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This paper examines the interplay of opinion exchange dynamics and communication
network formation. An opinion formation procedure is introduced which is based on an21
abstract representation of opinions as k-dimensional bit-strings. Individuals interact if
the difference in the opinion strings is below a defined similarity threshold dI . Depending23
on dI , different behavior of the population is observed: low values result in a state of
highly fragmented opinions and higher values yield consensus. The first contribution of25
this research is to identify the values of parameters dI and k, such that the transition
between fragmented opinions and homogeneity takes place. Then, we look at this tran-27
sition from two perspectives: first by studying the group size distribution and second by
analyzing the communication network that is formed by the interactions that take place29
during the simulation. The emerging networks are classified by statistical means and
we find that nontrivial social structures emerge from simple rules for individual com-31
munication. Generating networks allows to compare model outcomes with real-world
communication patterns.33

Keywords: Opinion dynamics; social networks; co-evolution; computational models;
artificial societies.35

1. Introduction

Many societal processes are ultimately based on the mutual interactions among37

individuals with diverse opinions, attitudes, and lifestyles. The processes of inter-
personal communication and opinion exchange play a crucial role in the formation39
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of social structures and networks. Examining the interplay of opinion exchange and1

communication network formation is the main issue addressed by this study.
Therefore, an opinion formation model inspired by the abstract agent model3

presented in Ref. 6 is introduced. Opinions are represented as a series of k bits,
which we find an interesting approach to the modeling of attitudes and beliefs,5

since human thinking can be represented in terms of polarities (yes/no, good/bad,
young/old, etc.). And moreover, we are used to measuring information in bits.7

Such an abstract bit-string approach has been used in the simulation of
consumer–producer behavior [6] as well as in the context of labor market analy-9

sis [5] where bit-strings represent products (or job offers) and needs (worker skills).
Here, each bit-string represents an agent opinion and a procedure of agent–agent11

interaction is specified based on assumptions from social comparison theory [15]
and in opinion formation models [7, 12, 3, 26, 27].13

This paper is organized in the following way. We start reviewing previous
approaches to the modeling of opinion exchange dynamics. After this, we give an15

explanation of our model. This is followed by a numerical analysis, in which the
opinion evolution is considered before looking at the emerging networks of commu-17

nication activity. A discussion of the results concludes this work.

2. Related Work19

The most important observation from studying computer models of social influence
and opinion dynamics is probably that interaction rules by which interacting agents21

tend to become more alike in their beliefs do not necessarily lead to a population in
which all the individuals share the same opinion. To put it in Axelrod’s words ([7],23

p. 223): “Local convergence can lead to global polarization.” This dynamic effect
which contrasts common intuition has been shown and analyzed in a large number25

of different opinion formation models (e.g. see Refs. 7, 10, 12, 26, 3 and 18).
All these models are based on two principles: (1) two individuals are more likely27

to communicate with one another if they already share a number of opinion fea-
tures (i.e. their opinions are similar); and (2) communication further increases this29

number of shared features (i.e. individuals become even more alike). Approaches
differ mainly in their representation of opinion. Some models use continuous repre-31

sentations (e.g. see Refs. 12 and 3) whereas others assume opinions to be a set of
features which can take different (discrete) values [7, 10]. Also populations in which33

agents may have only two possible choices (yes/no) have been studied frequently
(e.g. see Refs. 26, 16, 29, 30 and 19).35

Depending on the control parameters, opinion models give rise to quite a vari-
ety of population structures, from a highly fragmented population in which only37

few individuals share the same opinion, to homogeneity or, in between these two
regimes, to a stable state with several differently sized groups. These three behav-39

ior classesa have been reported in several previous studies on opinion dynamics

aBehavior classes refer to qualitative different behaviors that potentially result from a simulation
model.
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(e.g. see Refs. 7, 10, 12, 26, 3, 18 and 30). Moreover, in the transition regime,1

group sizes were found to follow a power law distribution [10]. For a detailed report
with particular focus on such statistical properties of social dynamics processes the3

reader to refer to Ref. 9.
The social network structure which is assumed to underlie the opinion exchange5

dynamics is another important aspect. In opinion formation studies as well as in
other disciplines, often a static network determining which agents may interact7

with one another is imposed. In social influence models this is referred to as an
agent’s neighborhood. Only recently, the co-evolution of agent states and networks9

formed by processes (based on the states) receive more attention (see Ref. 17 for
an inter-disciplinary, recent review). Simultaneously, adaptive network approaches11

that focus on the interplay of opinion dynamics and network formation have been
further developed [18, 30, 25, 4].13

In Ref. 18, a parameter is used to determine whether agents form their opinion
based on the opinions of connected agents or if they re-link to an agent having the15

same opinion. This simple model was found to undergo the same phase transition
from diverse to homogeneous opinions as reported above. The effect of giving agents17

the possibility of cutting links, if they do not achieve agreement with their neigh-
bors, is also studied in Ref. 30. The study presented in Ref. 4 starts from a random19

network determining the possible communication links between the agents. The
similarity between two linked agents (which evolves in time since the opinions of21

interacting agents are updated) is used to assign a frequency of interaction. In this
way, dynamic network structures emerge without the need for specifying conditions23

for cutting social links.
In this paper, we also avoid introducing further assumptions for re-wiring the25

network. Instead, the network design is based on the communication that effectively
takes place among the agents.27

3. Model Definition

The opinion formation model implemented for this study bases on a bit-string29

representation as used in Ref. 6 concerning the simulation of consumer–producer
behavior and in Ref. 5 for the analysis of labor market dynamics. In these examples,31

bit-strings represent products (or, respectively, work offers) and needs (skills). The
exchange is based on the matching of these two strings. Here, this concept is used33

in the modeling of opinion exchange where a series of k bits represents an agent
opinion, and interaction between agents takes place if their opinion strings are35

similar. Two agents are willing to interact with one another if the matching of their
opinion strings is below (or equal to) a certain similarity threshold denoted by dI .37

The interaction process is illustrated in Fig. 1.
In the beginning N agents are generated and a random bit-string is assigned to39

them. In the interaction process, two agents, say c4, c11 according to Fig. 1, meet at
random. But they are only willing to communicate about an issue (one element of41

the bit-string), if the number of unequal bits (i.e. the hamming distance h) is below
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Fig. 1. Illustration of the interaction process.

or equal to a similarity threshold dI . If the hamming distance between the two1

agents is below the threshold (h(c4, c11) ≤ dI), they exchange ideas about an issue.
As a result of that the agent chosen first (c4 in the example) adopts the opinion3

of the c11 concerning that issue by flipping the respective bit.b In this way, the
principles of similarity and imitation which form the basis of most opinion models5

(e.g. Refs. 7, 10, 12, 26, 3 and 18) are integrated.
The model is implemented so that during a single time step all the agents have7

the chance to interact with one another. Therefore, one time step of the model
corresponds to N interactions of pairs of randomly chosen agents ci, cj . We exclude9

self-interaction (ci = ci), but we do not force all agents to be chosen exactly one
time (with the result that some may be chosen twice and other ones are not chosen11

at all in that iteration).
In order to understand better the opinion exchange dynamics among the agents,13

we keep track of the interactions that take place in the course of the simulation.
We introduce an interaction matrix I which stores all the interaction activity. I is15

of size N × N and the element iij saves the number of times ci and cj interacted
in some way. Therefore, each time two chosen agents ci, cj are sufficiently similar17

(h(ci, cj) ≤ dI), we increase iij and iji by one. Note that iij and iji are also increased
if agents already share the same opinion. The matrix I corresponds to a weighted19

graph, in which edges represent the communication lines between different agents.

bSince the probability of an agent to be the first one is equal for all individuals during the iteration
process, all the agents have an equal chance to imitate or to be imitated. The same assumption
about who imitates who is made by Axelrod in Ref. 7.
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Additional information about who imitates who, and which agents are imitated is1

stored separately.
To summarize. Starting from an initial random population, at each time step3

N pairs of agents (ci, cj) are chosen, and if the distance is below the threshold
(h(ci, cj) ≤ dI), the agent ci switches one of the bits that have been unequal. In5

other words, if individuals are close enough they have the opportunity to become
even closer. Otherwise, they just do not communicate at all. As they split apart7

groups are formed. In the next section, we discuss the characteristics of the groups
that emerge from this process.9

4. Behavior Classification

In order to obtain a classification of the general dynamic behavior of the model, a11

series of systematic tests has been performed. For this purpose, we looked at differ-
ent numbers of dimensions k used in the opinion representation and, respectively,13

different threshold values dI . Note that considering the ratio of the two parameters
dI

k might also be of interest, since it accounts for the relative similarity required for15

two agents to interact. It would also be favorable as the number of model parameters
would be reduced.17

However, in order to be clear about the interdependence of the two parameters,
we first tested all the configurations k = 1, . . . , 32, and, respectively, dI = 1, . . . , k,19

and looked at the number of groups of individuals that share exactly the same
opinion (denoted by NG). A group in this sense can be formalized as21

Go = {ci : h(ci, o) = 0}, (1)

where o is the reference opinion string shared by all the members ci of the group23

Go. A particular group Go comprises all the agents ci, whose opinions equals o,
(that is the hamming distance h(ci, o) = 0). Consequently, NG is defined as the25

number of groups Go with at least one member. With groups defined in this way,
the maximum number of possible groups is27

max(NG) = min(N, 2k). (2)

As opinions are represented as a series of k bits, there are 2k possible opinion29

strings. But in the case that the number of agents is below that number (N < 2k),
then the maximum number of groups with at least one member is equal to N (i.e.31

max(NG) = N).
The model behavior can be classified by using NG as an indicator for different33

kinds of behavior. The case where NG is near the theoretical maximum (NG ≈ N or,
respectively, NG ≈ 2k as described above) represents the cases in which the public35

opinion remains highly fragmented, since there are many groups with only few
members (or even just a single one). The other extreme is represented by NG = 137

in which case all the agents belong to a single giant group, that is: the society of
agents reaches global consensus.39
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Fig. 2. On the l.h.s., classification of the model behavior in terms of NG with respect to k and
dI for 1000 agents. The middle image shows the iteration number required to reach the stable
state, and on the r.h.s. the variation of NG is shown. Average of five simulation runs.

In Fig. 2, this classification of the model behavior with respect to k and dI is1

shown using a 32 × 32 parameter grid formed by k = 1, . . . , 32 and dI = 1, . . . , k.
N = 1000 agents have been used for the experiments and five simulation runs3

have been performed for each parameter configuration.c The two additional grids
represent the iteration number required to reach the stable state (middle) and the5

variance of NG (r.h.s) observed over the five realizations. Note that the stable
state, in which no further opinion exchange is possible, is always reached, though7

the number of iterations required to reach it differs tremendously.
Figure 2 makes clear that a transition takes place from a population in which all9

opinions are the same (blue region with NG ≈ 1) to a population in which basically
all the agents have different opinions (dark red with NG ≈ 1000). The third and in11

fact most interesting behavior is observed in the area of transition in between these
two extremes. It will be considered using a specific parameter constellation in the13

following section.

5. Group Size Distribution15

In order to get a better idea of the model behavior in transition, we concentrate on
the example N = 1000 and k = 20 in the following two sections. The influence of17

the population size N is studied after that. From the images in Fig. 2, we assume
that the critical behavior can be observed for dI = 3, where an average number19

of groups NG ≈ 400 was found with a very high variance. In a second series of
systematic experiments, now using 100 simulation runs, we subsequently increase21

the threshold from dI = 1, . . . , 5 and look at the distribution of group sizes in stable
state. The results are presented in Fig. 3.23

cOn the whole, 5 × 528 runs with N = 1000 agents have been performed.
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Fig. 3. Group size distribution in stable state for k = 20 and dI = 1, . . . , 5 based on 100 simula-
tion runs.

It becomes clear that, for N = 1000 and k = 20, dI = 3 is indeed at the border1

between the two qualitatively different behaviors: homogeneity and fragmentation.
It therefore displays the model behavior in the phase transition. Moreover, Fig. 33

shows that groups scale according to a power law for dI = 3, which was also reported
in the phase transition of the Axelrod model in Ref. 10.5

For dI < 3 only very small groups are present, whereas for dI > 3 the likeliness
of small groups to form subsequently decreases and agents are very likely to meet7

in a single giant group (global consensus). Note, however, that for dI = 4 several
intermediate group sizes are also observed that show a power law scaling for group9

sizes up to 20 members.

6. Communication Networks11

The analysis of the groups that consist of individuals sharing the same opinion is
an interesting issue, looking at the communication activities that led to this state,13

on the other hand, can reveal important additional information of how a certain
state is reached. From the network point of view, we can consider that agents are15

the nodes of a communication network and that edges represent communication
lines. In order to keep track of the communication activity within such a network,17

we introduced the interaction matrix I which stores all the interactions that take
place in the course of the simulation. We also compute the adjacency matrix A,19

the elements of which are aij = 0 if iij = 0 and aij = 1 if iij > 0. Matrix A

accounts for communication lines between the agents, but not for the intensity (i.e.21

the frequency) of communication between them.
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Fig. 4. Log-log plot of the degree distribution for N = 1000, k = 20, and different dI = 1, . . . , 5.
The distribution for dI = 3 displays the behavior in the phase transition.

In Fig. 4, the degree distribution of the communication network computed on the1

basis of A is visualized. Degree distributions are used frequently in the classification
of complex networks (e.g. Refs. 2, 8, 17 and 13). The data displayed in Fig. 43

represents the same 100 realizations performed for the group size analysis shown in
Fig. 3.5

The distribution shows that for dI = 1 the frequency with which node degrees
of one or two (represented by the blue triangles) have been observed is around 0.02,7

which makes clear that the great majority of the nodes has a zero degree, i.e. they
are isolated nodes. For dI = 2, still, the majority of nodes is isolated, but there are9

agents connected to up to six others. All in all, for low values of dI the differences
between the agents maintain, because initially, the distance between most agents11

is larger than dI . Therefore, interaction becomes unlikely and the communication
network is very weakly connected.13

The degree distributions for dI = 4 and dI = 5 are quite different from the prior
examples. They display the characteristics of a highly connected (quasi-complete)15

network. In the course of 100 simulations no node with a degree below 200 was found
which means that the weakest connected agent is still connected to more than 20017

other agents. Moreover, the larger dI is chosen, the more close the final network
is to the complete graph.d This is because potentially all the agents are allowed19

to interact with all the others (complete graph), and with an increased threshold
value more of these interactions really take place since the condition h(ci, cj) ≤ dI21

is more likely to be satisfied.

dFor dI = 6, the percentage of node degrees smaller than 900 was 0.08%.
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An interesting property is observed when comparing the degree distribution for1

dI = 4, dI = 5 to the group size distribution in Fig. 3 as it results using the same
values dI . As shown in Fig. 3, small minority groups of agents may form in these3

cases, although these agents interacted with at least 200 others (as we know from
Fig. 4), i.e. they are not isolated at all. We conclude that intensive communication5

behavior does not automatically make agents adopt the opinion of the largest group,
agents (or small groups of agents with up to 10 members) may have an individual7

“outsider” opinion even though the communication activity involved many agents
from different groups.9

From the network point of view the phase transition from highly fragmented
opinions to global consensus as reported above now becomes the transition from11

a weakly connected network (i.e. reduced communication activity for dI = 1, 2)
to a complete network (in which all the agents communicate with all the others13

for dI = 4, 5). The degree scaling behavior in between these two regimes (dI = 3)
represents the model behavior in the phase transition.15

The distribution of the degrees for dI = 3 as shown in Fig. 4 displays the
characteristics of a nontrivial network structure (compare also the network shown17

in Fig. 8). The distribution is significantly different from distributions found in
random networks. Figure 4 indicates that the scaling of the degrees is according to19

a power law, at least for the upper tail with degrees below 100. This means that
the network is scale-free. For connectivities around 100 slight deviations are visible21

and for degrees in the region from 300 to 500 we cannot any longer assume a power
law behavior.23

Further analysis using a larger number of experimentse might reveal the reasons
for these irregularities, and they will also make us more confident about the power25

law distribution indicated by Fig. 4. Another equally important issue to provide
us with a more complete picture of the model behavior is the influence of the27

populations size.

7. Influence of the Population Size29

In order to be able to compare the model outcomes for realizations using different
numbers of agents (N), it is convenient to use the relative number of groups after31

stabilization given by NG

N . In the case of opinion fragmentation NG

N ≈ 1 since
NG ≈ N . In the case a global consensus is reached we have NG = 1 and therefore33
NG

N = 1
N ≈ 0. For the intermediate states the relative number of groups stays

between zero and one (0 < NG

N < 1).35

In the l.h.s. of Fig. 5, the relative number of groups in stable state is shown
for N = 100, 500, 1000, 5000, and 10,000 as a function of the threshold dI . In all37

simulations an opinion string of length k = 20 is used. Each data point in Fig. 5
represents the average of NG

N determined over 10 repeated simulation runs. Let us39

eIn the physics literature (e.g. see Refs. 10, 18) often 104 realizations are used.
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values d∗I at which transition behavior is observed with respect to the population size. Results for
10 realizations and k = 20.

call d∗I the threshold values at which the transition from fragmentation to consensus1

takes place. With each increase of the population size from N = 100 to N = 10, 000
the values at which transition behavior is observed (d∗I) decreases.3

The r.h.s of Fig. 5 makes this clear. It shows the “critical” values d∗I as a function
of the population size. For a certain N , d∗I has been chosen to correspond to those5

10 repeated simulation runs in which the variance in the values of NG

N is maximal,
as a high variance is a suitable indicator for transition behavior (compare also7

Fig. 2). The r.h.s of Fig. 5 shows the decrease of the d∗I with the population size
N . Note the logarithmic scale used for the number of agents N on the horizontal9

axis. As the N grows 10 times larger, the critical threshold decreases by one.
In Fig. 5, the influence of N on the model behavior is evaluated on the basis11

of the average value and the variance of a series of relative numbers of groups,
NG

N . A further interesting aspect is the influence of the population size on the13

group sizes in stable state and the interaction network formed as the result of the
opinion exchange process. For N = 1000, dI = 3 and N = 10, 000, dI = 2 (both15

displaying the characteristics of transition behavior) the group size and the degree
distributions are presented and compared in Fig. 6.17

We observe in Fig. 6 that there is no remarkable difference between the groups
formed in a population of 10,000 agents compared to the example of 1000 agents19

considered previously. The degree distribution shown in the inset of Fig. 6 displays
the same scaling behavior for both cases as well. This indicates that in the phase21

transition the observed interaction patterns as well as the statistical properties of
the grouping behavior after stabilization is invariant to changes of the population23

size. Moreover, observing the same power law scaling of the degrees for N = 1000
and N = 10,000 confirms that the opinion exchange process as presented in this25

paper yields scale-free communication networks.
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Fig. 6. Group size and degree (inset) distributions for N = 1000, dI = 3 and N = 10,000, dI = 2
with k = 20 in both cases. The distributions for N = 1000 and N = 10,000 are based on,
respectively, 100 and 10 repeated simulation runs.

The observed power law scaling can be an interesting issue for the validity of the1

model, since such a behavior is shown to be a property of many real-world networks
(compare Refs. 2, 8, 11, 23, 22, 20). The invariance of the communication patterns3

to the population size N (as indicated by Fig. 6) is another important issue for
the comparison with real-world network data, since empirical network studies often5

consider a large number of participants (up to several millions).

8. Networks as a Link to Reality7

Recently, a critical account by Sobkowicz [28] revealed that among the vast litera-
ture on opinion formation models, there are very few attempts to link the simulation9

results to real-world data. The main reason for this is that high-quality data of opin-
ion spread in real societies is not available. However, recent analyses of real-world11

communication networks [23, 22, 20] have led to a better understanding of human
communication activity. The network view on opinion exchange processes intro-13

duced in this paper, enables that simulation outcomes be compared to this new
insights. This may be of great value in the refinement and calibration of opinion15

models.
One example of networks that can be adequate in the comparison are phone call17

networks (e.g. Refs. 1, 23, 22). As in our model, these networks are constructed by
one-to-one communication. In Refs. 23 and 22, Onnela et al. extensively analyze the19



1st Reading

January 30, 2010 15:16 WSPC/169-ACS 00243

12 S. Banisch, T. Araújo and J. Louçã

structure of a mobile phone network constructed by observing the communication1

activity of several million users during 18 weeks. They explain that the data serves
as “a proxy for the underlying social network” ([23], p. 3) and therefore of human3

communication patterns. For any opinion model to be of explanatory value (as an
explanatory candidate in the words of Epstein [14]), it is necessary that realistic5

network structures (macro-behavior) are formed by the interaction process imple-
mented in the model, so that simulated communication patterns compare to the7

real-world exchange processes.
In a qualitative sense, the degree distributions of the interaction networks in the9

phase transition shown throughout this paper (Figs. 4 and 6) relate to observations
made on real-world communication networks. A scaling according to a power law11

as shown for call graphs by Onnela et al. in Refs. 23 and 22 (compare Fig. 1(A) in
Ref. 22) as well as by Aiello et al. in Ref. 1 (Figs. 1 and 2), is observed in the present13

model of opinion exchange. Another confirming observation is the percentage of
nodes in the largest connected component. In the mobile network study [23, 22], it15

consists of 84% of the nodes and in our networks this percentage is found to be in
between 75 and 85%. The qualitative similarity may be a useful starting point for17

future calibration of the opinion model.
One has to take into account in such a comparison that the real-world examples19

consist of several millions of nodes (e.g. 3.9 million in Refs. 23 and 22) and that the
largest network created in the course of this study has (only) 10,000 participants.21

However, as the previous section revealed, the degree scaling did not change with
an increasing population size.23

The emergence of very complex, nontrivial social structures from simple opinion
exchange processes becomes also visible in the example network presented at the25

very end of this paper (in Fig. 8). Agents do not have any knowledge of the global
properties of the network nor is there any routine by which they urge to improve27

their position in the network. Nevertheless, we observe the formation of various
clusters that among themselves are strongly connected, and also the emergence of29

individuals that connect between different clusters becomes visible. Having a high
centrality, but only a small number of social contacts to sustain, such nodes are31

considered to have a high importance in the social network (compare Ref. 17 and
references therein).33

While the generation of networks provides us with the possibility of linking the
simulation model and reality at the level of global structure, the use of bit-strings in35

the opinion representation allows for a connection of agent opinions and real survey
data. For instance, questions like “Are you currently satisfied with the work of37

politician X?” or “Which of the following issues you think should be regulated/not
regulated by the government?” can be used to set up an agent population with39

opinions distributed according to the results of a questionnaire. Repeated surveys
might even allow for comparison of real data to the simulated opinion exchange41

dynamics.
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9. Future Developments1

Besides being scale-free, real-world networks are typically characterized by some
other statistical properties. Many posses a relatively small average diameter (small-3

world property) and a high clustering. So far our analysis did not consider these
properties in the analysis of the emerging network of opinion exchange activity.5

Classifying the networks using, additional statistical network measures, such as
betweenness centrality, diameter, and clustering measures like the continuous clus-7

tering coefficient introduced in Ref. 24, is one essential issue to be addressed in the
future.9

Looking at opinion dynamics from the perspective of networks allows for a series
of additional analyses, one of which is shown in Fig. 7. The data stored during the11

100 simulation runs for N = 1000 and dI = 3 is used in this analysis. In Fig. 7, the
number of opinion changes is plot with respect to the degree of the nodes. Surpris-13

ingly, we observe strong irregularities in the exchange behavior. For node degrees
around 100 and around 320 significantly more opinion exchange is observed than15

for neighboring degrees. This might be an indication that critical connectivity level
exists, and that the nodes once they reached this connectivity enter a larger com-17

munity of agents which gives them a whole group of new communication partners.
Such a reasoning may also explain the scaling of the degree distribution for degrees19

larger than 100. Future research has to clarify these effects.
Due to the high flexibility of the bit-string description adopted in this work, a21

series of model refinements can be implemented without much effort. For instance,
splitting the string into two and using one sub-string for (say) the private live23
and the other for the professional relations will allow to generate two different
networks and to study the interrelation between the two. Considering parts of the25
string as fixed, accounting for fixed attributes like gender, can also be a reasonable

Fig. 7. Number of opinion changes to the degree.
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Fig. 8. A network of communication formed by the interaction of 1000 agents (k = 20 and
dI = 3). We can observe the formation of various clusters that among themselves are strongly
connected. We also observe the emergence of individuals that connect between clusters which

gives them a high importance in the social network. All in all, this shows that very complex social
structures can emerge from opinion exchange processes and individual communication. Image
produced with the Network Workbench Tool [21].

extension to the model. And along this line, a recent study showed that cross-1

gender communication is more frequent and more intensive than communication
among the same gender [20], which reveals that besides similarity also differences3

attract in some cases. An adaptation of the interaction rule such that for a part of
the bit-string difference is more appealing than similarity is another candidate for5

future refinement of the model (Fig. 8).
Another future development will concern the validation of the opinion dynamics7

model. Initial assumptions of the model can be grounded on previous research and
on literature, and they can also be validated through some empirical studies. In9

this case, the assumptions of similarity and imitation follow Axelrod’s well-known
and discussed dissemination of culture model. The model outcomes which are the11

communication network and the group sizes will be the subject of future research,
aiming to compare them to some real-world networks and group configurations as13

outlined in the previous section.
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10. Conclusions1

Like other authors in the opinion formation field, we explore the mechanisms
through which similarity leads to interaction and interaction leads to still more3

similarity. Network properties seems to be a natural way to describe the struc-
tural patterns that come out from those multi-agent interactions. In this context,5

the main purpose of this paper is to discuss the potential of networks to emerge
endogenously from local interactions without explicitly specifying rules for network7

linking. This facilitates comparisons of model results to real-world social networks.
We show that complex network structures emerge from a simple process of com-9

munication between individuals that have no information on the global properties
of the network. This indicates that a crucial role in the formation of social struc-11

tures and associations is played by the mutual interactions among individuals with
diverse opinions, attitudes, and lifestyles.13

In the context of opinion dynamics, considering which networks result from
simulations with different model parameters made visible that the phase transition15

from highly fragmented public opinion to homogeneity in models of social influ-
ence is due to the communication activity that is allowed by a certain parameter17

constellation. A few critical values play the fundamental role.
We have followed a biological inspiration, where opinion change compares to a19

mutation mechanism that allow for the adoption of a new position with respect to a
certain issue in the agents mind. Such an abstract bit-string approach has been used21

in the context of labor market analysis [5] where bit-strings represent job offers and
worker skills. It was also applied to model innovation in a market-oriented context23

where producers and consumers try to improve their matching in what concerns
products and needs [6]. We envision that the application of the notion of opinion25

exchange presented in this paper could bring relevant improvement to the way the
underlying population structures were represented in those earlier approaches.27
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