, because they are recognized to have an impact on
the conversion behavior of customers. Moreover, we want to ensure that the effects of ratemak-
ing variables are captured to avoid disturbing the weekly competitiveness level. Similarly, we
choose to include a segment variable in all models to capture the effect of relevant ratemaking
variables that are currently not included. Evidently, the segment variable also partly captures
the competitiveness level of a segment. However, the variable has the same impact on all time
periods and therefore we are still able to infer weekly changes in the competitiveness level.
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Table 3 shows the performance of the models in terms of area under the ROC curve (AUC)
and accuracy rate of predictions. Note that the first three models have λ = 0 and irrelevant α,
since no penalty is applied for generalized linear models. For the elastic net models, we have
performed 10-fold cross-validation repeated 3 times to determine the hyperparameters α and λ
that maximize the AUC, as explained in Section 2.3.3. We have used a grid for α such that
α ∈ {0, 0.1, 0.2, ..., 1} is chosen. We find that α = 0.3 maximizes the AUC for Model 4 and
α = 0.2 for Model 5.

Table 3: Summary of the predictive performance of the proposed models.

Model λ α AUC Accuracy
1 0 - 0.7210530 0.6618007
2 0 - 0.7226328 0.6630194
3 0 - 0.7224989 0.6628840
4 0.0004263 0.3 0.7226877 0.6630258
5 0.0008470 0.2 0.7232174 0.6636384

We observe that Model 2 outperforms the other generalized linear models. Apparently, adding
time as a categorical variable increases the predictive performance compared to no time struc-
ture at all. However, the interaction effect between time and segment in Model 3 seems to
cause overfitting. This additional term cannot adequately capture the underlying structure of
the data, when used in a traditional setting.

Both elastic net models have a higher predictive performance than all the generalized linear
models. The random walk process better captures the underlying time structure than sim-
ply adding time as a categorical variable. We observe that Model 5 outperforms Model 4 in
terms of AUC and accuracy rate. The difference between those models is that we have added a
penalty applied to the coefficients of the interaction effect, avoiding the possibility of overfitting.

We acknowledge that the inclusion of a time structure only slightly increases the predictive
power of the model. However, we remind the reader that the aim is not to build a model that
improves predictions, but rather to improve the interpretability of the coefficients of weekly
competitiveness changes to aid decision-making. The remaining analysis shows how time struc-
ture is indeed able to significantly improve interpretability.

Figure 10 compares the evolution of competitiveness of the full portfolio as inferred from the
coefficients of the time variables in Model 2 and 5. For Model 2, the figure simply shows the
coefficients of the categorical variables at time t. For Model 5, we show the cumulative shocks
up to week t. We observe that both models show a similar evolution of competitiveness, as ex-
pected. Model 2 produces estimates that can vary greatly in a short period of time. Moreover,
the direction of the changes often alternates in subsequent weeks such that no clear short-term
trend is visible. Those alterations are likely to be a result of noise in the estimates. On the other
hand, Model 5 shows a much more smooth evolution of competitiveness due to the inclusion
of a time trend in the model. The application of credibility weighting has removed part of the
noise that caused the estimates of Model 2 to be disturbed. The estimates of Model 5 are more
interpretable and reliable. Therefore, the decision-making process can be improved by using
this method.
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Figure 10: Comparison between Model 2 and Model 5 regarding the estimates of competitiveness for the full portfolio.

We briefly discuss the interpretation of the sign and magnitude of the coefficients. The coeffi-
cients of a (penalized) logistic regression are in terms of the log-odds. For example, a customer
that has a 40% probability of converting in week t, increases to a 42.42% probability of con-
verting in week t + 1 after an increase of the competitiveness level coefficient by 0.1. On the
other hand, if the competitiveness level coefficient decreases by 0.1, the probability of converting
drops to 37.63% for the same customer. In fact, we observe several instances in Figure 10 where
Model 5 indicates a weekly change in competitiveness greater than 0.1.

Figure 11 compares the evolution of segment-wise competitiveness as inferred from the coef-
ficients of the time variables in Model 3 and 5. The segment-wise competitiveness level is
determined by the competitiveness of the full portfolio plus the sum of segment-wise shocks in
previous periods. The results are similar to those seen before. The estimates for Model 3 are
irregular and unrealistic, since time is included as a categorical variable without a time struc-
ture. On the other hand, model 5 gives estimates that are smoother and more realistic, because
time is included as a random walk process and as an interaction effect with the segment variable.

The contrast between Model 3 and Model 5 is more prevalent in the segment-wise competitive-
ness levels, because there is less data available for an individual segment. For segments with
relatively many customers, the estimated coefficient tends to be closer to the coefficients in
Model 3, because the observed coefficients are more reliable in these segments. Table 4 indeed
shows that for bigger segments, the correlation between the estimated coefficients of Model 3
and Model 5 is higher. On the other hand, Model 5 considers the deviations in smaller segments
mostly as noise that arises from a lack of data, and therefore we observe a lower correlation
in these segments. This is the advantageous effect of applying credibility weighting between
segments and the full portfolio.
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Figure 11: Comparison between Model 3 and Model 5 regarding the estimates of segment-wise competitiveness.

We have previously seen that segments experience segment-specific shocks in their competi-
tiveness level, besides the full portfolio shocks that are common for all segments. Figure 12
shows these segment-specific changes in competitiveness inferred by Model 5. These shocks can
happen for example when an insurance company changes their prices for a specific segment, or
when a specific group of people is targeted by a marketing campaign. Naturally, a segment will
in most periods not experience a segment-specific shock. We indeed observe that the majority
of the coefficients are set to zero by the penalty factor. This is an advantage of elastic net
regression over ridge regression, where coefficients are never shrunk to zero.
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Figure 12: Segment-specific changes in competitiveness.

We observe two effects in the segment-specific changes in Figure 12. Firstly, we note a so-called
grouping effect among time periods that are adjacent to each other. This is common for ridge
regressions, where correlated variables tend to be shrunk together instead of removed, as would
happen for lasso regression. Model 5 is an elastic net model with α = 0.2, much closer to a ridge
regression. Therefore, it is only natural that we see part of this grouping effect in the estimates
of segment-specific changes. An example of this effect can be seen in the plot of segment 1
from week 21 to week 23. In practice, it is likely that the real competitiveness change hap-
pened in only one of the three weeks. However, the grouping effect has caused all three weeks
to have a non-zero coefficient. This problem can be accommodated by choosing an α closer to 1.
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Secondly, we note that there are relatively many shocks in competitiveness in the last weeks of
the observation period. This is due to the nature of the model. When a shock in the observed
coefficient occurs at the end of the observation period, the model does not have the chance to
observe the conversion rate for many weeks to follow. Therefore, it cannot be certain that the
decrease in conversion rate was noise, or a true shock in the coefficient. However, Model 5 gives
more intuitive estimates of competitiveness in the last periods compared to Model 2 and Model
3, because it applies credibility weighting, and therefore the proposed approach is preferable.

Table 4: The sum of segment-specific changes and the correlation between estimated coefficients from Model 3 and 5

Segment Number of Percentage of Correlation of coefficients Sum of absolute value
number customers customers in Model 3 & Model 5 of changes in Model 5

1 164,911 24.76% 0.852 0.4101
2 26,836 4.03% 0.753 1.0190
3 165,738 24.89% 0.936 0.3978
4 55,001 8.26% 0.858 0.4639
5 73,138 10.98% 0.787 0.4008
6 18,251 2.74% 0.736 1.3108
7 148,583 22.31% 0.945 0.3243
8 13,350 2.00% 0.847 1.0096

Table 4 also shows the sum of absolute values of segment-specific changes in competitiveness
level. This gives an indication of how much a segment deviates from the full portfolio. We
observe that the smaller segments 2, 6, and 8 deviate considerably more from the full portfolio
than the segments with more customers, even after applying credibility weighting. This can
be considered as an undesirable property of the model. A potential solution is to increase the
penalty factor of the segment-specific changes relative to the penalty factor of the full portfolio
changes, so that relatively more credibility weighting is applied between segments and the full
portfolio.
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5 Discussion

We have proposed two data sources that can be used to infer competitiveness in a setting of
limited or non-existent price information. Firstly, data of customer transitions between insur-
ers in the Portuguese motor insurance market was collected to follow and compare quarterly
competitiveness levels. Secondly, conversion data was employed to model weekly segment-wise
competitiveness levels for Fidelidade’s portfolio. Those two data sources clearly serve a dif-
ferent purpose. Conversion data is rich in information and is ideal to observe the changes in
competitiveness by segment. However, conversion data is available only for our own portfolio
and can therefore not be used to track the evolution of competitiveness between insurers, unlike
transition data, which can be obtained for all insurers. Moreover, there is a bias in conversion
data: The set of customers that disregards an insurer without requesting a quote is neglected.
Transition data can be used to attempt to fill up this gap in information.

Firstly, we discuss and compare the binomial-HMM and Kalman smoother that use historical
transition data. Both methods provide an approach to observe long-term trends of insurers and
to track the evolution of competitiveness between insurers. The binomial-HMM assumes that
the transition probability parameter can take on only five values and is therefore somewhat
restricted. On the other hand, the Kalman smoother is more realistic because the state-space
is continuous and can take on any value between 0 and 1. However, a potential problem of
the Kalman smoother is within its specification. The true underlying transition probability is
assumed to follow a random walk process, where the one-period competitiveness shock is nor-
mally distributed. In practice, the shock might follow a distribution with heavier tails, because
of exogenous variables such as price changes. The binomial-HMM better handles these large
shocks, because the state transition matrix allows to jump over some in-between states.

The Kalman smoother does remarkably well to filter noise from the observed incoming transi-
tion probabilities. The smoothed probabilities remain stable when the observations are hovering
around a certain level. On the other hand, the Kalman smoother adapts quickly when the ob-
served probability does not return to its previous level after a big shock. Moreover, the Kalman
smoothed probability gives a reasonable estimate of the true probability in the last periods,
which makes it especially useful for prediction. Both the binomial-HMM and the Kalman
smoother can increase interpretability of transition probability time-series, which is particu-
larly helpful to convey a message to decision-makers with a non-statistical background. Ideally,
the methods will be used complementary to each other.

A major limitation of the current set-up is the lack of differentiation in the data. We have
collected data only from license plates issued in 2005, knowing that the age of the license plate
is highly correlated with other factors such as income of the driver, age of the driver, and ge-
ographical area. The current transition data might therefore not give a good overview of the
competitiveness of the full portfolio. The data collection process turned out to be rather slow
and inefficient. The collection of a more diversified set of license plates remains to be done in
the future.

Secondly, we have proposed a penalized regression framework where time is included as a ran-
dom walk structure. We aim to infer weekly segment-wise estimates of competitiveness changes.
First, customer segmentation was performed to divide customers into homogeneous groups of
similar conversion behavior. We have used a modified dummy encoding to model a random
walk within the generalized linear modelling framework. We are not only able to model the
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overall changes in the portfolio, but also the changes by segment by including an interaction
term between the segment and the random walk variable. This produces a model that credibil-
ity weights each segment’s changes using the full portfolio’s changes as the complement. The
powerful hierarchical fashion of this model creates results that are much more interpretable than
those of the generalized linear models, since the penalty factor sets most coefficients to zero.
Moreover, we observe that the proposed method outperforms the generalized linear models in
terms of predictive performance.

We generally observe more substantial segment-specific shocks in the last periods of the obser-
vation period. This is a direct effect of the dummy encoding, where the coefficient of the last
period only influences that specific period. Therefore, the proposed model is of limited value for
prediction of future competitiveness levels. A specific problem for Fidelidade’s actuarial team
is to predict the conversion rate of segments in the next week. A possible solution is to employ
a Kalman filter where the state-dependent distribution is binomial, similar to the solution han-
dling the transition data. The Kalman filter would not be able to handle a hierarchical structure
and therefore would lack interpretability of segment-wise competitiveness levels, such as for the
proposed model. However, the Kalman filter consistently outperforms a simple average over
the last four weeks in terms of prediction for the next week’s competitiveness level. The main
focus of this work is on creating interpretable results for inferring competitiveness. Hence, we
have chosen not to discuss the work that was geared towards prediction.
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6 Conclusion

It is often costly or even impossible to collect information about competitor’s prices and price
changes, which poses a challenge for insurers who want to use objective measures to determine
the competitiveness of their policies. In the past, there has been little attention to this problem
in actuarial literature. We have proposed several methods to determine the competitiveness
levels of insurance policies when price information is limited or non-existent. These methods
are capable of handling time-dependent structures and in fact underline the importance of an
underlying time structure.

We have collected transition data about the insurance companies of vehicles in the Portuguese
auto insurance market between 2007 and 2019. Firstly, we proposed an approach using hidden
Markov models to analyze the evolution of competitiveness of the main insurers in the market.
The model assumes every insurer to be in one of 5 states of competitiveness, from very low to
very high. The method creates interpretable results and succeeds in modelling relatively large
shocks in the transition rate. However, the practical use is limited because of the assumption of
a discrete state-space of competitiveness. We tackle this problem by considering a continuous
state-space model. We apply Kalman smoothing to the observed transition rates to remove
noise from the transition data. The approach allows us to observe the long-term development
of an insurer’s quarterly competitiveness levels and to compare it between insurers. Currently,
our analysis is based on license plates from 2005. In the future, the focus should be on collecting
data from different years to get a better picture of the evolution of competitiveness for the full
portfolio.

Subsequently, we have used conversion data between January 2018 and September 2019 to deter-
mine segment-wise competitiveness levels of Fidelidade’s portfolio. We have proposed a method
for incorporating state-space model functionality into a generalized linear model framework.
The method has a hierarchical structure and is able to apply credibility weighting between
periods and between segments and the full portfolio. The proposed model has a better predic-
tive performance than the most commonly used generalized linear model with time included as
a categorical variable. Moreover, the estimated competitiveness levels are more intuitive and
interpretable due to the penalty factor that is applied. The results are suitable for presenta-
tion to a non-technical audience. The model is of limited use in prediction of future period’s
competitiveness levels, although it still does better than the simple generalized linear model,
because of the application of credibility weighting.

The current model is flexible enough to be extended in future work. We might be able to collect
price data of competitors on a weekly basis. In this case, the cause of a change in competitiveness
of our policies is understood and can be related to the price variables of competitors. The price
variable can simply be added to the model to improve predictions for future weeks. It should
be included as an index so that only price changes affect competitiveness. Similarly, a seasonal
component can be incorporated into the model by adding a dummy variable to the penalized
regression framework. These extensions can increase the added value of the model to make it
an integral part of the price decision-making process.
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A Conversion variable explanations

Table 5: Explanation of the variables considered in the analysis of conversion data.

variable definition type

license License plate number of a customer that
performs a simulation (ID variable).

character

sim date Date of the first simulation performed by a
customer.

date

brand Brand of the car. factor (23 levels: *)
engine Engine class of the car. factor (2 levels: *)
cylinder Cylinder class of the car. factor (7 levels: *)
power Engine power class of the car. factor (9 levels: *)
weight Gross weight class of the car. factor (9 levels: *)
RPP Power/weight class of the car. factor (7 levels: *)
weight2 Net weight class of the car. factor (6 levels: *)
vehicle value Value of the car. factor (11 levels: *)
tariff zone Class representing the claim propensity of

the customer by geographical location,
from low to high.

factor (12 levels: *)

tariff zone2 Simplified variable of tariff zone. factor (3 levels: *)
age license Number of years that the customer has

had a driver’s license.
integer

age license2 Simplified variable of age license, merging
similar levels into factors.

factor (5 levels: *)

age vehicle Age of the vehicle. integer
age vehicle2 Simplified variable of age vehicle, merging

similar levels into factors.
factor (9 levels: *)

birthyear Birthyear period of the customer. factor (11 levels: *)
intermediary Intermediary involved in the simulation of

a customer.
factor (10 levels: *)

bonusmalus Bonus-malus level of the customer, where
class 1 represents the level with the worst
drivers, and class 9 the level with the best
drivers.

factor (9 levels: *)

convert Decision of the customer to convert at
least one of the simulations.

binary

* Sensitive information regarding the factor levels was left out in this version.
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B Conversion model results

The conversion model results are left out in this version to protect sensitive information.
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