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Abstract

This Letter investigates the dynamics of stocks in the S&P500 for the last 33 years, considering the population of all companies present in the
index for the whole period. Using a stochastic geometry technique and defining a robust index of the dynamics of the market structure, which is
able to provide information about the intensity of the crises, the Letter proposes a seismographic classification of the crashes that occurred during
the period. The index is used in order to investigate and to classify the impact of the thirteen crashes between July 1973 and March 2006 and to
discuss the available evidence of change of structure after the fin de siècle.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The nature of financial crashes has been intensely discussed
for long. Recently some new methods are being used to ana-
lyze and describe the dynamics of changes in complex markets,
based on different contributions from econophysics. This Let-
ter recurs to such methods and the available information on the
trajectories of returns of dominating firms for three decades in
order to propose new measures and a classification of the in-
tensity of the crises. As a measure for these perturbations is
defined, our investigation follows previous papers comparing
them to “economic earthquakes” [1–4] and, in particular, the
suggestion that the histogram of price changes for any stock is
“the analog of the Gutenberg–Richter histogram of earthquake
magnitude” [1], developing a new strategy for the quantifica-
tion and qualification of these extreme events. Inquiries into the
statistical properties of this distribution suggest the existence of
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a hierarchical organization expressed as scale invariance over
the history of the values of a control parameter [1].

The current investigation, dealing with historical depen-
dence in the financial assets, emphasizes how the crises change
the shape of the market and lead to dynamic modifications. The
market does not return to the previous configuration. Conse-
quently, this is a case of hysteresis. Although the term is com-
monly applied to physical systems, such as magnetic materials
which do not return to the original form after an impulse, it may
be extended by analogy to social systems such as the economy.2

The large perturbations described as market collapses or crises
provoke important changes in the behavior of the agents, mod-
ify the available information and therefore the strategies and
actions of other firms and alter the trajectories of the economies.

Section 2 presents the method and measures, whereas Sec-
tion 3 summarize the results. As results are computed using
actual daily returns data which are compared to surrogate (time
permuted) data, the electronic implementation of our approach
would imply the development of methods for selecting, retriev-

2 We thank one anonymous referee for this suggestion.
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ing and updating stock market data, accordingly. The predictive
character of our method is to be explored in future work.

2. Method and measures

The stochastic geometry strategy is simply stated in the fol-
lowing terms [5]:

(1) Pick a representative set of N stocks and their historical
data of returns over some time interval and, from the returns
data, using an appropriate metric, compute the matrix of
distances between the N stocks.
The problem is reduced to an embedding problem in which,
given a set of distances between points, one asks what is the
smallest manifold that contains the set. Given a graph G

and an allowed distortion there are algorithmic techniques
to map the graph vertices to a normed space in such a
way that distances between the vertices of G match the
distances between their geometric images, up to the al-
lowed distortion. However, these techniques are not di-
rectly applicable to our problem because in the distances
between assets, computed from their return fluctuations,
there are systematic and unsystematic contributions. There-
fore, to extract relevant information from the market, we
have somehow to separate these two effects. The following
stochastic geometry technique is used:

(2) From the matrix of distances compute the coordinates for
the N stocks in an Euclidean space of dimension smaller
than N and then apply the standard analysis of reduction
of the coordinates to the center of mass and compute the
eigenvectors of the inertial tensor.

(3) Apply the same technique to surrogate data, namely to data
obtained by independent time permutation for each stock
and compare these eigenvalues with those obtained in (2),
in order to identify the directions for which the eigenvalues
are significantly different as being the market characteristic
dimensions.
In so doing, we are attempting to identify the empirically
constructed variables that drive the market and the number
of surviving eigenvalues is the effective dimension of this
economic space.

(4) From the eigenvalues of order smaller than the number of
characteristic dimensions, compute the difference between
eigenvalues in (2) with those in (3). The normalized sum of
those differences is the index S, which measures the evolu-
tion of the distortion effect in the shape of the market space.

For both surrogate and actual data, the sorted eigenvalues,
from large to small, decrease with their order. In the surro-
gate case, the amount of decrease is linear in the order number,
proving that the directions are being extracted from a spherical
configuration. The display of a uniform and smooth decrease
in the values of the sorted eigenvalues is characteristic of ran-
dom cases and is also experimentally observed when the market
space is built from historical data corresponding to a period of
business as usual.
Considering the lack of uniformity among the market effec-
tive dimensions we are able to characterize the extent to which
crashes act differently on specific directions, causing changes
in the shape of the market space. Looking for relevant distor-
tions in the shape of the S&P500 market space through the last
33 years, we found that amongst the highest values of the index
are those computed for some important dates, as 19th October
1987, 27th October 1997 and 11th September 2001.

From the returns for each stock

(1)r(k) = log
(
pt (k)

) − log
(
pt−1(k)

)

a normalized vector

(2)�ρ(k) = �r(k) − 〈�r(k)〉√
n(〈r2(k)〉 − 〈r(k)〉2)

is defined, where n is the number of components (number of
time labels) in the vector �ρ. With this vector one defines the
distance between the stocks k and l by the Euclidean distance
of the normalized vectors

(3)dij =
√

2(1 − Cij ) = ∥∥ �ρ(k) − �ρ(l)
∥∥

as proposed in [6], with Cij being the correlation coefficient of
the returns r(i), r(j).

The fact that is a properly defined distance gives a mean-
ing to geometric notions and geometric tools in the study of the
market. Given that set of distances between points, the ques-
tion now is reduced to an embedding problem: one asks what
is the smallest manifold that contains the set. If the propor-
tion of systematic information present in correlations between
stocks is small, then the corresponding manifold will be a low-
dimensional entity. The following stochastic geometry tech-
nique was used for this purpose.

2.1. The stochastic geometry technique

After the distances (dij ) are calculated for the set of N

stocks, they are embedded in RD , where D < n, with coordi-
nates �x(k). The center of mass �R is computed and coordinates
reduced to the center of mass.

(4)�R =
∑

k �x(k)

k
,

(5)�y(k) = �x(k) − �R
and the inertial tensor

(6)Tij =
∑

k

�yi(k)�yj (k)

is diagonalized to obtain the set of normalized eigenvectors
{λi, �ei}. The eigenvectors �ei define the characteristic directions
of the set of stocks. The characteristic directions correspond to
the eigenvalues (λi ) that are clearly different from those ob-
tained from surrogate data. They define a reduced subspace of
dimension f , which carries the systematic information related
to the market correlation structure. In order to improve the de-
cision criterion on how many eigenvalues are clearly different
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from those obtained from surrogate data, a normalized differ-
ence τ is computed:

(7)τ(i) = λ(i) + 1 − λ′(i)

and the significantly different eigenvalues are those to which
τ(i) > 1/2.

2.2. Index of the market structure

As market spaces can be described as low dimension objects,
the geometric analysis is able to provide crucial information
about their dynamics. In previous papers, we developed differ-
ent applications of this technique, namely for the identification
of periods of stasis and of mutation or crashes. Indeed, mar-
ket spaces tend to contract during crises along their effective
dimensions, but each crisis may act differently on specific di-
mensions. It is in order to capture that distortion, namely the
lack of uniformity along the market effective dimensions, that
we defined the market structure index, S [5]. Since the largest f

eigenvalues define the effective dimensionality of the economic
space, at time t , we compute S as:

(8)St =
f∑

i=1

λt (i) − λ′
t (i)

λ′
t (i)

=
f∑

i=1

λt (i)

λ′
t (i)

− 1

where λt (1), λt (2), . . . , λt (f ) are the largest f eigenvalues of
the market space and λ′

t (1), λ′
t (2), . . . , λ′

t (f ) are the largest f

eigenvalues obtained from surrogate data, namely from data
obtained by independent time permutation of each stock. In
computing S, at a given time t , both λt and λ′

t are obtained
over the same time window and for the same set of stocks.

3. Results and discussion

Results were computed using actual daily returns data and
comparing them to surrogate data that are generated by per-
muting each stock (one-day return data) randomly in time. As
each stock is independently permuted, time correlations among
stocks disappear while the resulting surrogate data preserve the
mean and the variance that characterize actual data.

The set of actual data consists in 230 stocks present in
S&P500 from July 1973 to March 2006, considering all the sur-
viving firms for the whole period. Although we acknowledge
that this population does not necessarily represent the behav-
ior of the whole economy, we consider the information useful
enough to provide information on trends of the dynamics of
market, as it includes a large part of the winners after a long
period of competition. The next section proposes a classifica-
tion of these crashes according to the value of S and using an
inspiration from seismography.

3.1. A seismographic classification

An approximate value of the index S for the 1987 Crash,
the Black Monday (BM), is taken as the higher value of a scale
from 8BM down to 1BM, or S from 40 to 5. Market perturba-
tions measuring less than 1BM are not considered to qualify as
Table 1
Ranking of the crises according to Smax and BM

Ranking Date Smax BM

1 October 1987 38.6 8
2 December 2000/January 2001 18.3 3.8
3 October 1989 10.6 2.2
4 March/April 2001 10.3 2.13
5 July 2003 9.53 2
6 October 1998 9.2 1.95
7 April 1999 9 1.9
8 October 1997 8.36 1.73
9 September 2001 7.95 1.65

10 April 2000 7.55 1.6
11 August 1982 7.5 1.55
12 October 1979 7.22 1.50
13 October 1978 6.60 1.37

market crashes. Although this does not suggest any compara-
bility or similarity of causes between earthquakes and financial
crises, this procedure for classification and quantification in
seismography [7] suggests a way of describing perturbations
in speculative markets, since both kinds of shocks tend to oc-
cur in all magnitudes and may be described according to power
laws.

3.2. The dynamics of crashes

The results are presented in Fig. 1, where the plot shows
the daily values of S for the 33 years period and a time inter-
val (moving window) of 16 days on a market space including
230 stocks.

The highest peaks are identified and correspond to the fol-
lowing crashes (chronological order):

1. October 1978, Iranian crisis;
2. September 1979, Iranian crisis and second oil shock;
3. August 1982, general recession;
4. October 1987, the Black Monday;
5. October 1989, a US crash;
6. October 1997, the Asian crash;
7. October 1998, the Russian crash;
8. April 1999, the Japan crash;
9. April 2000, Nasdaq;

10. December 2000/January 2001, crashes in Argentina and
Turkey;

11. April 2001, the start of a world recession;
12. September 2001, the terrorist attack against New York;
13. July 2003, general recession.

Once the highest values of S are identified, Smax is defined
as the higher value of S in each time interval. Table 1 shows
the same 13 peaks and the corresponding values of Smax and
BM. The chronological order was replaced and the events were
ordered according to the values of Smax and BM.

Along the whole period (33 years), the accumulated value of
S (AS) is computed and the successive cumulative histories are
presented in Table 2, the curve being drawn in Fig. 2. In that
figure, we measure the slope of the curve that better fits AS for
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Fig. 1. The evolution of the index S measuring the evolution of the S&P500 structure for the surviving firms for 1973–2006.

Fig. 2. Accumulated values of S and their yearly fit.
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Fig. 3. Yearly fit of the slope of S (above) and concentration of crashes through the period (below).

Fig. 4. Hurst exponents.
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Table 2
Slopes of the AS yearly fit

Year Slope Year Slope Year Slope

1973 1.5 1974 2.1 1975 1.5
1976 1.2 1977 1.3 1978 2
1979 2 1980 1.5 1981 1.3
1982 1.7 1983 0.87 1884 1.4
1985 1.1 1986 1.3 1987 3.2
1988 1.4 1989 1.8 1990 1.7
1991 1.2 1992 1.1 1993 1.2
1994 1.1 1995 1.7 1996 1.4
1997 1.8 1998 2.5 1999 2.5
2000 4 2001 4.3 2002 3.2
2003 2.5 2004 2.6 2005 2.5

each year period, the slope quantifying each successively longer
history. The following table shows the values of the slope for
the histories obtained for each year.

3.3. Empirical evidence for the change of structure

Studying the cumulative history of the index of market struc-
ture (Fig. 2), it is intuitive that a major change is occurring since
around 1997, imposing a new dynamic structure. This intuition
is now investigated by empirical means.

Fig. 3 presents the empirical evidence for the concentration
of seisms in the period after 1997.

Any of these crashes ever compares to the one of 1987. In-
deed, there are some sound reasons to suspect the existence
of different dynamics through time in the evolution of finan-
cial markets. The 1987 crash singles out as the deepest gen-
eral crisis, incomparable to the following ones. The subsequent
years witnessed the response to that shock through the construc-
tion of new methods of regulation. For a period, not only no
large seisms occurred, but also only smaller fluctuations are de-
tectable. Yet, since the second half of the nineties, we obtain
higher average values of the index S and a concentration of a
number of crashes and their replica. This difference in the em-
pirically described evolution suggests that the Clinton period of
the “Internet boom” corresponded to a new structure of the mar-
ket or to emergence of a new phase of turbulence in the financial
markets.

Complementary evidence is provided by the computation of
the Hurst exponent for the period under consideration: whereas
for 1973–1997 the exponent is H = 0.7, for the time interval
1997–2006 it is H = 0.87, indicating stronger evidence for long
term memory.

Fig. 4 shows the value of the Hurst exponents for both peri-
ods, compared to the values obtained from time permuted data,
suggesting the presence and the evolution of some structure.
For the recent period, this structure is not under the impact of
larger seisms (such as the Black Monday) although it is defined
by frequent and important seismic activity.
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