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Abstract 

 

    Several econometric studies seek to explain the determinants of knowledge production 

using as dependent variable the number of patents in a given region. Some of these studies 

intend to capture the effects of knowledge spillovers through linear models with spatial 

autorregressive term. However, no study has been found that estimates the effect of such 

term while also considering the discrete nature of the dependent variable, which is a count 

variable.   

This essay aims to fill this gap by proposing a new Two-step Limited Information 

Maximum Likelihood estimator for a Spatial Autorregressive Poisson model. The 

properties of this estimator are evaluated in a set of Monte Carlo Experiments. The 

simulation results suggest that, in general, this estimator presents lower Bias and lower 

RMSE than the alternative estimators proposed, only showing worse results when the 

spatial dependence is very close to the unit. An empirical example, using the new 

estimator and a set of alternative estimators for comparison, is executed, where  

the creation of knowledge in 234 NUTS II from 24 European countries is analyzed. The 

results show that there is a strong spatial dependence on the creation of innovation 

between regions. It is also concluded that the socio-economic environment is essential for 

the knowledge formation process and that, unlike public R&D institutions, private 

companies are efficient in producing innovation. It should also be noted that regions with 

less capacity to transform R&D expenses into new patents, have greater capacity for 

absorption and segregation of knowledge, which may show that neighboring regions less 

efficient in the production of knowledge tend to create strong relations with each other 

taking advantage of the knowledge sharing process. 

 

 

 

 

Keywords: Spatial Econometrics; Poisson Regression; Knowledge Spillovers; Knowledge 

Production; Two-Step Limited Information Maximum Likelihood  
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Resumo  

 

    Vários estudos econométricos procuram explicar os determinantes da criação de 

conhecimento usando como variável dependente o número de patenteamentos numa 

determinada região. Alguns destes estudos procuram captar os efeitos de Knowledge 

Spillovers através de modelos lineares que incorporam dependência espacial. No entanto, 

nenhum estudo foi encontrado que captasse este efeito, tendo ao mesmo tempo em 

atenção a natureza discreta da variável dependente, que neste caso é uma variável de 

contagem. Este artigo pretende preencher essa lacuna propondo um novo estimador de 

máxima verosimilhança de informação limitada a dois passos para um modelo Poisson 

Autorregressivo Espacial. As propriedades do estimador são avaliadas num conjunto de 

simulações de Monte Carlo. Os resultados da simulação sugerem que este estimador tem 

menor Bias e menor RMSE, na generalidade, que outros estimadores anteriormente 

propostos, sendo que apenas mostra piores resultados quando a dependência espacial é 

muito próxima da unidade. Um exemplo empírico, empregando o novo estimador e um 

conjunto de estimadores alternativos para comparação, é realizado, sendo que a criação 

de conhecimento em 234 NUTS II de 24 países europeus é analisada. Os resultados 

evidenciam que existe uma forte dependência espacial na criação de inovação entre as 

regiões. Conclui-se também que o ambiente socioeconómico é essencial para o processo 

de formação de conhecimento e que contrariamente às instituições públicas de R&D, as 

empresas privadas são eficientes na produção de inovação. É de realçar ainda, que regiões 

com menor capacidade em transformar despesas R&D em novas patentes apresentam 

maior capacidade de absorção e segregação de conhecimento, podendo evidenciar que, 

regiões vizinhas menos eficientes na produção de conhecimento tendem a criar relações 

fortalecidas relativamente à partilha de conhecimento. 

 

 

 

Palavras-Chave: Econometria espacial; Regressão de Poisson; Externalidades de conhecimento; 

Máxima Verosimilhança de informação limitada a dois passos. 
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1. Introduction 

  Since the rise of the modern economy, economists have been focusing on 

competitiveness has a preponderant factor for the prosperity of regional, national and 

international markets. As such, understanding the determinants of competitiveness 

became a priority for economic and governmental decision makers. At the present 

moment, one of the predominant variables in competitiveness is the capacity for 

innovation, and Fritsch (2002) states that the production of knowledge is quite useful to 

compare the quality of regional innovation systems, being, therefore, a key variable in 

today's economy. OCDE (1999) states “Technological change and innovation are among 

the main determinants of productivity growth. Productivity is the key to increasing real 

income and competitiveness and is one of the most important yardsticks of industrial 

performance.” 

    As such, understanding the process of innovation is necessary to current political and 

economic decision-making. Hence, a large theoretical and empirical literature associated 

with the theme can be found. The vast majority tries to study the innovation process 

empirically through the number of new patents in a given region (Buesa et al., 2010). 

Now, part of this literature proves the existence of externalities associated with the 

creation of knowledge, commonly known by Knowledge Spillovers. In an attempt to 

capture these externalities quantitatively, spatial econometrics mechanisms have been 

increasingly used. However, among this vast literature, there are few empirical studies 

that, in addition to using spatial econometrics, also pay attention to the discrete nature of 

the dependent variable. The reason for the scarce literature is the little exploration of 

spatial autoregressive models of counts.  

    One of the aims of this essay is to estimate a knowledge production function using 

spatial econometrics methodologies in order to capture the effects of Knowledge 

Spillovers in European countries. Given that the studied dependent variable is a count 

variable (number of new patents) it is decided to use a non-linear estimation process, in 

this case a Poisson regression. This leads to the second objective of this essay: introducing 

a new estimation process for the Spatial Autorregressive Poisson Model (SAR-Poisson) 

presented by Lambert et al. (2010). This new methodology aims to eliminate the bias 

generated in the estimation proposed by Lambert et al. (2010), by proposing a first-step 

Poisson Maximum Likelihood approach where, in the estimation of the the logarithm of 

the dependent variable, no computational transformation is needed to deal with the 
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possible problem of zero counts, nor is it necessary to resort to an estimation using a 

loglinear specification. This is a relevant innovation since it takes into account important 

results addressed by Santos Silva & Tenreyro (2006), which, when neglected, can cause 

biased estimates. In addition, if the results of Monte Carlo simulations are satisfactory, 

then this new methodology will be an important contribution to the estimation of count 

models with spatial dependence, given the still scarce literature related to the topic. 

    In the following section, a brief literature survey will be carried out on Knowledge 

Production Functions and the determinants of innovation, ending with a short summary 

of the existing spatial models of counts, and some of the problems associated with the 

estimation.  In section 3, the SAR-Poisson and the relevant partial effects to be estimated 

are presented, followed by a detailed exposition of the new estimation process proposed 

in this essay. Section 4 presents the main results of a Monte Carlo simulation study, where 

the proposed new estimator is compared with three other estimators used to estimate count 

models, in an attempt to prove the benefits of using the first one. It is hypothesized that 

the new estimator is less biased resulting in more accurate estimates. In section 5, an 

application of the new estimator for Poisson models with spatial dependence is presented, 

aiming to estimate the impact of various socio-economic variables in the creation of 

knowledge, as well as quantifying the mechanisms of Knowledge Spillovers. In addition 

to the proposed estimator, and as a form of comparison, the same model is estimated with 

the other three estimators previously referenced. Section 6 elaborates the summary of the 

main results, followed by some concluding remarks, ending with a discussion on some 

possible extensions of this essay. 

 

2. Literature Survey 

    The present literature survey will be divided into seven sub-chapters. The first five try 

to familiarize the reader with the relevant literature on the specification of the models and 

determinants that seek to explain the creation of knowledge through innovation, and how 

this can flow through space. The remaining explore the different estimation approaches 

used for spatial models, with particular attention to nonlinear spatial models. 
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2.1 Knowledge Production Function 

    Griliches (1979), in an attempt to model the knowledge production process, proposed 

a specification based on a Cobb-Douglas function. It is known as Knowledge Production 

Function (KPF) and describes the relation between knowledge creation and underlying 

factors, such as human resources, technology, and capital. This methodology has been 

widely reproduced, with Furman et al. (2002), Furman & Hayes (2004), Krammer (2009) 

and Buesa et al. (2010) being some examples. The theoretical function would be 

Y =  𝐷C𝛼L𝛽K𝛾e(𝜆t+u)                                                                                                                       (1)   

Where Y represents the output of the production function; D is a constant; C and L are the 

conventional inputs capital and labor, respectively; K is a measure of the current state of 

technical knowledge, measured by the R&D expenditures; t is the time index; u stands 

for all the unmeasured determinants of the knowledge production; e is the exponential 

function, and α, β, γ, and λ are the coefficients aimed to estimate. 

2.2 Patents as a measure of Knowledge 

    There is a wide debate about which is the best variable to measure knowledge creation, 

as can be read in Smith (2005), European Commission (2001: 38), among others.  

    As stated earlier, knowledge creation is intertwined with the idea of innovation, 

therefore, it is common to use the number of new patents registered as the knowledge 

production proxy. However, some studies, such as Acs & Audretsch (1988), have 

calculated that only between 49% to 60% of patents actually become a product and 

consequently an innovation, or Arundel & Kabla (1998), who detected strong variations 

between industrial sectors in the percentage of patents that in fact become innovation, 

with this occurring, on average, 33% in the case of products, and only 20% in the case of 

services. Another associated problem is the inability to quantify the heterogeneity 

between each patent in the production of knowledge (Kleinknecht et al., 2002). It is 

important to note that not all knowledge production is reflected in the form of a patent 

(e.g: Scientific articles), which is considered another big disadvantage of using this proxy. 

Finally, and perhaps the biggest disadvantage for studies that take international data into 

account, as the present, is that there are different propensities for patenting in different 

countries and different sectors, and this fact must be taken into account in the analysis of 

results (Buesa et al., 2010). Other measures, such as the case of innovations sold or 

considering a variable formed by the sum of patents with innovation (Ferreira & Godinho, 

2015)  are also proposed as the proxy of knowledge creation, nevertheless, the difficulty 
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in finding data is seen as a major disadvantage (Buesa et al., 2010). Despite all these 

disadvantages, patents are considered the best proxy found, since they guarantee a 

minimum level of originality, and are more likely to become innovations rather than the 

alternatives. On the other hand, OCDE (2004: 136) has ensured that the vast majority of 

inventions have been patented in recent decades. Finally, patents have the great advantage 

of being granted to the regions where they were developed, facilitating studies like this 

one (Buesa et al., 2010).  

2.3 R&D as a source of Knowledge Production 

    Mansfield (1965) was a pioneer in estimating the effects of R&D on innovation, and 

since then, the use of variables related to R&D have become almost mandatory when 

modeling knowledge production. Krammer (2009) concludes that in the innovation 

process, employment in R&D is crucial. Romer (1990) states that inputs in R&D 

constitute the most important variable in the creation of knowledge, since an increase of 

this factor will accelerate the stock of knowledge, promoting productivity and 

technological progress. 

    However, it is necessary to take into account that there are different institutions that 

invest in R&D. These have different objectives and research channels, for example, 

universities and research institutions can focus on a theoretical component that can later 

be a channel for innovation in companies (Jiao & Chen 2018). Given this condition, 

several studies preferred to divide both R&D expenditures and investment in R&D human 

capital between different sectors: Private, Public and University, such as Krammer 

(2009), Ferreira & Godinho (2015) and Zhang et al. (2020). The conclusion is that the 

expenses in the private sector are quite significant, in contrast to the university and public 

sector, probably arising from the inefficiency in the patenting process on the public and 

universities behalf (Zhang et al., 2020). Ferreira & Godinho (2015) did not find robust 

results in relation to the university component, still, they were able to conclude that it is 

always less significant than investment in the private sector. 

2.4 Regional determinants in Knowledge Production 

Besides economic determinants, it is important to take into account variables connected 

with the regional environment. Studies such as Ferreira & Godinho (2015) and Acs et al. 

(2002) emphasize the level of education of the population, as it is expected that a higher 

level of education will represent a positive impact on efficiency at the time of knowledge 

production. With a higher level of education, greater scientific literacy and innovation 
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capacity are expected. Nevertheless, it is important to consider the technological and 

human capital sophistication in a given region. The production of knowledge depends to 

a great extent on what Buesa et al .(2010) refers to as the “innovation environment”. Only 

regions with advanced financial and technological means are able to have a favorable 

environment for the production of knowledge. This is the reason why some authors take 

technological sophistication into account, as is the case of Furman et al. (2002) and 

Ferreira & Godinho (2015), which use GDP per capita as their proxy. Besides financial 

and technological advantages, the social conditions of the population are also determining 

factors for the quality of the “Innovative Environment” mentioned above. Ferreira & 

Godinho (2015) use the mortality rate for tuberculosis and violent crimes as proxies of 

the social conditions of the inhabitants of the region, noting that several studies link 

poverty to tuberculosis.  

    Other control variables such as population, investment and number of companies are 

used in several studies (Ferreira & Godinho, 2015) 

2.5 Space and Mobility as determinants for Knowledge Creation 

    As previously mentioned, the diffusion of knowledge is one of the essential forms for 

innovation and growth (Lucas, 1988 and Romer, 1990). Therefore, research networks 

seem to be essential points in the dissemination of knowledge. Studies such as Di Cagno 

et al. (2016) and Miguèlez & Moreno (2013) conclude that regions with institutions that 

participate in the above-mentioned networks tend to present a higher level of innovation. 

Now, as a result of globalization, whether through new technologies or through personal 

meetings at innovation fairs or conferences, knowledge flows through space with ease, in 

what the literature calls Knowledge Spillovers. 

    Spatial econometrics has been expanding rapidly since the end of the last century, being 

increasingly considered for studies in applied economics. It is commonly used to capture 

the effects of Knowledge Spillovers when analyzing regional innovation, which goes 

hand in hand with the relationship that Marshall (1920) pointed out between innovation 

and space. Autant-Bernard (2012) points out two major reasons for the use of spatial 

econometrics when modeling knowledge creation. The first, because of the endogenous 

growth theory that argues that knowledge is similar to a public good, meaning that a new 

agent can use the knowledge of another without costs, or with costs lower than those used 

to produce it. This premise is the basis of the theory of growth and new geography that 

explains the clustering process and the unique distribution of economic activities, thus 
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implying spatial dependence. The second, comes for the strong spatial polarization of 

economic activities. This polarization means the existence of high spatial heterogeneity 

in knowledge production that should be accounted for. This spatial heterogeneity may be 

the reason for the existence of spatial dependence within the random error in econometric 

models (Autant-Bernard, 2012).  

    Anselin et al. (1997) were the pioneers in this theme, using regional R&D levels in 

conjunction with neighboring regions R&D levels, in an attempt to measure knowledge 

creation. However, it is important to bear in mind that, when considering interregional 

spillovers, assuming spatial dependence only on random disturbances can be misleading, 

therefore, justifying the importance of adding the spatial autoregressive term (Anselin et 

al., 1997; Maggioni et al., 2007). 

   The importance of incorporating spatial autoregressive term in modeling the knowledge 

creation is stressed in Autant-Bernard & LeSage (2011). First, the authors estimate an 

aspatial knowledge production model. Nevertheless, the presence of unobservable 

regional inputs in knowledge production leads them to estimate a Spatial Durbin Model, 

in which the spatial dependence is captured by the estimated spatial autoregressive 

coefficients related to both spatially lagged dependent and explanatory variables. 

    Autant-Bernard (2012) also exposes the benefits of introducing in the regression the 

spatial autoregressive term in this type of problem. Firstly, it is possible to capture the 

direct and indirect effects of an explanatory variable distinctly. The increases in 

knowledge derived from the variation of inputs in the region itself are called direct effects, 

while the impact in that same region caused by a variation of input in neighboring regions 

is formally known as indirect effects, the latter being in this case called Knowledge 

Spillovers. Secondly, with this type of spatial dependence it is possible to study the extent 

of space on knowledge spillovers, and how its proliferation decays with distance. Finally, 

it allows the adequate estimation of the model coefficients, since by neglecting spatial 

dependence we are estimating models with endogeneity, generating biased and 

inconsistent estimators (Anselin & Le Gallo, 2006). 

    A variety of studies have been replicated modelling the spatial dependence using a 

spatial autoregressive term, some examples are Furková (2019), Autant-Bernard & 

LeSage (2011), Zhang et al. (2020) and Caragliu & Nijkamp (2016). All conclude that 

there is a strong spatial dependence when modeling innovation, and that regional 

innovation has a spatial spillover effect, both at the level of the dependent variable and 

the independent variables themselves. Caragliu & Nijkamp (2016) stretched to the point 
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of not considering only distance as a proximity factor, also opting to take into account 

relational, social, cognitive and technological proximity. 

2.6 Spatial Model for counts: why the non-linear approach. 

    Until now, the referenced studies which estimate the spatial dependence (Furková, 

2019; Autant-Bernard & LeSage, 2011; Zhang et al., 2020), have not taken into account 

the discrete nature of the dependent variable, which in this case is the number of patents 

in a given region in a given period. Therefore, we are in the presence of a discrete non-

negative variable, that is, a count variable. For a more accurate estimation of the model, 

it is crucial to take into account these characteristics of the variable. The distribution of 

this type of variables is skewed to the right due to the high number of zeros and / or small 

values. Data of this nature is intrinsically heteroscedastic with the variance growing with 

the average. This last aspect leads to invalid inference, therefore, when estimating 

standard errors, heteroscedasticity must be considered. (Cameron & Trivedi, 2005). 

    However, there are a few studies that mutually incorporate the discrete nature of the 

data and take into consideration the spatial dependence. The still recent exploration of the 

spatial autoregressive model of counts and the additional complexity arising from the 

model estimation, largely due to the endogeneity caused by the spatial autocorrelation 

factor, are considered the main reasons for this scarce literature. In fact, the only study 

found does not directly estimate the spatial autoregressive term referred earlier. LeSage 

et al. (2007) use a Bayesian Hierarchical Poisson Spatial interaction model to measure 

the effects of interregional flows of knowledge, using Markov Chain Monte Carlo 

(MCMC) methods for the estimation.  

    One way to estimate count models taking into account spatial dependence is to use a 

loglinear model, making it possible to use the standard approach for estimating spatial 

linear models. However, considering the work of Santos Silva & Tenreyro (2006) a 

problem arises. According to the authors, when estimating a log-linearized specification 

with OLS it will generate biased estimators for elasticity in the presence of 

heteroscedasticity. For that reason, interpreting the estimated parameters of log-linearized 

models as elasticities can be improperly in this situation. This is due to Jensen's inequality 

that implies that the expected value of the logarithm of a random variable is different from 

the logarithm of its expected value (𝐸(ln 𝑦) ≠ ln 𝐸(𝑦)). Alternatively, the authors 

suggest that constant-elasticity models should be estimated in their multiplicative form 

7 
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using a Poisson Pseudo-Maximum-Likelihood (PPML) estimation technique. To 

guarantee the consistency of this estimator it is only necessary the correct specification 

of the conditional mean. Consequently, the dependent variable does not have to be 

Poisson, nor even to be an integer. Besides all, the implementation of this estimator is 

straightforward.   

2.7 Spatial model for counts: Existing applications  

    Some authors addressed the estimation of count models with spatial dependence, as 

was the case of Kaiser & Cressie (1997), that presented a model that allows positive 

dependence, specifying the conditional distribution as a function of a probabilistic mass 

Winsorized Poisson; Schabenberger & Pierce (2002) analyse conditional autoregressive 

general linear models, introducing a conditional spatially autoregressive error model of 

counts; In addition to these, and as previously mentioned, LeSage et al. (2007) estimate 

a  Bayesian hierarchical Poisson spatial interaction model. However, all these studies fail 

to estimate the spatial autoregressive term, not benefiting from the existence of this term 

in the model specification. 

    Reflecting on the theory and application of SAR models to count data, one can 

conclude that its advancement is quite limited, even when compared to other non-linear 

spatial models. Regarding binary dependent variables, there is a growing variety of 

studies based on the logit and probit models with spatial lag, estimated through non-linear 

GMM (NLGMM) (Pinkse & Slade, 1998; Klier & McMillen, 2008; among others). 

However, and based on the work of Klier & McMillen (2008), Hays & Franzese (2009) 

presented a Spatial-Lag Count Model estimated through the non-linear least squares and 

the GMM estimator. Nevertheless, the authors only present results from a simulation 

study for a small sample and for low or moderate spatial dependence coefficient values.  

    Lambert et al. (2010) propose another solution: a two-step Limited Information 

Maximum Likelihood (LIML) estimator for the Spatial Autoregressive Model of Counts. 

These authors introduce a new specification: An exponential model with the number of 

counts on location i, i=1…N as a function of, among other covariates, the spatially lagged 

logarithm of the conditional expected mean of counts on contiguous regions. This model, 
in addition to enabling the estimation of the SAR coefficient, has the advantage of being 

invertible, and consequently allows analytic calculation of the spatial partial effects. This 

essay will explore this specification more closely in the next section. 
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3. Spatial Autoregressive Model of Counts 

    The present chapter will be divided into three parts. The first and second part will 

introduce the Spatial Autoregressive Model of Counts, while in the third part a detailed 

description of the estimation process will be presented. 

3.1 The Model  

    Beginning by stating the traditional linear spatial model 

𝑦𝑖 =  𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗 + 𝐱𝐢𝛃 +i≠j 휀𝑖;       i=1,2,…,N                                                                                   (2) 

    yi is the dependent variable for the unit i and N denotes the number of spatial units; xi 

represents a 1xK vector of  exogenous variables for the unit i; the Kx1 vector β is the 

corresponding vector of unknown regression parameters; ρ denotes the unknown spatial 

autoregressive parameter; the coefficients wi,j are known non-negative scalars that refer 

to the a priori defined spatial weights of unit j on unit i, with j≠i and j = 1, 2, . . . , N.; 

lastly, 휀𝑖 represents the i.i.d random error of the unit i. 

    The spatial lag model can be written in matrix form 

𝐲 = 𝜌𝐖𝐲 + 𝐗𝛃 + 𝛆                                                                                                          (3) 

being the “reduced-form” 

y = A−1Xβ + A−1ε                                                                                                             (4) 

    Where y= [y1; y2;...;yN]T and X=[x1
T;x2

T;…;xN
T]T. The error is 𝛆 = [ε1; ε2;...; εN]T and 

the spatial autoregressive operator is  𝐀 = (𝐈 − 𝜌𝐖). In this case, A−1 reflects the 

“Leontief Inverse”, used in order to quantify the global feedback effects between spatial 

units. W is the N×N spatial weights matrix, with generic element wi,j, where wi,j,= 0 when 

j=i ; I is the N×N identity matrix. 

    However, here the main objective is to model count variables, and thus it is necessary 

to resort to a non-linear specification. Therefore, following an extension of the linear 

model, Lambert et al. (2010) begins by presenting a specification inspired by the 

exponential feedback model for time-series (Blundell et al., 1995), which is equal to 

𝜇𝑖 = exp (ρ∑ 𝑤𝑖𝑗𝑗≠𝑖 yj + 𝐱𝐢𝛃);                                                                                          (5) 

    Even so, Lambert et al. (2010) adverts for the fact that while using this specification, 

it is impossible to obtain the spatial autoregressive operator inverse, A-1. To solve this 

problem, the authors propose an alternative specification based on the multiplicative AR 

models of Zeger & Qaqish (1998), 

E (yi|xi) ≡𝜇𝑖= exp (𝐱𝐢𝛃)∏ E(𝑦𝑗|𝐱𝑖)
𝜌𝑤𝑖𝑗

i≠j                                                                             (6) 
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    Which is equivalent to 

𝜇𝑖 = exp [𝜌 ∑ 𝑤𝑖𝑗log (𝜇𝑗)𝑖≠𝑗 +  𝐱𝐢𝛃]                                                                                                                        (7) 

    This model is invertible, which makes it possible to calculate the "Leontief Inverse", 

which is essential for the calculation of partial spatial effects. 

    Equation (7) can also be written in the reduced matrix form 

𝜇𝑖 = exp (𝐀𝐢
−𝟏𝐗𝛃)                                                                                                          (8) 

    Where Ai
-1 is the i-th row of the Leontief Inverse.  

 

3.2 Partial Effects 

 

    It is important to bear in mind that in the presence of spatial dependence between spatial 

units, variations in variables in region i (xi), can impact counts in region i (𝜇𝑖) as well as 

counts in neighboring regions (𝜇𝑗). On that account, LeSage and Pace (2009) proposed 

the decomposition of partial effects between direct and indirect effects. The Direct Partial 

Effects (DPE) measure the variation of y in region i, given a variation of xik in the same 

region i; while the Indirect Partial Effects (IPE) measure the variation of y in a region i, 

given a variation of input in a neighboring region.  

   Lambert et al. (2010) show that the partial derivatives of SAR-Poisson take the 

following form for any k variable, where xk is the vector with all the observations of the 

kth variable. 

 

𝝏𝛍

𝝏𝐱´𝐤
= [

𝜕𝜇1 𝜕𝑋1𝑘⁄ ⋯ 𝜕𝜇1 𝜕𝑋𝑁𝑘⁄
⋮ ⋱ ⋮

𝜕𝜇𝑁 𝜕𝑋1𝑘⁄ ⋯ 𝜕𝜇𝑛 𝜕𝑋𝑁𝑘⁄
] = 𝐀−𝟏𝛍𝑑𝑖𝑎𝑔𝛽𝑘                                                           (9) 

   

  Where 𝛍𝑑𝑖𝑎𝑔  is a diagonal matrix of order n with elements 𝜇𝑖. 

 LeSage & Chih (2016) state that the elements in the main diagonal of matrix (9) represent 

the DPE, while the elements off-diagonal are interpreted as the IPE. Nevertheless, the 

authors went further by also decomposing the IPE in two parcels: spillout and spillin.  

    The sum of off-diagonal elements in each row of matrix (9) produce a region-specific 

cumulative spillin effect. These are showing how variations in neighboring j regions 

inputs produce a spillin impact on each region i’s output, for example, (
∂μi

∂xjk,i≠j
). The 

region-specific cumulative spillout effect is the sum of off-diagonals elements of each 
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_____________________________________________________________________________________________ 

1. Full Information Maximum Likelihood 

2. For more details regarding the two-step maximum likelihood estimation, see Greene (2003), chapter 14.7, pages 576-582. 

 

column of matrix (9). These measure how changes in region i knowledge inputs impact 

neighboring regions j outputs, for example, (
∂μj

∂xik,i≠j
). 

    With the average partial effects being 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑫𝒊𝒓𝒆𝒄𝒕 𝑷𝒂𝒓𝒕𝒊𝒂𝒍 𝑬𝒇𝒇𝒆𝒄𝒕𝒔 =
𝛽𝑘

𝑁
∑ 𝑎𝑖𝑖

−1N
i=1 𝜇𝑖                                               (10) 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑺𝒑𝒊𝒍𝒍𝒊𝒏 𝑬𝒇𝒇𝒆𝒄𝒕𝒔   =
𝛽𝑘

𝑁
∑ ∑ 𝑎𝑖𝑗

−1
𝑖≠𝑗

𝑁
𝑖=1 𝜇𝑖                                                  (11) 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑺𝒑𝒊𝒍𝒍𝒐𝒖𝒕 𝑬𝒇𝒇𝒆𝒄𝒕𝒔 =
𝛽𝑘

𝑁
∑ ∑ 𝑎𝑖𝑗

−1
𝑖≠𝑗

𝑁
𝑗=1 𝜇𝑖                                                 (12) 

Where 𝒂𝒊𝒊
−𝟏 refers to the elements on the diagonal of the matrix A-1 and 𝒂𝒊𝒋

−𝟏refers to the 

off-diagonal elements.  

 

3.3 Estimation 

 

    In this sub-chapter, the estimation process for SAR-Poisson applied in Lambert et al. 

(2010) will be analyzed. Later, a new estimation process for the SAR-Poisson will be 

presented. This new approach tries to solve some identified problems in the first: avoiding 

the estimation of log(μ) in the first-step, in order to not resort to a purely computational 

transformation to solve the problem of the zeros, while taking in to account the work of 

Santos Silva & Tenreyro (2006). 

    Lambert et al. (2010) suggests estimating the eq(7) using a two-step Limited 

Information Maximum Likelihood (LIML). 

    The two-step LIML estimation process was proposed by Murphy & Topel (1985) as 

an alternative to FIML1, since the last needs the derivation of the joint distribution, which 

is known to be quite demanding. Besides that, maximizing the joint log-likelihood can be 

numerically difficult, (Greene, 2003)2. 

    Traditionally, in spatial econometrics, the problem with the estimation of 

autoregressive models has to do with the fact that the spatially lagged dependent variable 

is endogenous. However, with the specification presented by Lambert et al. (2010), the 

spatially lagged variable is the expected mean of counts in neighboring regions j (𝜇𝑗), 

and since this is not an observable variable, it must be estimated a priori. For this reason, 

a Two-Step LIML is used. 

    In the first step proposed by Lambert et al. (2010) a set of instrumental variables, Q,  

are regressed over the observable variable ∑ 𝑤𝑖𝑗𝑗≠𝑖 log(𝑦𝑗), with Q = {X, WX, W2X}, 

obtaining the vector of predicted values,  
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𝑄𝛿 𝑤𝑖𝑡ℎ 𝛿 = (𝐐´𝐐)−𝟏𝐐´𝐖𝑙𝑜𝑔(𝑦𝑗)                                                                                      (13) 

    In the second step, Lambert et al. (2010) uses the values previously predicted as the 

proxies for the unobserved spatial lagged variable, Wlog(𝜇𝑗), performing a maximum 

likelihood estimation assuming a Poisson distribution. However, this process has some 

weaknesses.  

    Given the nature of the logarithmic function, when performing the first step, 𝑦𝑗 can 

only adopt strictly positive values. This fact is quite restrictive, particularly when zeros 

are expected to be observable. Therefore, in order to solve this constraint, the authors 

suggest replacing 𝑦𝑗 with the logged-transformed values approximating neighborhood 

counts, [log(𝑦𝑗
*)]. Three suggestions are declared: 1) adding an ad hoc constant c to 𝑦𝑗 , 

when 𝑦𝑗 is zero, leading to 𝑦𝑗
* = max{c, 𝑦𝑗}; 2) estimating the constant c simultaneously 

with the other parameters; 3) using an inverse hyperbolic sine (IHS) transformation to the 

neighboring counts. Nevertheless, these transformations can be computationally 

demanding, especially when addressing the IHS, while also allowing the creation of bias 

in the estimation. Furthermore, considering the work of Santos Silva & Tenreyro (2006) 

another problem arises. As stated before, estimating a loglinear model using OLS will 

generate biased estimators for the elasticities. However, this is in fact the procedure 

chosen by Lambert et al. (2010) in the first step. 

    As such, in the present essay, it is proposed a first-step approach where in the 

estimation of the unobserved spatial lagged variable no computational transformation is 

needed to deal with the possible problem of zero counts, nor is it necessary to resort to an 

estimation using a loglinear specification. 

    For this approach, in the first step, 𝜇𝑗 is estimated, and posteriorly logarithmized. To 

avoid non-positive predicted values, a Poisson regression is applied in the first-step, 

forcing the predicted values of 𝜇𝑗 ̂to always be greater than zero. The use of a Maximum 

Likelihood Poisson estimation instead of OLS for the loglinear specification, meets the 

results of Santos Silva & Tenreyro (2006) previously exposed. 

    In the case proposed, the Poisson probabilistic density function of the first-step is 

defined by 

𝑓1(𝑦𝑗|𝑄; 𝛼) =  
𝑒𝑥𝑝(𝐐𝛂)

𝑦𝑗𝑒𝑥𝑝 (− 𝑒𝑥𝑝(𝐐𝛂))

𝑦𝑗!
                                                                  (14) 

  Where α represents a vector of parameters and Q=[X, WX,W2X] is the instrument 

matrix used. The corresponding log-likelihood function is                                                           
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ln L1= ∑ 𝑦𝑗(𝑁
𝑗=1 𝐐𝛂) − 𝑒𝑥𝑝(𝐐𝛂) − 𝑙𝑛 𝑦𝑗!                                                                    (15) 

    The second-step starts by logarithmizing the predicted values estimated in the first, 

log(�̂�j), where 𝜇�̂� = 𝑒𝑥𝑝 (𝑄𝑖´�̂�), followed by the multiplication of these with the matrix of 

spatial weights W.  

    The result is then incorporated in second-step Poisson’s probability density function 

𝒇𝟐(𝑦𝑖|𝐱𝐢, 𝑊𝑙𝑜𝑔(𝜇�̂�); 𝛃, 𝜌) =
𝑒𝑥𝑝(𝐱𝐢𝛃+𝜌 ∑ 𝑤𝑖𝑗𝑗≠𝑖 𝑙𝑜𝑔(𝜇�̂�))

𝑦𝑖

𝑒𝑥𝑝 (−𝑒𝑥𝑝(𝐱𝐢𝛃+𝜌 ∑ 𝑤𝑖𝑗𝑗≠𝑖 𝑙𝑜𝑔(𝜇�̂�))

𝑦𝑖!
          (16) 

    With the following log-likelihood function 

ln L2=∑ 𝑦𝑖(𝑵
𝒊=𝟏 𝐱𝐢𝛃 + 𝜌 ∑ 𝑤𝑖𝑗𝑗≠𝑖 𝑙𝑜𝑔 (𝜇�̂�)) − 𝑒𝑥𝑝 ( 𝐱𝐢𝛃 + 𝜌 ∑ 𝑤𝑖𝑗𝑗≠𝑖 log (𝜇�̂�)) − 𝑙𝑛 𝑦𝑖!                         (17) 

    This step is quite similar to the first considering the fact that in both a Poisson 

regression is used.  

     It should also be noted that when using this methodology, the inference of the second 

step estimation is invalid. Wooldridge (2002) warns of the fact that standard errors and 

test statistics obtained from a two-step regression are generally invalid because they 

ignore the sampling variation in the in the coefficients estimated in the first step. One way 

to overcome these problems is to estimate standard errors using bootstrap estimation 

methods. 

    It should be noted that, when estimating the second-step, if one chooses to use a Pseudo 

Maximum Likelihood estimator, it is not necessary to guarantee that the dependent 

variable follows a Poisson distribution, and more relevantly, the dependent variable does 

not need to be an integer. 

    The Newton-Raphson algorithm is applied in this essay to maximize the log likelihood 

function of equations (15) and (17).       

 

4. Monte Carlo Simulations 

 

    In this chapter, a series of Monte Carlo simulations are presented, with the intent of 

comparing various estimation methods proposed for modeling count data with spatial 

dependence. The proposed SAR-Poisson 1stStep-ML estimator is compared with the 

SAR-Poisson 1stStep-OLS estimator presented by Lambert et al. (2010) where the pre-

defined first-step transformation (adding constant, c=1) is used. These estimators are also 

compared with the Aspatial ML Poisson estimator (ρ=0) and with the SAR-LogLinear, 
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considering log(y*) as dependent variable, where y* = max{0.5, y}, in order to solve a 

possible zero´s problem. 

    The comparisons will be based in the Bias and Root Mean Squared Errors results. 

4.1 Simulation Design 

    The present simulation design follows the suggested design by Lambert et al. (2010). 

Therefore, it will be closely related to other spatial econometric simulation studies, such 

as Kelejian & Prucha (2007) and Klier & McMillen (2008).  

    The random dependent variable was generated as �̃�i ~ Poisson (𝜇𝑖
𝑆𝐴𝑅) with                    

𝜇𝑖
𝑆𝐴𝑅=exp(𝐀𝐢

−𝟏𝐗𝛃), where Ai
-1 is the i-th row of (I-ρW)-1. The design matrix X includes 

two covariates, X1 and X2, not including a intercept. The first was randomly generated 

from a normal distribution, X1 ~ N (1,2). Following what Santos Silva & Tenreyro (2006) 

point out in their simulation study, econometric studies generally incorporate a mix of 

continuous and dummy variables, thereby, in the present study, a dummy variable was 

included as covariate, randomly generated from the Bernoulli distribution, X2 ~ Bern 

(0.5). 

    The spatial weights matrix, W, is built using the same two-step process found in other 

spatial econometrics simulation studies, as it is the case of Silveira Santos & Proença 

(2019). First, N space units are generated within the unit circle. Secondly, and taking into 

account the chosen criterion, a matrix W0 is constructed, and later normalized by rows, 

so that the sum of all elements of each row is one. In the present study, three different 

criteria were used in the construction of the matrix W. W1 is a contiguity matrix created 

using the nearest neighbor criterion, where it is computationally defined that each unit i 

will have seven units j as neighbors, these being the seven units j closest to i. W2 is created 

based on an inverse distance criterion, using the Euclidean distance between unit i and 

unit j, with i,j=1,2…N. The same Monte Carlo experiment is performed using a third 

matrix W. W3 is a contiguity matrix created using the nearest neighbor criterion, where it 

is computationally defined that each unit i will have four units j as neighbors, these being 

the four units j closest to i. This contiguity matrix is similar to the contiguity matrix used 

in the empirical application presented in chapter 5 of this essay. 

    The matrix W2 is said to be denser than the matrix W1, since W2 contains more 

nonzeros entries. W2 contains N zeros (main diagonal), while W1 contains N(N-7) zeros 

(each row has seven nonzero values). On the other hand, matrix W1 is denser than matrix 

W3 (each row has four nonzero values). 
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    The Monte Carlo simulations were conducted for each design of W and for each of the 

four estimators described above. The sample size, N, varies over the set: 100; 250; 500; 

750; 1000. The spatial autoregressive parameter, ρ, varies over the set: 0; 0.2; 0.4; 0.6; 

0.8. The parameters associated with variables X1 and X2, β1 and β2 respectively, are held 

fixed at 0.5. For each experiment, 1000 replications are used. 

    The Bias of β´s is calculated by subtracting the estimated value from the true value of 

the coefficient (�̂�𝑗 − 𝛽𝑗, 𝑗 = 1,2), or (�̂� − 𝜌) for the SAR parameter, with the analyzed 

value being the average of the 1000 replications. RMSE is also calculated for each β 

coefficient, given that: 𝑅𝑀𝑆𝐸 = √𝐵𝑖𝑎𝑠
�̂�𝑗

2 + 𝑉𝑎𝑟(�̂�𝑗), where 𝐵𝑖𝑎𝑠
�̂�𝑗

2  is the square of the 

Bias for �̂�𝑗 calculated before, where j=1,2. 𝑉𝑎𝑟(�̂�𝑗) is the empirical variance in the 1000 

replications of the estimated coefficient. RMSE is also calculated for the SAR parameter, 

ρ: 𝑅𝑀𝑆𝐸 = √𝐵𝑖𝑎𝑠�̂�
2 + 𝑉𝑎𝑟(𝜌 ̂), where 𝐵𝑖𝑎𝑠�̂�

2  is the square of the Bias for �̂�, and 

𝑉𝑎𝑟(�̂�) is the empirical variance in the 1000 replications of the estimated coefficient. 

 

4.2 Monte Carlo Results 

 

    It should be noted that the results between W1 and W3 are quite similar. This suggests 

that estimators should not be considerably sensitive to the density of the matrix W, when 

using the queen contiguity criterion. For this reason, for the remaining results, the analysis 

will focus only on experiments related to the use of W1 and W2 matrices. The results for 

W3 can be found in tables A5 and A6 of the appendix.  

    Table A1, found in the appendix, shows the results for the Bias of the estimated 

coefficients, β1 and β2, for each estimation method and, for both W1 and W2 construction 

criteria of the matrix W. Both SAR-Poisson estimators show similar and quite satisfactory 

results, with the SAR-Poisson 1stStep-ML presenting lower Bias, in absolute value, for 

lower levels of spatial dependence, while the SAR-Poisson 1stStep-OLS appears to 

behave better for ρ values closer  to  unit. It is worth noting, that both estimators have 

lower Bias, in absolute value, associated to the continuous variable than to the dummy 

variable. Note also, that when ρ increases both estimators present a smaller Bias in 

absolute value when using the matrix W2 compared to the matrix W1, nevertheless this 

difference is residual, especially for a large N. When analyzing the results for the SAR-

LogLinear estimator, it is possible to realize that for lower values of spatial dependence, 
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the estimator is significantly downward biased, and as ρ approaches the unit it becomes 

upwards biased. In general, in this estimator, β1 was also found to be less biased, than β2. 

Finally, and as expected, the Poisson ML estimator shows progressively worse results as 

ρ increases, with these being much more pronounced in the estimating dummy 

coefficient. Even so, it should be noted that when there is no spatial dependence (ρ=0), 

this estimation method is slightly better than the SAR methods. 

    In table A2 of the appendix, it is possible to compare the results obtained for the Bias 

of the spatial autoregressive coefficient, ρ. Globally, the SAR-Poisson 1stStep-ML 

presents smaller Bias, in absolute value, than the remaining estimators, especially when 

N is large. However, for ρ=0.8 it shows a higher Bias, in absolute value, particularly in 

the W2 matrix. Although slightly worse than the first, the SAR-Poisson 1stStep-OLS 

presents satisfactory results, namely for high ρ levels. For extreme values of ρ, the SAR-

LogLinear presents highly biased results. It is interesting to emphasize that, with the 

exception of the SAR-Poisson 1stStep-OLS, the Poisson estimators evidence that, as ρ 

increases, bias grow in absolute value, which can mean that higher levels of spatial 

dependence imply greater distortion in the estimation of this coefficient. Nevertheless, it 

is important to stress that, excluding the SAR-Poisson 1stStep-OLS, the use of  W2 matrix 

results in extra biased estimations. 

    Table A4 in the appendix, shows the results referring to β´s RMSE. As previously 

stated, these results take into account not only the Bias of the estimation, but also the 

sample variance of the estimated coefficients. From a general point of view, and regarding 

β1, the SAR-Poisson 1stStep-ML presents the best results, particularly for W1. However 

the SAR-Poisson 1stStep-OLS shows a more desirable set of results for higher ρ values. 

In both estimators, it is noted that as ρ and N increase, the RMSE decreases, showing that 

the larger the sample, and higher the spatial dependence, the smaller the variance in the 

estimates. This result is only slightly contradicted when ρ = 0.8. On the other hand, the 

SAR-LogLinear estimator, presents much higher RMSE´s results, while maintaining the 

trend of decreasing these as N and ρ rise, only approaching the values of the other two 

estimators when N = 1000 and ρ = 0.8. As expected, the aspatial ML estimator only shows 

satisfactory results when ρ = 0. As for β2, the conclusions are quite similar to β1, with the 

disclaimer that the RMSE´s for this coefficient are much higher, especially for smaller N. 

The W1 matrix shows slightly better results. The SAR-LogLinear estimator does not 

present satisfactory results, as it never approaches its peers, even when N and ρ present 
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high values. Lastly, the aspatial estimator is, again, quite far from the results of the other 

estimators, showing even more inefficiency in estimating the dummy´s coefficient. 

    Table A3, in the appendix, reflects the RMSE values regarding the estimation of the 

coefficient of spatial dependence ρ. Both SAR-Poisson estimators present quite similar 

results, with the SAR-Poisson 1stStep-ML showing better results as the sample increases. 

It is also important to note that the SAR-Poisson 1stStep-ML exhibits higher RMSE for 

matrix W2 for high levels of spatial dependence, when compared to SAR-Poisson 1stStep-

OLS. However, in general, and as mentioned for β´s, the use of W1 seems to trigger better 

results. The gradual decrease in RMSE observed in β´s is also noted here. On its turn, the 

SAR-LogLinear estimator shows, once more, worse results than the other two estimators,  

especially when ρ takes extreme values. 

    In summary, by generally analyzing the results and taking into account other simulation 

studies such as Lambert et al. (2010), Silveira Santos & Proença (2019), Anselin & Le 

Gallo (2006), Klier & McMillen (2008) and Santos Silva & Tenreyro (2006), it is possible 

to draw some conclusions. First, it should be noted that the estimator SAR-Poisson 

1stStep-ML presents better results than its counterparts, with the exception of high spatial 

dependence cases, that is ρ=0.8. Since the only difference between this and the estimator 

proposed by Lambert et al. (2010) happens in the non-transformation of the dependent 

variable and the use of a Poisson regression instead of a loglinear estimation when 

estimating the first step, this result seems to be in agreement with that found by Santos 

Silva & Tenreyro (2006). Another interesting result is that there is a greater distortion for 

the estimated coefficient of the dummy variable compared to the estimated coefficient of 

the continuous variable, allowing the deduction that the distribution of the explanatory 

variables can be a condition of its performance, a conclusion that Lambert et al. (2010) 

also finds. Another common conclusion between studies is the fact that the RMSE 

decreases as the spatial dependence and sample size increase. Another fact already 

mentioned is that the use of different W matrices produces different results. Several 

studies have already addressed this issue, with Silveira Santos & Proença (2019) being 

one of them, where impacts were found in the estimation of the coefficients, for a spatial 

Probit, given the density of the W matrix. However, the RMSE´s, of both β´s and ρ, appear 

to be generally higher for the W2 matrix, suggesting that the variance of the estimated 

coefficients may, somehow, be related to the density of the spatial weights matrix chosen. 

Nonetheless, this aspect should be comprehensively studied in the future. Another 

expected conclusion was the poor performance of the Aspatial ML Poisson estimator in 
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the presence of spatial dependence, which presented an accentuated upward Bias for both 

coefficients. This result is in agreement with Anselin and Le Gallo (2006) who found 

biased and inconsistent estimators when spatial dependence was not taken into 

consideration. Finally, there is a significant increase in the importance of Bias when the 

SAR-LogLinear is used in the estimation, this agrees with the possibility of biased 

estimations being produced when using a linear model to explain count variables. In 

addition, it is interesting to note that the distortion of results is more significant for values 

of ρ near the unit, which is in line with the results of Klier and McMillen (2008). These 

infer that for high levels of spatial dependence, the estimation methods proposed for 

linearized spatial models obtain unsatisfactory results when compared with lower ρ 

values. 

                                      

5. Empirical Example 

    In this chapter, an empirical example will be presented, where a knowledge production 

function will be estimated. Given the satisfactory results of the previous chapter, the SAR-

Poisson 1stStep-ML estimator proposed in this essay will be used to estimate the model. 

For comparative purposes, the same model will be estimated using the three alternative 

estimators proposed in the simulation study in the previous chapter. In addition to the 

above, for each estimator, two models with different spatial weights matrix are estimated: 

the first using the Queen contiguity criterion and the second using a Euclidean Inverse 

Distance (EID) matrix. 

5.1 Exploratory Data Analysis 

    The data was retrieved from Eurostat (Eurostat regional database). The database 

created by the author contains data of 234 NUTS II regions, split between 24 European 

Countries, of which 22 belong to European Union, with the addition of the United 

Kingdom and Norway. All data refers to 2012. More detailed information can be found 

in the Appendix B notes. 

    The objective of the essay is to study the production of knowledge, therefore, it was 

decided to follow the suggestion of Buesa et al. (2010) and use the number of patents in 

a given region per million inhabitants as a proxy for the creation of innovation. The 

amount was rounded to the nearest integer in order to obtain a discrete variable. 
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    The description set of used variables in the present study, and the expected sign of the 

estimated coefficient associated, can be found in the Table B1 of the Appendix. The 

descriptive statistics of these variables are shown in table B2 of the Appendix. In addition 

to these, it is possible to find in the table B3 in the Appendix the correlation matrix of the 

variables used in the study. 

    As previously announced, there are several channels of knowledge production. 

Therefore, the data related to expenditure in R&D and to the number of people working 

full-time in R&D, were divided in three sources: the first refers only to the private 

initiative; the second is linked only to the public sector; and finally, the third portion refers 

only to the Universities. This division will allow the deduction of the different impacts of 

R&D investment in the creation of innovation, based on the channel used, enabling a 

more refined analysis (Zhang et al., 2020). Theoretically it would be expected that the 

sign of the estimated coefficients related to these variables would all be positive, since 

more R&D expenditure, as well as more full-time R&D employees, should trigger an 

increase in knowledge creation. However, the literature suggests that this happens only 

for the private sector. Both the public sector and universities, the signal often appears to 

be negative. Although for the second case the explanation lies in the fact that the great 

university contribution to knowledge creation arises in the form of scientific articles, for 

the public sector the explanation presented is that the public sector is inefficient in the 

production of knowledge (Zhang et al., 2020; Ferreira & Godinho, 2015). 

    To capture the effect of the “innovative environment”, data on the percentage of 

graduates in the population between 25 and 65 years old was also collected, using this 

measure as a proxy for the level of education of the population in the region. GDP per 

capita was used as a proxy for technological sophistication, while the tuberculosis 

mortality rate was considered as a proxy for the level of poverty of the inhabitants, once 

several studies relate tuberculosis with poverty (Ferreira & Godinho, 2015). In addition 

to these, the number of inhabitants was defined as the control variable. It is expected that 

a better socio-economic environment will boost innovation (Ferreira & Godinho, 2015). 

    In table B2 of the Appendix it is possible to analyze the mean, standard deviation, and 

the quartiles of the studied variables. It is observable that the number of regions with 0 

patents is equivalent to 6% of the all sample, a trait that is characteristic of count variables. 

In fact, 25% of the sample has between 0 and 12 patents, which shows the right skewed 

distribution typical of this type of variable. As for the R&D channels, it is worth noting a 

greater investment, in average terms, in the private sector than in the alternatives, which 
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may indicate a greater importance of this sector. Likewise, there are more full-time-Time 

workers in the R&D process in the private sector. Regarding GDP per capita, and it is 

possible to see that the value of the 1st quantile is 16.74, with the 3rd quartile having the 

value of 33.876, and the maximum of 84.047. This asymmetry, represented by a right 

skewed distribution, is typical of variables referring to the income, showing, once more, 

the wealth gap between countries, even when they belong to the same economic 

"integration region". 

 

5.2 Exploratory Spatial Analysis 

    Analyzing the Spatial Distribution Map of the variable Pat per quartile in Figure 1 it is 

possible to verify the existence of a cluster effect, given the concentration of patenting 

taking place in Central Europe, South England and Scandinavia, with the number of new 

patents in southern and eastern Europe being residual. Likewise, the spatial correlogram 

(Appendix figure B4) shows that there is a strong spatial correlation, in relation to the 

number of new patents, between close regions, decreasing as the distance between regions 

increases. 

  

 

Figure 1: Spatial Distribution Map of the variable Pat per quartile - Year 2012 

 

Source: Eurostat, author calculations; Software: QGIS 

 

Software: QGIS 
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_____________________________________________________________________________________________________ 

3. Local Indicator of Spatial Association 

    Through the Moran index test, which tests for the presence of global spatial 

dependence, and the analysis of the Moran diagram, it is possible to draw a more careful 

conclusion about the problem.  

    However, this index is sensitive to the spatial weight matrix used. As stated earlier, in 

this essay two different W matrices will be used: A Queen contiguity matrix and an EID 

matrix. Regarding the first, the histogram of the number of neighbors is presented in 

figure B5 in the Appendix. With this matrix, 17 regions have the minimum number of 

neighbors (1), while 1 region has the maximum number (12), with the average number of 

neighbors being 4.42. For both matrices, Moran's I Test for Spatial Autocorrelation shows 

a positive and significant spatial dependence, as can be seen in table B6 of the Appendix. 

This conclusion is supported by the Moran diagrams (figures B7 and B8 in the Appendix). 

Analyzing the latter, it is worth noting that most of the observations are in the 1st and 3rd 

quadrant, and therefore, the majority of regions with more (less) new patents have 

neighboring regions also with a greater (less) number of new patents. However, the sole 

analysis of the Moran index can present distorted results, therefore, it is now imperative 

to look at LISA3. In figure B8 of the Appendix, this indicator is visible for the two 

matrices, both of which detect the presence of two highly patenting clusters in central 

Europe and Scandinavia, and the presence of low patenting clusters in the Iberian 

Peninsula and Eastern Europe. There are also two more low-patent clusters in northern 

Britain and southern Italy, mostly prominent in the inverse distance matrix. Figure B10 

of the Appendix shows the LISA Significance Map, inferring that the results are more 

significant for the Central European cluster and for the Iberian Peninsula and Eastern 

Europe clusters. Regarding the Bivariate analysis, the variable Patents is spatially related 

to the other variables studied. Figures B11 and B12 in the Appendix refer to the set of 

Moran dispersion diagrams for the Queen and EID matrix, respectively. In these, the 

relationship between the variable Pat (abscissa axis) and the spatially lagged covariates 

(ordinate axis) is analyzed. It is possible to observe that the only variable that has a 

negative Bivariate Moran´s index is the mortality rate due to tuberculosis. It should also 

be noted that both the number of Full-Time workers in R&D in government institutions 

and the number of Full-Time workers in R&D in Universities have a Moran index close 

to zero, thus, it can be interpreted that there is no spatial correlation between the number 

of patents in a given region, and the number of Full-Time R&D workers in non-private 

institutions in neighboring regions.  
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5.3 Estimation of coefficients 

    This section presents the results of the estimation of the proposed model. As mentioned 

above, four different estimators will be used. The results for the SAR-Poisson estimations 

are shown in Table 1 and the results of the Log-Linear and Aspatial Poisson ML 

estimations are visible in Table 2. 

    As referenced earlier, the inference of these estimation processes is invalid. Therefore, 

to solve this problem, the bootstrap method was used to estimate the standard errors.  

 

Table 1: SAR-Poisson coefficients and APE estimations  

Notes: 
6) Standart errors were computed using Bootstrap method. 

7) Significance levels: *10%, **5%, ***1%. 

8) SAR-Poisson 1stStep-ML is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a 

Poisson regression, and in the second step, the coefficients are estimated using a poisson regression. 

9) SAR-Poisson 1stStep-OLS is estimated using a two-step process. In the first step, the unobservable variable Wlog(μj) is estimated using 

na OLS regression, adding a ad hoc constant (c=1) when μj=0, and in the second step, the coefficients  are estimated using a poisson 

regression. 

10) All estimations were computed using the software R. 

  

 
 

Variable Coefficients Bootstrap SE Direct Spillin Spillout Variable Coefficients Bootstrap SE Direct Spillin Spillout

ρ 6,81E-01 *** 0,06838 ρ 9,15E-01 *** 0,07167

R&D_B 8,91E-04 *** 0,00034 0,0934 0,1743 0,1683 R&D_B 1,06E-03 *** 0,00027 0,1071 1,1106 0,9980

R&D_G -2,15E-03 * 0,00130 -0,2250 -0,4200 -0,4054 R&D_G -2,14E-03 * 0,00112 -0,2165 -2,2452 -2,0174

R&D_U -3,21E-04 0,00079 -0,0336 -0,0628 -0,0606 R&D_U -8,18E-06 0,00058 -0,0008 -0,0086 -0,0077

Pers_B -1,33E-05 0,00003 -0,0014 -0,0026 -0,0025 Pers_B -3,53E-06 0,00002 -0,0004 -0,0037 -0,0033

Pers_G 2,75E-05 0,00006 0,0029 0,0054 0,0052 Pers_G 3,39E-05 0,00005 0,0034 0,0355 0,0319

Pers_U 5,07E-05 0,00005 0,0053 0,0099 0,0096 Pers_U 4,18E-05 0,00004 0,0042 0,0438 0,0393

Educ 2,58E-04 0,01165 0,0270 0,0504 0,0487 Educ -5,16E-03 0,00883 -0,5215 -5,4085 -4,8598

Pop -3,21E-09 9,62E-08 -3,36E-07 -6,28E-07 -6,06E-07 Pop -6,79E-08 8,17E-08 -6,87E-06 -7,12E-05 -6,40E-05

GDP 3,81E-02 *** 0,01003 3,9933 7,4536 7,1953 GDP 2,39E-02 *** 0,00759 2,4161 14,0572 13,5154

Mort -1,95E-01 ** 0,09624 -20,4060 -38,0886 -36,7686 Mort -4,49E-01 *** 0,09965 -45,4119 -70,9559 -63,1820

Log Likelihood -6557,154 Log Likelihood -5274,879

W Queen W Inverse distance

N 234 N 234

Variable Coefficients Bootstrap SE Direct Spillin Spillout Variable Coefficients Bootstrap SE Direct Spillin Spillout

ρ 6,19E-01 *** 0,07821 ρ 9,49E-01 *** 0,08829

R&D_B 9,18E-04 *** 0,00035 0,0878 0,1126 0,1093 R&D_B 1,17E-03 *** 0,00032 0,0997 1,6657 1,4728

R&D_G -2,01E-03 0,00157 -0,1921 -0,2464 -0,2391 R&D_G -2,85E-03 ** 0,00132 -0,2180 -3,6447 -3,2227

R&D_U -5,85E-04 0,00083 -0,0560 -0,0718 -0,0697 R&D_U -1,02E-05 0,00066 -0,0635 -1,0618 -0,9389

Pers_B -1,59E-05 0,00003 -0,0015 -0,0020 -0,0019 Pers_B -8,47E-06 0,00002 -0,0017 -0,0289 -0,0256

Pers_G 3,43E-05 0,00006 0,0033 0,0042 0,0041 Pers_G 5,29E-05 0,00006 0,0037 0,0622 0,0550

Pers_U 1,86E-05 0,00005 0,0018 0,0023 0,0022 Pers_U 2,17E-05 0,00004 0,0020 0,0337 0,0298

Educ 7,55E-03 0,01279 0,7221 0,9258 0,8984 Educ 6,36E-03 0,01044 0,8194 13,6962 12,1102

Pop 6,10E-08 1,14E-07 5,84E-06 7,49E-06 7,27E-06 Pop -2,99E-08 8,98E-08 -6,63E-06 -1,11E-04 -9,79E-05

GDP 4,42E-02 *** 0,01127 4,2288 5,4222 5,2617 GDP 2,93E-02 *** 0,00864 4,7988 80,2133 70,9246

Mort -6,72E-02 0,09071 -6,4270 -8,2409 -7,9969 Mort -4,08E-01 *** 0,10894 -7,2934 -121,9107 -107,7934

Log Likelihood -7704,048 Log Likelihood -5992.116 

W Queen W Inverse distance

N 234 N 234

SAR-Poisson 1stStep-ML

SAR-Poisson 1stStep-OLS ad hoc constant c=1

Average Partial Effects Average Partial Effects

Average Partial Effects Average Partial Effects

Notes: 
1) Standart errors were computed using Bootstrap method. 

2) Significance levels: *10%, **5%, ***1%. 

3) SAR-Poisson 1stStep-ML is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson 

regression, and in the second step, the coefficients are estimated using a poisson regression. 

4) SAR-Poisson 1stStep-OLS is estimated using a two-step process. In the first step, the unobservable variable Wlog(μj) is estimated using 

na OLS regression, adding a ad hoc constant (c=1) when yj=0, and in the second step, the coefficients  are estimated using a poisson 

regression. 

5) All estimations were computed using the software R. 

  

 
 

22 



Ludgero M. C. Glórias                                                                      Master´s Dissertation 
 

    In a first estimation, all variables contained in table B1 were used. However, given the 

individual non-significance of the coefficients referring to the total R&D personnel and 

researchers full-time variables (Pers_B; Pers_G; Pers_U), regressions of restricted 

models, not containing these variables, were performed. Nevertheless, using LR tests to 

test for joint significance, the variables proved to be jointly significant at 5%, and as such 

the final models presented are the non-restricted version (Table 1 and Table 2). The 

estimations of the coefficients and averaged partial effects of SAR-Poisson restricted 

regressions can be found in the Table B13 of the Appendix. Table B14 of the Appendix 

presents the coefficients and averaged partial effects of SAR-LogLinear and Aspatial 

Poisson restricted regressions. The results for the Likelihood Ratio test for joint 

significance of the variables Pers_B, Pers_G and Pers_U can also be found in tables B13 

and B14 of the Appendix.  

    In all estimations, the coefficient related to the spatially lagged variable is quite 

significant (P-value <0.01). This coefficient is always positive in all models in which it 

was estimated, thus inferring that there is a strong positive spatial dependence (0.68 and 

0.61 in Queen contiguity SAR-Poisson 1stStep-ML and Queen contiguity SAR-Poisson 

1stStep-OLS, respectively) between the regions regarding the number of patents (an 

increase in patents in neighboring regions means an increase in the number patents in the 

region itself), which meets the results of Zhang et al. (2020) and Furková (2019). The 

LogLinear estimate (Table 2) has a lower ρ, although this may be due to the use of a 

loglinear estimation, it is important to remind here that for intermediate values of spatial 

dependence, the simulation study found a downward bias for this estimator. It should also 

be noted in Table 1 that the spatial autoregressive coefficient is extremely high in the 

estimates using an EID matrix. This result should be analyzed with caution, remembering 

the upward bias found when using this matrix W for high spatial dependence values.  

However, it should be noted that in most studies on the theme of knowledge creation, the 

EID matrix is excluded from empirical examples, largely because it generates 

questionable results. 

    As for the remaining explanatory variables, the variable R&D_B appears to be 

significant at 1% in all estimates with spatial dependence (Table 1 and Table 2), and 

significant at 10% in aspatial estimation (Table 2), always with a positive sign. In contrast, 

R&D_U is not significant, which can be explained by the fact that university contributions 

are mostly in the form of scientific articles and not patents. On the other hand, R&D_G 

is significant at 10% in five out of the seven estimated models, however, presents a 
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negative sign. These results converge with those of Krammer (2009), Zhang et al. (2020) 

and Ferreira & Godinho (2015) which also conclude the existence of inefficiency in the 

public R&D sector. In addition, these authors also conclude that it is R&D expenditures 

in the private sector that trigger greater knowledge creation. 

 

 Regarding the variables related to the “Innovative Environment”, Educ and Pop appear 

significant at 5%, only in the SAR-Loglinear model using a Queen Contiguity matrix and 

in the Aspatial Poisson model, both with a positive sign (Table 2). The GDP variable is 

statistically significant at 1% in all models, with a positive sign. Finally, the mortality rate 

appears significant at 5% in most of the estimated models, but this time with a negative 

sign. These results are in line with expectations, as a better level of education for the 

population, added to greater technological sophistication and associated with lower levels 

of poverty and higher quality of life are factors that, generally, foster the growth of 

innovation in a region. These results corroborate studies such as Ferreira & Godinho 

Table 2: SAR-LogLinear & Aspatial Poisson ML coefficients and APE estimations  

Notes: 
5) Standart errors were computed using Bootstrap method. 

6) Significance levels: *10%, **5%, ***1%. 

7) SAR-LogLinear  is estimated using a two-step process. In the first 

step, the unobservable variable μj is estimated using a Poisson 

regression, and in the second step, the coefficients ρ is estimated 

using a loglinear regression. A constant (c=0.5) is added when the 

dependente variable in the second step is zero. 

8) All estimations were computed using the software R. 
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Variable Coefficients Bootstrap SE Direct Spillin Spillout Variable Coefficients Bootstrap SE Direct Spillin Spillout

ρ 4,43E-01 *** 0,00684 ρ 4,65E-01 *** 0,09088

R&D_B 1,12E-03 *** 0,00007 0,3769 0,2717 0,2608 R&D_B 1,24E-03 *** 0,00041 0,4006 0,3418 0,3392

R&D_G -2,06E-03 *** 0,00024 -0,1304 -0,0933 -0,0902 R&D_G -2,28E-03 0,00175 -0,1379 -0,1216 -0,1171

R&D_U -2,30E-04 0,00014 -0,0332 -0,0237 -0,0228 R&D_U -1,69E-04 0,00091 -0,0232 -0,0197 -0,0196

Pers_B -2,19E-07 0,00001 -0,0013 -0,0010 -0,0009 Pers_B -2,15E-06 0,00003 -0,0126 -0,0105 -0,0105

Pers_G 1,29E-05 0,00001 0,0202 0,0141 0,0139 Pers_G 2,90E-05 0,00007 0,0433 0,0373 0,0362

Pers_U 1,59E-05 ** 0,00001 0,0559 0,0394 0,0380 Pers_U 1,36E-05 0,00006 0,0456 0,0371 0,0381

Educ 9,07E-03 *** 0,00087 0,2630 0,1833 0,1819 Educ 6,84E-03 0,01280 0,1896 0,1614 0,1599

Pop 3,69E-08 ** 1,47E-08 0,0779 0,0536 0,0533 Pop 3,27E-08 1,25E-07 0,0658 0,0547 0,0553

GDP 5,52E-02 *** 0,00122 1,5770 1,1086 1,0887 GDP 5,47E-02 *** 0,01114 1,4910 1,2743 1,2603

Mort -2,55E-01 *** 0,01300 -0,2717 -0,1799 -0,1896 Mort -3,13E-01 *** 0,06760 -0,3196 -0,2592 -0,2696

Log Likelihood -321.9729 Log Likelihood -324.8753

W Queen W Inverse distance

N 234 N 234

Variable Coefficients Bootstrap SE Average Partial Effects

R&D_B 7,93E-04 * 0,00048

R&D_G -3,61E-03 0,00280

R&D_U 2,90E-04 0,00117

Pers_B -1,60E-05 0,00003

Pers_G 4,99E-05 0,00009

Pers_U -1,62E-04 * 0,00006

Educ 6,70E-02 *** 0,01348

Pop 5,13E-07 *** 1,07E-07

GDP 4,93E-02 *** 0,01578

Mort -2,49E-03 0,08504

Log Likelihood -11994.63

W

N 234

0,06147

-0,28006

0,02251

-0,00124

0,00386

-0,01259

5,19633

0,00004

3,82501

-0,26660

SAR-LogLinear  ad hoc constant c=0.5

Average Partial Effects Average Partial Effects

Aspatial Poisson ML
Notes: 

1) Standart errors were computed using Bootstrap method. 

2) Significance levels: *10%, **5%, ***1%. 

3) SAR-LogLinear  is estimated using a two-step process. In the first 

step, the unobservable variable μj is estimated using a Poisson 

regression, and in the second step, the coefficients ρ is estimated 

using a loglinear regression. A constant (c=0.5) is added when the 

dependente variable in the second step is zero. 

4) All estimations were computed using the software R. 
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(2015) and Acs et al. (2002) who conclude that the "Innovative Environment" is an 

essential mechanism to increase knowledge creation. 

 

5.4 Estimation of Averaged Partial Effects 

 

    Given the non-linearity of the model, it is through the average partial effects (APE) 

that it is possible to quantify the impact of the variation of the explanatory variables on 

the dependent variable, on average, ceteris paribus. 

    As for the direct effects, it should be noted that the estimated values among all models 

are, in general, similar, being higher in the SAR estimators. This happens due to the 

spillovers mediated through the spatial multiplier, a result also found by Lambert et al. 

(2010). The variables referring to the “Innovative Environment” have a very high weight 

in the creation of knowledge. In the case of SAR-Poisson 1stStep-ML with the W Queen 

matrix, the increase of 1 P.P (percentage points) in the tuberculosis mortality rate in the 

region results, on average, a drop of 20.4060 patents per million inhabitant, ceteris 

paribus. On the other hand, an increase in GDP per capita of just 100 euros in the region, 

may trigger an increase, on average, of 0.4 patents per million inhabitants in their own, 

ceteris paribus (Table 1). 

    Regarding the variables of expenditure on R&D, these can present the most interesting 

results for economic decision makers. An increase of 10 euros per capita in a region in 

public R&D entities means, on average, a decrease of 2,25 patents in that region per 

million inhabitant, ceteris paribus. Now, given the inefficiency inferred there, a policy 

maker must transfer the financial resources of these institutions to private R&D 

companies, since these, for each increase of 10 euros per capita in R&D expenses trigger 

an increase of approximately 1 patenting per million inhabitant, on average, ceteris 

paribus (Table 1). This result is corroborated by almost all the estimated models. The 

spatial distribution map of SAR-Poisson 1stStep-ML Queen Contiguity Direct Partial 

Effect (DPE) per quartil related to the variable R&D_B is visible in figure B15 of the 

Appendix. It is visible that the regions with the most efficient companies in transforming 

R&D expenses into patents are located in the Center of Europe, in the South of Great 

Britain and in Scandinavia. Therefore, regions in Eastern Europe and Southern Europe 

must employ a reform in the private R&D creation system, seeking an increase in its 

efficiency. These reforms undergo the recruitment of more qualified personnel and the 

investment in more sophisticated technology.  
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    As for the indirect effects, in general, the estimated coefficients are higher when using 

the EID matrix. This result is expected given the considerable increase in neighbors. Once 

again, the variables related to the “innovative environment” appear to be quite striking, 

showing that not only the socioeconomic situation of the region is central to the creation 

of knowledge, but also the interregional environment.  

    Analyzing the results shown in table 1, referring to the SAR-Poisson 1stStep-ML 

estimation, using the Queen contiguity matrix, as for the R&D expenditure variables, 

investment in government R&D institutions also does not benefit neighboring regions the 

knowledge creation process, since both the spillout effect and spillin effect are negative. 
On the other hand, investment in private R&D in one region will have a very positive 

impact in neighboring regions: with a variation of 10 euros per inhabitant in private R&D 

expenditure in all neighboring j regions, results in an increase of 1.74, on average, new 

patents in the region i, ceteris paribus. Conversely, the increase of 10 euros per inhabitant 

in the region i in expenditure on private R&D result in an increase, on average, of 1.68 in 

the set of all neighboring j regions. This fact highlights the presence of Knowledge 

Spillovers between regions. Figures B16 and B17 of the Appendix refer the spatial 

distribution map of SAR-Poisson 1stStep-ML Queen Contiguity spillin and spillout effect 

per quartil, respectively, of the variable R&D_B. It can be concluded that in addition to 

the central European cluster that shows a strong relationship in the creation of knowledge, 

regions in southern and eastern Europe, as well as some regions in southern England, 

have a remarkable capacity for absorbing innovation. Regarding the spillout effects, the 

European Center and Scandinavia cluster present themselves as the biggest “exporters” 

of Knowledge Spillovers. Interestingly, some regions that present less DPE with the 

investment in private R&D, as is the case with the regions of Eastern Europe and the 

North of the United Kingdom, present higher values of spillout and spillin. Therefore, it 

is possible to conclude that despite having a lower capacity for innovation, these regions 

show a strong interconnection between them, which leads to high levels of knowledge 

spillovers. This can be explained by a possible commitment of companies to strong 

interregional cooperation links, making the investment in one company positively 

reflected in the others. These links can be explained as a strategy to overcome the 

difficulty of competing solo against regions with high levels of patenting. As such, 

political-economic decision-makers in regions with less patent capabilities should create 

incentives for the creation of knowledge-sharing networks, thus enabling increased 

competitiveness.  

26 



Ludgero M. C. Glórias                                                                      Master´s Dissertation 
 

6. Conclusion  

    The present essay provides some analysis on the main determinants of knowledge 

creation, while also quantifying the mechanisms of Knowledge Spillovers between 

different European NUTS II regions. On the other hand, it introduces a refinement in the 

estimation procedure of a new SAR-Poisson estimator, which despite being similar to the 

methodology proposed by Lambert et al. (2010), aims to eliminate the bias generated in 

the estimation proposed by the seconds. Contrary to these authors who carry out an OLS 

estimation when performing the first step, in this essay, it is presented a first-step Poisson 

Maximum Likelihood approach in the estimation of the unobserved spatial lagged 

variable -  the expected mean of counts in neighboring regions. In the present, no 

computational transformation is needed to deal with the possible problem of zero counts, 
thus avoiding the undesirable creation of bias in the estimation, and at the same time,  it 

is taken into account the work of Santos Silva & Tenreyro (2006) who state that 

estimating a loglinear regression using OLS can generate biased estimators. 

    The performance of the new SAR-Poisson 1stStep-ML estimator was evaluated through 

a Monte Carlo simulation study it was concluded that it was better behaved than the 

alternative estimators for both small and large samples, and only at very high levels of 

spatial dependence (ρ = 0.8) did the new estimator present higher Bias and RMSE. Other 

conclusions to highlight are: the existence of a greater bias in the estimation of dummy 

variables compared to continuous variables; the RMSE of the estimated coefficients is 

mostly higher for the EID matrix in comparison to the Queen matrix, thus assuming that 

the sample variance may somehow be related to the density of the chosen weight matrix; 

Both the aspatial ML estimator and the Loglinear estimator have unsatisfactory 

performances, being quite biased in comparison to the SAR-Poisson estimators, showing 

the consequences of not considering the existence of spatial dependence or ignoring the 

nature of the dependent variable, respectively. 

    In respect to the results of the empirical application, it is possible to infer that the 

hypothesis of the existence of spatial dependence on the creation of innovation in Europe 

cannot be rejected. Regions with a greater number of new patents are surrounded by 

regions with a major number of new patents. In addition, it is inferred that social and 

economic factors are determinant in the creation of knowledge, as it is the case of quality 

life standards and technological sophistication. It also appears that public R&D 

institutions are inefficient, contrary to private institutions, the latter being the major 
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promoters of innovation creation in the analyzed regions. It is also inferred that the 

increase in R&D expenditure by private institutions positively influences the creation of 

innovation in neighboring regions. Finally, it is concluded that regions with low levels of 

knowledge creation try to overcome this obstacle by strengthening relations with 

neighboring regions, increasing the absorptive and segregative capacity for innovation, 

thus creating strong clusters of knowledge sharing. 

    Given these conclusions, political and economic decision-makers are advised to: 

1) Seek to develop a fruitful regional environment for the creation of innovation, 

investing in the fight against poverty, in the education of the population and in 

technological sophistication. 

2) Reallocate investment in public R&D institutions to private initiative institutions, 

enabling them to become even more efficient in creating knowledge. 

3) Promote interregional relations between companies, benefiting the flow of 

innovation, and facilitating the progression of knowledge, especially in regions 

with difficulties to do it solo. 

        Some suggestions are presented that could be of interest to investigate below: 

1) It was concluded that the possible problem of zeros in the procedure proposed by 

Lambert et al. (2010) is one of the sources of bias in the estimation, as such, it 

will be interesting to understand how the different proposed estimators behave 

when the number of zeros in the sample increases. 

2) A GMM estimator can be applied, as an alternative to ML, where no assumption 

about the distribution is made. It would then be interesting to study also through 

a set of Monte Carlo experiments, how the GMM estimator would behave. The 

study should focus on different levels of spatial dependence, different sample 

sizes and different contiguity matrices.  

3) Regarding the theme of Knowledge Spillovers, and given the inconclusive 

results concerning the importance of the number of full-time people in the R&D 

process, a deeper analysis would be interesting in an attempt to understand if it 

is the characteristic of companies or if it is the natural talent of the inventors the 

real driver of innovation creation. 
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Appendix A 

Table A1:  

Bias: SAR-Poisson, SAR-LogLinear and Aspatial ML Poisson estimates: β1, β2  

Notes: 

1) Bias is estimated as �̂� − 𝛽0, the difference between the paramater estimate and its true value. Entries are calculated as the average of 1000 simulations. 

2) SAR-Poisson 1stStep-ML is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients β1 and 

β2 are estimated using a Poisson regression. 

3) SAR-Poisson 1stStep-OLS is estimated using a two-step process. In the first step, the unobservable variable Wlog(μj) is estimated using na OLS regression, adding a ad hoc constant (c=1) when 

yj=0, and in the second step, the coefficients β1 and β2 are estimated using a Poisson regression. 

4) SAR-LogLinear  is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients β1 and β2 are 

estimated using a loglinear regression. A constant (c=0.5) is added when the dependente variable in the secondo step is zero. 

5) Dark shaded entries denote cases where the Bias of  the SAR-Poisson 1stStep-ML were smaller than the SAR-Poisson 1stStep-OLS. 

6) Bright shaded entries denote cases where the Bias of SAR-LogLinear or aspatial ML Poisson were smaller or equal than the SAR-Poisson estimators. 

7) W1 is a continguity matrix created using the nearest neighbour criterion, where it is computationally defined that each unit i will have seven units j as neighbors, these being the seven units j closest 

to i. W2 is created based on an inverse distance criterion, using the Euclidean distance between unit i and unit j, with i,j=1,2…N. 
 

 
 

β1-SAR-Poisson 1stStep-ML β1-SAR-Poisson 1stStep-OLS β1-SAR-LogLinear β1-Aspatial Poisson ML

W1 W1 W1 W1

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 -0,0028 -0,0011 -0,0007 0,0000 0.0000 0.0 -0,0011 -0,0010 -0,0006 -0,0003 -0,0003 0.0 -0,0733 -0,0754 -0,0752 -0,0748 -0,0745 0.0 0,0003 -0,0004 -0,0005 0,0000 0,0000

0.2 -0,0013 0,0000 -0,0007 0,0001 -0,0004 0.2 -0,0047 -0,0041 -0,0044 0,0040 -0,0036 0.2 -0,0538 -0,0555 -0,0555 -0,0556 -0,0550 0.2 0,0311 0,0312 0,0312 0,0310 0,0308

0.4 -0,0006 0,0000 -0,0006 0,0002 0,0002 0.4 -0,0032 -0,0047 -0,0046 -0,0044 -0,0046 0.4 -0,0295 -0,0291 -0,0298 -0,0300 -0,0295 0.4 0,0891 0,0868 0,0872 0,0872 0,0870

0.6 0,0003 0,0007 0,0015 0,0012 0,0015 0.6 -0,0013 -0,0019 -0,0020 -0,0022 -0,0020 0.6 0,0008 0,0005 -0,0005 -0,0006 -0,0001 0.6 0,2021 0,1979 0,1988 0,1969 0,1971

0.8 0,0049 0,0046 0,0040 0,0032 0,0043 0.8 0,0021 0,0014 0,0017 0,0005 0,0004 0.8 0,0054 0,0057 0,0064 0,0070 0,0060 0.8 0,4957 0,4846 0,4886 0,4771 0,4861

W2 W2 W2 W2

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 -0,0006 -0,0010 0,0001 -0,0001 0,0003 0.0 -0,0001 -0,0010 0,0001 -0,0002 0,0002 0.0 -0,0758 -0,0784 -0,0787 -0,0784 -0,0782 0.0 -0,0008 -0,0004 0,0001 0,0000 0,0001

0.2 -0,0017 -0,0002 -0,0001 -0,0005 -0,0004 0.2 -0,0019 -0,0007 -0,0004 -0,0006 -0,0005 0.2 -0,0549 -0,0568 -0,0569 -0,0560 -0,0562 0.2 0,0290 0,0291 0,0285 0,0285 0,0286

0.4 0,0003 0,0002 -0,0006 0,0003 -0,0002 0.4 -0,0007 -0,0002 -0,0008 0,0001 -0,0003 0.4 -0,0260 -0,0260 -0,0271 -0,0258 -0,0260 0.4 0,0769 0,0761 0,0754 0,0750 0,0740

0.6 0,0012 -0,0005 -0,0003 0,0001 -0,0003 0.6 0,0008 -0,0004 -0,0002 0,0002 -0,0001 0.6 0,0064 0,0094 0,0101 0,0099 0,0109 0.6 0,1711 0,1662 0,1609 0,1609 0,1592

0.8 0,0025 -0,0015 -0,0016 -0,0017 -0,0015 0.8 0,0003 0,0002 0,0000 0,0000 0,0001 0.8 0,0043 0,0059 0,0065 0,0078 0,0082 0.8 0,4010 0,3873 0,3743 0,3630 0,3577

β2-SAR-Poisson 1stStep-ML β2-SAR-Poisson 1stStep-OLS β2-SAR-LogLinear β2-Aspatial Poisson ML

W1 W1 W1 W1

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 -0,0062 -0,0028 0,0026 0,0004 0,0003 0.0 -0,0105 -0,0021 -0,0010 -0,0015 -0,0015 0.0 -0,0535 -0,0501 -0,0482 -0,0458 -0,0462 0.0 -0,0064 -0,0004 -0,0003 -0,0004 -0,0007

0.2 -0,0016 0,0012 0,0014 -0,0004 0,0003 0.2 -0,0132 -0,0118 -0,0156 -0,0138 -0,0130 0.2 -0,0340 -0,0398 -0,0346 -0,0358 -0,0374 0.2 0,1018 0,1035 0,1028 0,1027 0,1036

0.4 0,0024 0,0009 0,0031 -0,0036 0,0043 0.4 -0,0143 -0,0182 -0,0188 -0,0191 -0,0179 0.4 -0,0181 -0,0188 -0,0192 -0,0188 -0,0175 0.4 0,2737 0,2768 0,2760 0,2789 0,2799

0.6 0,0017 0,0023 0,0040 -0,0001 0,0027 0.6 -0,0052 -0,0051 -0,0097 -0,0094 -0,0098 0.6 0,0402 0,0247 0,0235 0,0166 0,0183 0.6 0,6201 0,6327 0,6391 0,6363 0,6383

0.8 -0,0015 -0,0022 -0,0058 0,0077 -0,0078 0.8 0,0072 0,0066 0,0065 0,0017 0,0017 0.8 0,3381 0,3131 0,3028 0,3295 0,3058 0.8 1,7530 1,7635 1,7964 1,8182 1,8423

W2 W2 W2 W2

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 -0,0012 0,0010 -0,0027 0,0005 -0,0004 0.0 -0,0005 0,0010 -0,0029 -0,0009 -0,0005 0.0 -0,0785 -0,0767 -0,0777 -0,0756 -0,0767 0.0 -0,0014 -0,0011 0,0004 -0,0005 0,0000

0.2 -0,0038 -0,0021 -0,0011 -0,0003 0,0001 0.2 -0,0058 -0,0035 -0,0019 -0,0003 -0,0003 0.2 -0,0520 -0,0542 -0,0539 -0,0539 -0,0550 0.2 0,0991 0,0998 0,1022 0,1009 0,1014

0.4 0,0031 0,0020 -0,0003 -0,0003 0,0008 0.4 -0,0006 -0,0002 -0,0012 -0,0003 0,0002 0.4 -0,0219 0,0241 -0,0235 -0,0238 -0,0227 0.4 0,2671 0,2663 0,2682 0,2670 0,2693

0.6 0,0045 0,0018 0,0013 -0,0007 0,0005 0.6 -0,0007 0,0010 0,0015 0,0009 0,0008 0.6 0,0143 0,0111 0,0112 0,0123 0,0130 0.6 0,5905 0,6000 0,6034 0,6027 0,6015

0.8 0,0397 0,0172 0,0109 -0,0069 0,0081 0.8 0,0015 0,0006 -0,0001 0,0000 0,0004 0.8 0,0364 0,0227 0,0175 0,0148 0,0163 0.8 1,6308 1,6558 1,6638 1,6922 1,7034
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Table A2:  

Bias: SAR-Poisson, SAR-LogLinear estimates: β1, β2  

Notes: 

1) Bias is estimated as �̂� − 𝜌0, the difference between the paramater estimate and its true value. Entries are calculated as the average of 1000 simulations; 

2) SAR-Poisson 1ST Step-ML is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients β1 and β2 are estimated using a poisson regression. 

3) SAR-Poisson 1ST Step-OLS is estimated using a two-step process. In the first step, the unobservable variable Wlog(μj) is estimated using na OLS regression, adding a ad hoc constant (c=1) when yj=0, and in the second step, the coefficients β1 and 
β2 are estimated using a Poisson regression. 

4) SAR-LogLinear  is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients β1 and β2 are estimated using a loglinear regression. A constant 

(c=0.5) is added when the dependente variable in the secondo step is zero. 
5) Dark shaded entries denote cases where the Bias of  the SAR-Poisson 1ST Step-ML were smaller than the SAR-Poisson 1ST Step-OLS 

6) Bright shaded entries denote cases where the Bias of SAR-LogLinear or aspatial ML Poissn were smaller or equal than the SAR-Poisson estimators 

7) W1 is a continguity matrix created using the nearest neighbour criterion, where it is computationally defined that each unit i will have seven units j as neighbors, these being the seven units j closest to i. W2 is created based on an inverse distance 
criterion, using the Euclidean distance between unit i and unit j, with i,j=1,2…N. 

8)  
 

 
 

 

Table A3:  

RMSE: SAR-Poisson and SAR-LogLinear estimates: ρ  

Notes: 

1) RMSE is estimated as √𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟(𝜌)̂  where 𝐵𝑖𝑎𝑠𝜌
2 is the square of the averaged bias 𝜌 calculated after 1000 replications and 𝑉𝑎𝑟(𝜌)̂ is the empirical variance of the estimated coefficient. 

2) SAR-Poisson 1STStep-ML is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients ρ is estimated using a poisson regression. 
3) SAR-Poisson 1STStep-OLS is estimated using a two-step process. In the first step, the unobservable variable Wlog(μj) is estimated using na OLS regression, adding a ad hoc constant (c=1) when yj=0, and in the second step, the coefficients 

ρ is estimated using a Poisson regression. 

4) SAR-LogLinear  is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients ρ is estimated using a loglinear regression. A constant 
(c=0.5) is added when the dependente variable in the secondo step is zero. 

5) Dark shaded entries denote cases where the Bias of  the SAR-Poisson 1stStep-ML were smaller than the SAR-Poisson 1STStep-OLS 

6) Bright shaded entries denote cases where the Bias of SAR-LogLinear or aspatial ML Poisson were smaller or equal than the SAR-Poisson estimators 
7) W1 is a continguity matrix created using the nearest neighbour criterion, where it is computationally defined that each unit i will have seven units j as neighbors, these being the seven units j closest to i. W2 is created based on an inverse 

distance criterion, using the Euclidean distance between unit i and unit j, with i,j=1,2…N. 
 

Rho-SAR-Poisson 1stStep-ML Rho-SAR-Poisson 1stStep-OLS Rho-SAR-LogLinear 

W1 W1 W1

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,0042 0,0015 0,0005 -0,0012 -0,0008 0.0 0,0037 0,0018 -0,0003 0,0018 0,0014 0.0 0,0768 0,0779 0,0772 0,0751 0,0749

0.2 0,0012 -0,0025 0,0006 -0,0003 0,0003 0.2 0,0079 0,0105 0,0149 0,0131 0,0119 0.2 0,0151 0,0207 0,0199 0,0216 0,0228

0.4 -0,0036 -0,0014 -0,0012 -0,0023 -0,0027 0.4 0,0169 0,0234 0,0246 0,0247 0,0249 0.4 -0,0189 -0,0205 -0,0199 -0,0196 -0,0206

0.6 -0,0002 -0,0004 -0,0018 -0,0016 -0,0010 0.6 0,0160 0,0181 0,0204 0,0208 0,0209 0.6 -0,0199 -0,0216 -0,0228 -0,0233 -0,0241

0.8 0,0047 0,0039 0,0048 0,0050 0,0050 0.8 0,0018 0,0034 0,0042 0,0061 0,0082 0.8 0,0595 0,0501 0,0513 0,0471 0,0523

W2 W2 W2

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 -0,0152 -0,0020 0,0001 -0,0010 -0,0017 0.0 -0,0082 0,0007 0,0018 0,0010 -0,0006 0.0 0,1133 0,1164 0,1197 0,1179 0,1184

0.2 -0,0033 0,0006 0,0007 0,0009 0,0015 0.2 -0,0122 -0,0108 -0,0115 -0,0121 -0,0119 0.2 0,0294 0,0351 0,0349 0,0339 0,0350

0.4 -0,0038 -0,0009 0,0024 0,0002 0,0007 0.4 -0,0064 -0,0030 0,0000 -0,0026 -0,0016 0.4 -0,0285 -0,0301 -0,0285 -0,0300 -0,0302

0.6 0,0124 0,0072 0,0040 0,0021 0,0026 0.6 0,0126 0,0144 0,0152 0,0152 0,0154 0.6 -0,0378 -0,0445 -0,0488 -0,0493 -0,0515

0.8 0,0501 0,0341 0,0236 0,0166 0,0143 0.8 0,0047 0,0044 0,0045 0,0045 0,0043 0.8 0,0980 0,0905 0,0638 0,0555 0,0667

Rho-SAR-Poisson 1stStep-ML Rho-SAR-Poisson 1stStep-OLS Rho-SAR-LogLinear 

W1 W1 W1

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,1112 0,0676 0,0474 0,0383 0,0320 0.0 0,1191 0,0734 0,0532 0,0398 0,0357 0.0 0,1516 0,1117 0,0934 0,0850 0,0825

0.2 0,0792 0,0483 0,0330 0,0276 0,0239 0.2 0,0873 0,0542 0,0395 0,0318 0,0279 0.2 0,1180 0,0731 0,0544 0,0467 0,0425

0.4 0,0512 0,0289 0,0214 0,0173 0,0149 0.4 0,0560 0,0390 0,0332 0,0307 0,0294 0.4 0,0845 0,0594 0,0415 0,0376 0,0343

0.6 0,0237 0,0148 0,0122 0,0110 0,0097 0.6 0,0311 0,0244 0,0237 0,0230 0,0224 0.6 0,0651 0,0442 0,0376 0,0326 0,0305

0.8 0,0142 0,0118 0,0106 0,0097 0,0094 0.8 0,0152 0,0146 0,0131 0,0137 0,0162 0.8 0,1071 0,0800 0,0679 0,0626 0,0663

W2 W2 W2

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,2196 0,1283 0,0934 0,0803 0,0687 0.0 0,1933 0,1123 0,0815 0,0695 0,0597 0.0 0,1953 0,1516 0,1365 0,1272 0,1260

0.2 0,1419 0,0860 0,0636 0,0484 0,0420 0.2 0,1388 0,0840 0,0634 0,0485 0,0426 0.2 0,1350 0,0912 0,0654 0,0585 0,0523

0.4 0,0814 0,0513 0,0360 0,0287 0,0245 0.4 0,0875 0,0546 0,0387 0,0310 0,0256 0.4 0,0957 0,0665 0,0495 0,0439 0,0408

0.6 0,0571 0,0377 0,0264 0,0187 0,0157 0.6 0,0423 0,0275 0,0216 0,0196 0,0184 0.6 0,0796 0,0615 0,0561 0,0559 0,0545

0.8 0,0840 0,0493 0,0290 0,0276 0,0245 0.8 0,0096 0,0062 0,0054 0,0052 0,0047 0.8 0,2070 0,1897 0,1459 0,1305 0,1546
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Table A4:  

RMSE: SAR-Poisson, SAR-LogLinear and Aspatial ML Poisson estimates: β1, β2  

Notes: 

1) RMSE is estimated as √𝐵𝑖𝑎𝑠𝛽𝑗

2 + 𝑉𝑎𝑟(𝛽𝑗)̂, where 𝐵𝑖𝑎𝑠𝛽𝑗

2  is the square of the averaged bias of 𝛽𝑗  calculated after 1000 replications, where j=1,2. 𝑉𝑎𝑟(𝛽𝑗)̂ is the empirical variance of 

the estimated coefficient. 

2) SAR-Poisson 1stStep-ML is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the 

coefficients β1 and β2 are estimated using a Poisson regression. 

3) SAR-Poisson 1stStep-OLS is estimated using a two-step process. In the first step, the unobservable variable Wlog(μj) is estimated using na OLS regression, adding a ad hoc constant 

(c=1) when yj=0, and in the second step, the coefficients β1 and β2 are estimated using a Poisson regression. 

4) SAR-LogLinear  is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients β1 

and β2 are estimated using a loglinear regression. A constant (c=0.5) is added when the dependente variable in the secondo step is zero. 

5) Dark shaded entries denote cases where the Bias of  the SAR-Poisson 1stStep-ML were smaller than the SAR-Poisson 1stStep-OLS 

6) Bright shaded entries denote cases where the Bias of SAR-LogLinear or aspatial ML Poisson were smaller or equal than the SAR-Poisson estimators 

7) W1 is a continguity matrix created using the nearest neighbour criterion, where it is computationally defined that each unit i will have seven units j as neighbors, these being the seven 

units j closest to i. W2 is created based on an inverse distance criterion, using the Euclidean distance between unit i and unit j, with i,j=1,2…N. 

8)  
 

 

β1-SAR-Poisson 1stStep-ML β1-SAR-Poisson 1stStep-OLS β1-SAR-LogLinear β1-Aspatial Poisson ML

W1 W1 W1 W1

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,0242 0,0154 0,0102 0,0083 0,0069 0.0 0,0270 0,0163 0,0117 0,0090 0,0077 0.0 0,0798 0,0777 0,0764 0,0756 0,0751 0.0 0,0171 0,0174 0,0122 0,0099 0,0084

0.2 0,0251 0,0152 0,0107 0,0087 0,0071 0.2 0,0271 0,0165 0,0119 0,0092 0,0083 0.2 0,0655 0,0593 0,0572 0,0567 0,0559 0.2 0,0424 0,0353 0,0330 0,0321 0,0316

0.4 0,0223 0,0137 0,0102 0,0077 0,0070 0.4 0,0228 0,0141 0,0106 0,0089 0,0080 0.4 0,0487 0,0382 0,0337 0,0324 0,0312 0.4 0,0946 0,0893 0,0885 0,0880 0,0877

0.6 0,0176 0,0106 0,0080 0,0065 0,0061 0.6 0,0181 0,0113 0,0079 0,0065 0,0056 0.6 0,0401 0,0263 0,0184 0,0141 0,0128 0.6 0,2122 0,2027 0,2017 0,1989 0,1987

0.8 0,0161 0,0134 0,0124 0,0113 0,0106 0.8 0,0174 0,0155 0,0123 0,0120 0,0118 0.8 0,0425 0,0311 0,0256 0,0226 0,0209 0.8 0,5380 0,5063 0,5029 0,4887 0,4954

W2 W2 W2 W2

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,0387 0,0232 0,0165 0,0142 0,0114 0.0 0,0402 0,0236 0,0167 0,0143 0,0114 0.0 0,0822 0,0807 0,0799 0,0792 0,0787 0.0 0,0276 0,0178 0,0120 0,0095 0,0082

0.2 0,0363 0,0207 0,0151 0,0121 0,0110 0.2 0,0360 0,0207 0,0151 0,0121 0,0110 0.2 0,0662 0,0602 0,0585 0,0572 0,0569 0.2 0,0386 0,0327 0,0300 0,0296 0,0294

0.4 0,0304 0,0187 0,0136 0,0103 0,0088 0.4 0,0300 0,0186 0,0136 0,0103 0,0088 0.4 0,0470 0,0354 0,0313 0,0285 0,0280 0.4 0,0820 0,0781 0,0763 0,0757 0,0745

0.6 0,0241 0,0134 0,0093 0,0076 0,0066 0.6 0,0233 0,0134 0,0093 0,0076 0,0065 0.6 0,0378 0,0247 0,0181 0,0158 0,0153 0.6 0,1784 0,1694 0,1625 0,1621 0,1603

0.8 0,0305 0,0156 0,0123 0,0102 0,0092 0.8 0,0100 0,0056 0,0038 0,0031 0,0026 0.8 0,0305 0,0220 0,0159 0,0142 0,0134 0.8 0,4256 0,4019 0,3816 0,3692 0,3626

β2-SAR-Poisson 1stStep-ML β2-SAR-Poisson 1stStep-OLS β2-SAR-LogLinear β2-Aspatial Poisson ML

W1 W1 W1 W1

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,1034 0,0649 0,0454 0,0357 0,0314 0.0 0,1085 0,0648 0,0495 0,0382 0,0330 0.0 0,1572 0,1086 0,0812 0,0695 0,0629 0.0 0,0716 0,0752 0,0564 0,0449 0,0382

0.2 0,0912 0,0567 0,0401 0,0333 0,0287 0.2 0,0999 0,0631 0,0437 0,0357 0,0316 0.2 0,1498 0,1016 0,0738 0,0647 0,0602 0.2 0,1588 0,1263 0,1132 0,1089 0,1089

0.4 0,0811 0,0486 0,0353 0,0300 0,0261 0.4 0,0849 0,0531 0,0411 0,0354 0,0309 0.4 0,1502 0,0959 0,0692 0,0634 0,0540 0.4 0,2967 0,2854 0,2800 0,2819 0,2821

0.6 0,0606 0,0395 0,0305 0,0277 0,0238 0.6 0,0643 0,0403 0,0292 0,0242 0,0215 0.6 0,1590 0,1091 0,0882 0,0699 0,0625 0.6 0,6483 0,6454 0,6465 0,6423 0,6432

0.8 0,0602 0,0548 0,0558 0,0502 0,0476 0.8 0,0589 0,0487 0,0427 0,0404 0,0428 0.8 0,5243 0,4711 0,4432 0,4651 0,4352 0.8 1,9053 1,8426 1,8515 1,8604 1,8784

W2 W2 W2 W2

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,1487 0,0914 0,0669 0,0541 0,0488 0.0 0,1520 0,0924 0,0674 0,0543 0,0489 0.0 0,1783 0,1277 0,1037 0,0930 0,0883 0.0 0,1224 0,0797 0,0551 0,0436 0,0394

0.2 0,1368 0,0843 0,0624 0,0495 0,0421 0.2 0,1376 0,0845 0,0625 0,0496 0,0422 0.2 0,1680 0,1163 0,0853 0,0774 0,0716 0.2 0,1512 0,1238 0,1109 0,1095 0,1075

0.4 0,1182 0,0758 0,0515 0,0412 0,0362 0.4 0,1186 0,0761 0,0515 0,0411 0,0361 0.4 0,1585 0,0989 0,0733 0,0622 0,0526 0.4 0,2866 0,2732 0,2714 0,2691 0,2709

0.6 0,0902 0,0527 0,0387 0,0302 0,0274 0.6 0,0894 0,0529 0,0385 0,0300 0,0273 0.6 0,1388 0,0856 0,0601 0,0505 0,0443 0.6 0,6054 0,6064 0,6061 0,6050 0,6043

0.8 0,1310 0,0613 0,0402 0,0270 0,0277 0.8 0,0376 0,0216 0,0156 0,0126 0,0105 0.8 0,1082 0,0615 0,0381 0,0304 0,0306 0.8 1,6870 1,6898 1,6781 1,7039 1,7125
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Table A5:  

Bias: SAR-Poisson, SAR-LogLinear and Aspatial ML Poisson estimates: β1, β2 and ρ  

Notes: 

1) Bias is estimated as the difference between the paramater estimate and its true value. Entries are calculated as the average of 1000 simulations; 

2) SAR-Poisson 1stStep-ML is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients β1, β2, 

and ρ are estimated using a poisson regression. 

3) SAR-Poisson 1stStep-OLS is estimated using a two-step process. In the first step, the unobservable variable Wlog(μj) is estimated using na OLS regression, adding a ad hoc constant (c=1) when 

yj=0, and in the second step, the coefficients β1, β2 and ρ are estimated using a poisson regression. 

4) SAR-LogLinear  is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients β1,β2 and ρ are 

estimated using a loglinear regression. A constant (c=0.5) is added when the dependente variable in the secondo step is zero. 

5) W3 is a continguity matrix created using the nearest neighbour criterion, where it is computationally defined that each unit i will have four units j as neighbors, these being the four units j closest 

to i.  
 
 

 

β1-SAR-Poisson 1stStep-ML β1-SAR-Poisson 1stStep-OLS β1-SAR-LogLinear β1-Aspatial Poisson ML

W3 W3 W3 W3

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 -0,0013 -0,0009 -0,0006 0,0000 0,0000 0.0 -0,0015 -0,0004 -0,0002 -0,0007 0,0002 0.0 -0,0733 -0,0744 -0,0745 -0,0750 -0,0746 0.0 -0,0008 -0,0004 -0,0004 0,0000 0,0001

0.2 -0,0002 -0,0003 0,0001 -0,0003 0,0002 0.2 -0,0068 -0,0057 -0,0049 -0,0051 -0,0049 0.2 -0,0546 -0,0541 -0,0556 -0,0552 -0,0555 0.2 0,0334 0,0320 0,0328 0,0327 0,0327

0.4 0,0018 0,0031 0,0030 0,0033 0,0031 0.4 -0,0074 -0,0067 -0,0061 -0,0066 -0,0059 0.4 -0,0297 -0,0293 -0,0293 -0,0296 -0,0294 0.4 0,0945 0,0955 0,0961 0,0950 0,0954

0.6 0,0053 0,0055 0,0049 0,0045 0,0076 0.6 -0,0043 -0,0036 -0,0040 -0,0047 -0,0041 0.6 -0,0003 0,0007 -0,0008 -0,0006 -0,0007 0.6 0,2162 0,2243 0,2249 0,2249 0,2227

0.8 0,0333 0,0256 0,0271 0,0269 0,0258 0.8 0,0024 0,0008 0,0008 -0,0021 -0,0002 0.8 0,0051 0,0058 0,0056 0,0044 0,0071 0.8 0,5565 0,5744 0,5710 0,5781 0,5701

β2-SAR-Poisson 1stStep-ML β2-SAR-Poisson 1stStep-OLS β2-SAR-LogLinear β2-Aspatial Poisson ML

W3 W3 W3 W3

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 -0,0016 -0,0020 0,0028 -0,0006 0,0001 0.0 -0,0069 -0,0032 -0,0038 -0,0011 -0,0013 0.0 -0,0535 -0,0491 -0,0421 -0,0449 -0,0445 0.0 -0,0014 -0,0011 0,0034 -0,0005 0,0000

0.2 0,0020 0,0014 0,0053 0,0043 0,0041 0.2 -0,0173 -0,0166 -0,0191 -0,0190 -0,0184 0.2 -0,0344 -0,0374 -0,0366 -0,0343 -0,0365 0.2 0,1017 0,1032 0,1052 0,1047 0,1046

0.4 0,0175 0,0206 0,0198 0,0221 0,0212 0.4 -0,0227 -0,0236 -0,0241 -0,0259 -0,0267 0.4 -0,0184 -0,0182 -0,0182 -0,0180 -0,0170 0.4 0,2822 0,2859 0,2864 0,2869 0,2874

0.6 0,0382 0,0308 0,0296 0,0263 0,0248 0.6 -0,0144 -0,0147 -0,0169 -0,0191 -0,0196 0.6 0,0383 0,0236 0,0200 0,0198 0,0160 0.6 0,6469 0,6572 0,6612 0,6640 0,6653

0.8 0,0978 0,0919 0,0982 0,0490 0,0311 0.8 0,0067 0,0086 -0,0031 -0,0136 -0,0153 0.8 0,3167 0,3313 0,3078 0,3140 0,3109 0.8 1,8195 1,9117 1,9474 1,9597 1,9623

Rho-SAR-Poisson 1stStep-ML Rho-SAR-Poisson 1stStep-OLS Rho-SAR-LogLinear 

W3 W3 W3

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,0006 0,0000 0,0002 -0,0013 -0,0002 0.0 0,0043 0,0006 0,0018 0,0015 -0,0005 0.0 0,0768 0,0761 0,0739 0,0740 0,0740

0.2 -0,0008 0,0015 -0,0006 0,0007 0,0002 0.2 0,0193 0,0199 0,0215 0,0227 0,0219 0.2 0,0175 0,0184 0,0220 0,0216 0,0231

0.4 -0,0050 -0,0086 -0,0081 -0,0088 -0,0090 0.4 0,0303 0,0329 0,0336 0,0358 0,0346 0.4 -0,0185 -0,0204 -0,0199 -0,0197 -0,0205

0.6 0,0002 -0,0041 -0,0048 -0,0059 -0,0114 0.6 0,0236 0,0247 0,0275 0,0296 0,0288 0.6 -0,0190 -0,0228 -0,0235 -0,0245 -0,0230

0.8 0,0118 0,0060 0,0003 -0,0034 -0,0015 0.8 0,0114 0,0112 0,0158 0,0239 0,0231 0.8 0,0664 0,0507 0,0506 0,0491 0,0510
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Table A6:  

RMSE: SAR-Poisson, SAR-LogLinear and Aspatial ML Poisson estimates: β1, β2 and ρ  

Notes: 

1) RMSE for β´s is estimated as √𝐵𝑖𝑎𝑠𝛽𝑗

2 + 𝑉𝑎𝑟(𝛽𝑗)̂, where 𝐵𝑖𝑎𝑠𝛽𝑗

2  is the square of the averaged bias of 𝛽𝑗  calculated after 1000 replications, where j=1,2. 𝑉𝑎𝑟(𝛽𝑗)̂ is the empirical variance of the 

estimated coefficient. RMSE for ρ is estimated as √𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟(𝜌)̂  where 𝐵𝑖𝑎𝑠𝜌
2 is the square of the averaged bias 𝜌 calculated after 1000 replications and 𝑉𝑎𝑟(𝜌)̂ is the empirical variance of the estimated coefficient. 

2) SAR-Poisson 1stStep-ML is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients β1, β2, 

and ρ are estimated using a Poisson regression. 

3) SAR-Poisson 1stStep-OLS is estimated using a two-step process. In the first step, the unobservable variable Wlog(μj) is estimated using na OLS regression, adding a ad hoc constant (c=1) when 

yj=0, and in the second step, the coefficients β1, β2 and ρ are estimated using a Poisson regression. 

4) SAR-LogLinear  is estimated using a two-step process. In the first step, the unobservable variable μj is estimated using a Poisson regression, and in the second step, the coefficients β1,β2 and ρ are 

estimated using a loglinear regression. A constant (c=0.5) is added when the dependente variable in the secondo step is zero. 

5) W3 is a continguity matrix created using the nearest neighbour criterion, where it is computationally defined that each unit i will have four units j as neighbors, these being the four units j closest 

to i.  
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β1-SAR-Poisson 1stStep-ML β1-SAR-Poisson 1stStep-OLS β1-SAR-LogLinear β1-Aspatial Poisson ML

W3 W3 W3 W3

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,0315 0,0198 0,0134 0,0109 0,0090 0.0 0,0358 0,0212 0,0148 0,0119 0,0100 0.0 0,0798 0,0767 0,0757 0,0758 0,0751 0.0 0,0276 0,0178 0,0119 0,0095 0,0082

0.2 0,0326 0,0198 0,0133 0,0117 0,0099 0.2 0,0356 0,0212 0,0147 0,0118 0,0109 0.2 0,0646 0,0578 0,0573 0,0563 0,0563 0.2 0,0427 0,0367 0,0345 0,0339 0,0336

0.4 0,0316 0,0197 0,0139 0,0118 0,0107 0.4 0,0324 0,0199 0,0144 0,0119 0,0106 0.4 0,0490 0,0378 0,0332 0,0321 0,0314 0.4 0,1015 0,0983 0,0976 0,0959 0,0962

0.6 0,0271 0,0174 0,0125 0,0103 0,0134 0.6 0,0266 0,0160 0,0119 0,0104 0,0087 0.6 0,0383 0,0258 0,0176 0,0141 0,0120 0.6 0,2288 0,2300 0,2284 0,2275 0,2246

0.8 0,0655 0,0502 0,0472 0,0455 0,0439 0.8 0,0494 0,0361 0,0327 0,0344 0,0324 0.8 0,0444 0,0319 0,0239 0,0218 0,0227 0.8 0,6065 0,6061 0,5963 0,5972 0,5870

β2-SAR-Poisson 1stStep-ML β2-SAR-Poisson 1stStep-OLS β2-SAR-LogLinear β2-Aspatial Poisson ML

W3 W3 W3 W3

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,1356 0,0855 0,0592 0,0474 0,0413 0.0 0,1408 0,0865 0,0648 0,0509 0,0433 0.0 0,1572 0,1055 0,0754 0,0682 0,0630 0.0 0,1224 0,0797 0,0540 0,0436 0,0394

0.2 0,1226 0,0759 0,0525 0,0437 0,0398 0.2 0,1295 0,0801 0,0573 0,0458 0,0423 0.2 0,1510 0,1002 0,0744 0,0627 0,0603 0.2 0,1544 0,1242 0,1146 0,1126 0,1109

0.4 0,1143 0,0788 0,0645 0,0619 0,0558 0.4 0,1152 0,0718 0,0521 0,0456 0,0425 0.4 0,1502 0,0949 0,0722 0,0619 0,0558 0.4 0,3083 0,2969 0,2915 0,2902 0,2899

0.6 0,1184 0,0851 0,0721 0,0582 0,0311 0.6 0,0898 0,0571 0,0394 0,0360 0,0341 0.6 0,1605 0,1066 0,0829 0,0722 0,0627 0.6 0,6891 0,6764 0,6717 0,6715 0,6705

0.8 0,2134 0,1867 0,1864 0,1999 0,1949 0.8 0,1701 0,1297 0,1155 0,1217 0,1164 0.8 0,5046 0,4894 0,4407 0,4563 0,4405 0.8 2,0317 2,0655 2,1007 2,0681 2,0419

Rho-SAR-Poisson 1stStep-ML Rho-SAR-Poisson 1stStep-OLS Rho-SAR-LogLinear 

W3 W3 W3

Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000 Rho/n 100 250 500 750 1000

0.0 0,1272 0,0784 0,0547 0,0436 0,0368 0.0 0,1414 0,0885 0,0621 0,0478 0,0441 0.0 0,1516 0,1101 0,0926 0,0845 0,0819

0.2 0,0983 0,0554 0,0380 0,0320 0,0274 0.2 0,1116 0,0647 0,0482 0,0400 0,0368 0.2 0,1143 0,0734 0,0549 0,0470 0,0420

0.4 0,0641 0,0377 0,0294 0,0268 0,0244 0.4 0,0717 0,0501 0,0419 0,0404 0,0382 0.4 0,0860 0,0571 0,0439 0,0385 0,0344

0.6 0,0440 0,0308 0,0254 0,0203 0,0248 0.6 0,0422 0,0324 0,0308 0,0322 0,0307 0.6 0,0614 0,0430 0,0353 0,0320 0,0294

0.8 0,0774 0,0542 0,0431 0,0417 0,0416 0.8 0,0429 0,036563 0,0342 0,0400 0,0387 0.8 0,1112 0,0790 0,0648 0,0639 0,0630



 

 

 

 

 

 

 

 

Pat R&D_B R&D_G R&D_U Pers_B Pers_G Pers_U Educ Pop GDP Mort

N 234 234 234 234 234 234 234 234 234 234 234

Mean 89,171 318,248 59,819 135,917 5744,342 1467,979 3294,923 27,334 1982780,504 26,922 1,009

Std Dev 106,045 382,444 87,684 152,388 9291,554 2628,740 3558,347 8,700 1563839,620 13,874 1,375

Max 590,000 2441,700 480,600 891,700 97982,000 17934,000 34836,000 50,100 11898502,000 84,047 8,800

Min 0 0 0 0 0 0 0 11,2 126620 3,561 0,1

1º Quartile 12,000 63,675 7,075 37,425 1181,000 140,250 1025,500 19,900 1073943,500 16,740 0,400

Median 54,500 181,500 24,700 92,300 2969,000 513,000 2238,000 27,400 1575968,000 27,003 0,600

3º Quartile 125,000 418,900 70,125 159,200 7144,750 1585,000 4454,000 33,200 2411857,250 33,876 1,000

% 0´s 6%

Pat R&D_B R&D_G R&D_U Pers_B Pers_G Pers_U Educ Pop GDP Mort

Pat 1,000

R&D_B 0,717 1,000

R&D_G 0,301 0,438 1,000

R&D_U 0,390 0,533 0,510 1,000

Pers_B 0,474 0,601 0,332 0,211 1,000

Pers_G 0,153 0,215 0,591 0,117 0,622 1,000

Pers_U 0,164 0,286 0,329 0,261 0,746 0,674 1,000

Educ 0,263 0,450 0,408 0,440 0,296 0,253 0,355 1,000

Pop 0,056 0,082 0,119 -0,088 0,663 0,651 0,775 0,010 1,000

GDP 0,573 0,639 0,519 0,642 0,368 0,148 0,226 0,559 -0,043 1,000

Mort -0,285 -0,248 -0,176 -0,266 -0,141 -0,017 -0,099 -0,275 0,082 -0,466 1,000

Table B1: Variable definitions and expected signal 

Table B2: Descriptive Statistics of the variables 

Table B3: Correlation Matrix of the variables 

Appendix B 

Source: Eurostat, author calculations 

 

Software: QGIS 

 

Source: Eurostat, author calculations 

 

Software: QGIS 
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Figure B5: Queen contiguity matrix-histogram of the number of neighbors 

Figure B4: Spatial Distance Correlogram- Variable Pat 

Note: The value of the spatial autocorrelation is given in order to the Eucledian distance 

between regions 

Source: Eurostat, author calculations; Software: GeoDa 

 

Software: QGIS 

 

Source: Eurostat, author calculations; Software: GeoDa 

 

Software: QGIS 

 

Moran's I Test For Spatial Autocorrelation

Matrix type Queen Euclidean Inverse Distance

Moran's I Test Statistic 0.6045 0.2999

P-Value 0.0000 0.0000

Table B6: Moran´s I Test for Spatial Autocorrelation 

Source: author calculations; Software: R 

 

Software: QGIS 
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Figure B7: Moran diagrams for variable Pat, Queen matrix- year 2012 

Source: Eurostat, author calculations; Software: GeoDa 

 

Software: QGIS 

 
Figure B8: Moran diagrams for variable Pat, EID matrix- year 2012 

Source: Eurostat, author calculations; Software: GeoDa 

 

Software: QGIS 
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Figure B9: Local Indicators of Spatial Association for variable Pat, Queen (Left) and EID (Right) matrix- year 2012 

 

Source: Eurostat, author calculations; Software: GeoDa 

 

Software: QGIS 

 

Figure B10: Local Indicators of Spatial Association Significance Map for variable Pat, Queen (Left) and EID (Right) matrix- year 2012 

 

Source: Eurostat, author calculations; Software: GeoDa 

 

Software: QGIS 
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Figure B11: Moran Bivariate Global Statistics I- matrix Queen 
 

Notes:  

abscissa axis – Variable Pat 

ordinate axis - The spatially lagged covariates (from right to left and top to bottom: R&D_B; R&D_G; 

R&D_U; Pers_B; Pers_G; Pers_U; GDP; Mort) 

Source: Eurostat, author calculations; Software: GeoDa 

 

 
 

Notes:  

abscissa axis – Variable Pat 

ordinate axis - The spatially lagged covariates (from right to left and top to bottom: R&D_B; R&D_G; 

R&D_U; Pers_B; Pers_G; Pers_U; GDP; Mort) 

Source: Eurostat, author calculations; Software: GeoDa  

 

Figure B12: Moran Bivariate Global Statistics I- matrix EID 
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Table B13: Restricted SAR-Poisson coefficients and APE estimations  

Variable Coefficients Bootstrap SE Direct Spillin Spillout Variable Coefficients Bootstrap SE Direct Spillin Spillout

ρ 6,94E-01 *** 0,06011 ρ 8,87E-01 *** 0,05916

R&D_B 7,14E-04 ** 0,00035 0,0787 0,1392 0,1332 R&D_B 9,02E-04 *** 0,00022 0,1182 1,0102 0,9131

R&D_G -1,57E-03 ** 0,00080 -0,1731 -0,3061 -0,2930 R&D_G -1,47E-03 ** 0,00078 -0,2139 -1,8285 -1,6527

R&D_U 1,41E-04 0,00073 0,0155 0,0274 0,0262 R&D_U 3,06E-04 0,00050 0,0072 0,0618 0,0559

Educ -4,62E-06 0,00983 -0,0005 -0,0009 -0,0009 Educ -4,78E-06 0,00718 -0,0003 -0,0028 -0,0026

Pop 8,96E-08 ** 3,61E-08 9,88E-06 1,75E-05 1,67E-05 Pop 1,13E-08 3,28E-08 4,67E-06 3,99E-05 3,60E-05

GDP 3,77E-02 *** 0,00871 4,1596 7,3552 7,0398 GDP 2,15E-02 *** 0,00700 2,9851 25,5180 23,0639

Mort -1,89E-01 ** 0,09749 -20,8236 -36,8216 -35,2424 Mort -4,54E-01 *** 0,10339 -46,0337 -393,5196 -355,6745

Log Likelihood -6682,112 Log Likelihood -5362.831

W Queen W Inverse distance

c c

LR test 249,9154 LR test 175.831

P-Value 0,0000 P-Value 0,0000

N 234 N 234

Variable Coefficients Bootstrap SE Direct Spillin Spillout Variable Coefficients Bootstrap SE Direct Spillin Spillout

ρ 5,94E-01 *** 0,07224 ρ 9,05E-01 *** 0,07893

R&D_B 9,13E-04 *** 0,00030 0,10097 0,12284 0,11744 R&D_B 1,08E-03 *** 0,00028 0,11818 0,90327 0,86201

R&D_G -1,88E-03 0,00159 -0,20744 -0,25239 -0,24129 R&D_G -1,95E-03 * 0,00116 -0,21390 -1,63494 -1,56027

R&D_U -5,56E-04 0,00092 -0,06145 -0,07476 -0,07147 R&D_U 6,58E-05 0,00078 0,00723 0,05527 0,05274

Educ -1,18E-05 0,01128 -0,00130 -0,00159 -0,00152 Educ -3,01E-06 0,00954 -0,00033 -0,00253 -0,00242

Pop 1,42E-07 ** 0,00000 0,00002 0,00002 0,00002 Pop 4,24E-08 * 0,00000 0,00000 0,00004 0,00003

GDP 4,92E-02 *** 0,01274 5,43799 6,61639 6,32538 GDP 2,72E-02 *** 0,01050 2,98509 22,81627 21,77419

Mort -3,60E-02 0,09447 -3,98193 -4,84480 -4,63172 Mort -4,19E-01 *** 0,10744 -46,03373 -351,85510 -335,78490

Log Likelihood -8770.868 Log Likelihood -6517.696

W Queen W Inverse distance

c 1 c 1

LR test 2133.639 LR test 1051.16

P-Value 0,0000 P-Value 0,0000

N 234 N 234

SAR-Poisson 1ºStep-ML

Average Partial Effects Average Partial Effects

SAR-Poisson 1ºStep-OLS ad hoc constant c=1

Average Partial Effects Average Partial Effects

Notes: 

1) Standart errors were computed using Bootstrap method. 

2) Significance levels: *10%, **5%, ***1%. 

3) SAR-Poisson 1ºStep-ML is estimated using a two-step process. In the first step, the unobservable variable μj is estimated 

using a Poisson regression, and in the second step, the coefficients are estimated using a poisson regression. 

4) SAR-Poisson 1ºStep-OLS is estimated using a two-step process. In the first step, the unobservable variable Wlog(μj) is 

estimated using na OLS regression, adding a ad hoc constant (c=1) when yj=0, and in the second step, the coefficients  are 

estimated using a poisson regression. 

5) All estimations were computed using the software R. 

6) Both SAR-Poisson LR test p-value is based on  a 𝜒2(3).  
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Table B14: Restricted SAR-LogLinear & Aspatial Poisson ML coefficients and APE estimations 

Variable Coefficients Bootstrap SE Direct Spillin Spillout Variable Coefficients Bootstrap SE Direct Spillin Spillout

ρ 4,03E-01 *** 0,09214 ρ 4,08E-01 *** 0,09269

R&D_B 1,05E-03 *** 0,00034 0,3514 0,2184 0,2097 R&D_B 1,15E-03 *** 0,00032 0,3689 0,2500 0,2486

R&D_G -1,73E-03 0,00163 -0,1084 -0,0669 -0,0647 R&D_G -1,85E-03 0,00132 -0,1115 -0,0780 -0,0753

R&D_U -1,97E-04 0,00083 -0,0281 -0,0174 -0,0167 R&D_U -1,77E-04 0,00080 -0,0243 -0,0164 -0,0164

Educ 1,41E-02 0,01270 21,6945 0,2423 0,2405 Educ 1,43E-02 0,01190 21,2256 0,2671 0,2648

Pop 8,27E-08 6,54E-08 0,1725 0,1025 0,1020 Pop 8,09E-08 5,77E-08 0,1622 0,1073 0,1085

GDP 5,58E-02 *** 0,01158 1,5758 0,9557 0,9384 GDP 5,47E-02 *** 0,01072 1,4860 1,0099 0,9998

Mort -2,69E-01 *** 0,06512 -0,2833 -0,1616 -0,1703 Mort -3,07E-01 *** 0,06777 -0,3131 -0,2025 -0,2103

Log Likelihood -328.2144 Log Likelihood -328.0643

W Queen W Inverse distance

c 0.5 c 0.5

LR test 12.482 LR test 6.378

P-Value 0.0019 P-Value 0.0412

N 234 N 234

Variable Coefficients Bootstrap SE Average Partial Effects

R&D_B 6,65E-04 ** 0,00028 0,04945

R&D_G -3,63E-03 * 0,00211 -0,26953

R&D_U -1,18E-03 0,00103 -0,08744

Educ 6,66E-02 *** 0,01268 4,95503

Pop 1,11E-07 1,04E-07 0,00001

GDP 5,76E-02 *** 0,01481 4,27970

Mort -1,64E-01 ** 0,07559 -12,19905

Log Likelihood -13798.34

LR test -3607.42

P-Value 0,0000

W

c

N 234

Aspatial Poisson ML

SAR-LogLinear  ad hoc constant c=0.5

Average Partial Effects Average Partial Effects

Notes: 

1) Standart errors were computed using Bootstrap method. 

2) Significance levels: *10%, **5%, ***1%. 

3) SAR-LogLinear  is estimated using a two-step process. In the first step, the unobservable variable μj is 

estimated using a Poisson regression, and in the second step, the coefficients β1,β2 and ρ are estimated using a 

loglinear regression. A constant (c=0.5) is added when the dependente variable in the secondo step is zero. 

4) All estimations were computed using the software R. 

5) Both SAR-LogLinear and Aspatial ML Poisson LR test p-value is based on  a 𝜒2(3).  
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Figure B15: Spatial Quartil Distribution map of SAR-Poisson 1ºStep-ML Queen Contiguity 

matrix DPE - Variable R&D_B, year 2012 

Source: Eurostat, author calculations; Software: QGIS 

 

 

 

Figure B16: Spatial Quartil Distribution map of SAR-Poisson 1ºStep-ML Queen Contiguity matrix 

Spillin - Variable R&D_B, year 2012 

Source: Eurostat, author calculations; Software: QGIS 

 

 

 

 

 

 

 

 

 

Software: QGIS 
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Source: Eurostat, author calculations; Software: QGIS 

 

 

 

 

 

 

 

 

 

 

 

Software: QGIS 

 

Figure B17: Spatial Quartil Distribution map of SAR-Poisson 1ºStep-ML Queen Contiguity matrix 

Spillout- Variable R&D_B, year 2012 

Notes for sub-chapter 5.1.1 Exploratory Data Analysis: 
 

Notes: The database contains data of 234 NUTS II regions, split between 24 European Countries: 

Bulgaria; Czech Republic; Denmark; Germany; Estonia; Ireland; Spain; France; Croatia; Italy; Latvia; 

Lithuania; Hungary; Netherlands; Austria; Poland; Portugal; Romania; Slovakia; Finland; Sweden; 

United Kingdom; Norway. Some countries such as Belgium, Switzerland and Greece were initially 

considered, however in the elaboration of the final database, given the considerable lack of data in 

several Nuts II, these countries were excluded from the final application. Subsequently, from the set of 

NUTS II of the 24 selected countries, all regions with zero neighbors were excluded, and therefore, all 

regions consisting only of islands were bleached. Finally, of the 24 selected countries, NUTS II London 

(UK) and Centre (France), were excluded by incongruity of data. 
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