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This paper investigates the dynamics of stocks in the S&P 500 index for the last 30 years. Using
a stochastic geometry technique, we investigate the evolution of the market space and define a
new measure for that purpose that is a robust index of the dynamics of the market structure
and provides information on the intensity and the sectoral impact of crises. With this measure,
we analyse the effects of extreme phenomena on the geometry of the market. Nine crashes
between 1987 and 2001 are compared by looking at the way they modify the shape of the
manifold that describes the S&P 500 market space.
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1. Introduction

In 1999, Mantegna defined a distance metric based on the
correlation coefficients between the log-price difference of
a pair of market securities. This metric allows the deter-
mination of the distance between stocks evolving in time
in a synchronous fashion. Since the metric was further
discussed by Mantegna and Stanley (2000) in the book
that coined the term ‘Econophysics’, it has been applied in
a considerable number of research works (Kullmann et al.
2000, Bonanno et al. 2001a, b, 2003, 2004, Gopikrishnan
et al. 2001, Marsili 2002, Onnela et al. 2003c, Matteo et al.
2004). The fact that the metric is a properly defined
distance gives a meaning to geometric notions in the
study of the market. As Mantegna (1999) did when
the distance was first introduced, many papers using the
metric follow a topological approach.

Provided that a distance exists between stocks, it is
sufficient to form an additional hypothesis on the topolo-
gical space of the stocks (such as, for example, choosing
the subdominant ultrametric space, which is obtained
from the minimal-spanning tree that links the stocks
(Mantegna and Stanley 2000)) in order to end up with a
connectivity pattern for the stocks. In so doing, one can
naturally move away from a situation where all the stocks

are connected to a network of stocks, in which the con-
nectivity pattern is endogenously determined. From the
topological point of view, this opens up a large number of
promising possibilities for exploration.

Using Mantegna’s metric we followed a different per-
spective. In a previous contribution (Vilela Mendes et al.
2003) we developed a method for the reconstruction of an
economic space. By using a stochastic geometry techni-
que, we proved that economic spaces are low-dimensional
entities and that this low-dimensionality is caused by
the small proportion of systematic information present
in the correlations among stocks. Using our recon-
struction method we found that part of the correlation
contribution is virtually indistinguishable from random
and surrogate data (obtained by independent time permu-
tation for each stock).

In the present paper, we investigate the hypothesis that
market spaces uniformly contract during crashes along
their effective dimensions and conclude that, otherwise,
some crashes may act differently in specific directions,
causing interesting changes in the shape of the market
space. In order to capture that distortion effect, a structure
index is used to compute the lack of uniformity among the
market effective dimensions. As a consequence, we are
able to characterize the structures that emerge in relevant
historical periods and to identify the economic sectors
that are associated with important changes in the leading
directions of the evolving market space.*Corresponding author. Email: tanya@iseg.utl.pt
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It is observed empirically that both during expansion
and normal periods the market tends toward randomness,
whereas in disturbed periods its structure is reinforced,
not only in the topological sense (as revealed by clustering
measures) but also in the geometrical sense, considering
distortions of form. From this observation we propose
a new measure for the dynamics of market structure
that captures that distortion effect in the shape of the
market space.

Other authors have also reported the existence of a
dynamic pattern during market crashes (Drozdz et al.
2002, Lillo and Mantegna 2002, Marsili 2002, Onnela
et al. 2002, 2003a, b, Sornette 2002, Sornette and
Helmstetter 2003, Johansen and Sornette 2002, 2004).
Sornette and co-workers successfully demonstrated that
dynamic patterns can often be found in preceding events.
For several extreme phenomena, they found evidence of
incoming instabilities in the precursory patterns of time
trajectories of market data (such as price, volume and
volatility variables). Among their main contributions,
there is an issue that appears to be crucial for understand-
ing the behaviour of the market: the identification of
a distinct signature for endogenous and exogenous
shocks originating crashes. In particular, they proved a
systematic association of large events with positive feed-
back processes. Later in the paper we shall address that
issue while applying our structure index to discriminate
distinct processes at work in the S&P 500 stock market.

The identification of economic sectors as clusters of
stocks with similar economic dynamics was reported by
Bonanno et al. (2001b), Gopikrishnan et al. (2001) and
Marsili (2002). Gopikrishnan et al. (2001) used techniques
that are related to the metric we use, although with a
different perspective. Diagonalizing the correlation
matrix, they tried to identify particular eigenvectors
with traditional industrial sectors. In our analysis,
the effective dimensions of a market space may not
correspond to economic sectors. We argue that the lack
of uniformity among the effective dimensions reveals the
existence of a dynamic pattern (which we empirically
verify to correspond to crashes). To evaluate the impact
of those extreme phenomena in different economic sectors
(and the sectoral dynamics among different crashes),
we compute the index of market structure for different
market spaces, each comprising stocks that belong to a
specific economic sector.

The fact that the correlation matrix changes in crash
periods has also been shown by Onnela et al. (2002,
2003a, b). Using clustering techniques, they examined
the occurrence of changes in the stock market from a
topological perspective. From the minimal-spanning tree
that links the stocks, they showed that, during a market
crisis, there may be (as on Black Monday) a topological
shrinking of the tree.

However, less important market crashes cannot be

observed from the correlation matrix itself. While extreme

events such as Black Monday are captured through

changes in the correlation matrix, those with a smaller

impact on the market synchronous behaviour require a

fine-grain approach in order to be identified.
In our method, after using the correlation matrix to

prove that economic spaces are low-dimensional entities
(see also Vilela Mendes et al. (2003)), we focus on the
geometrical aspects of those reduced spaces and show
the impact of market crashes along the dimensions that
carry the systematic information related to the market
correlation structure. During a crash, the specific
directions corresponding to the effective dimensions of a
market space are affected differently, causing changes
in the space shape. Experimentally, we observe that,
in disturbed periods, the market space increases its
structured evolution, not only in the topological sense
(as revealed by clustering measures) but also in the
geometrical sense, generating distortions of form.

In sections 2 and 3 the method is explained in detail and
is applied to a set of companies that are, or have been,
in the S&P 500 index. In section 4 we discuss the results
obtained for specific sectors and the role of those sectors
in important market crashes. Finally, a summary and
conclusions are presented.

2. Method

The idea is simply stated in the following terms.

1. Pick a representative set of N stocks and their

historical data of returns over some time interval.

2. From the returns data, using an appropriate metric,

compute the matrix of distances between the

N stocks. The problem is now reduced to an embed-

ding problem in which, given a set of distances

between points, one asks what is the smallest

manifold that contains the set. Given a graph G

and an allowed distortion there are algorithmic

techniques (Linial et al. 1995) to map the graph

vertices to a normed space in such a way that

the distances between the vertices of G match the

distances between their geometric images, up to

the allowed distortion. However, these techniques

are not directly applicable to our problem because,

in the distances between assets, computed from their

return fluctuations, there are systematic and unsyste-

matic contributions. Therefore, to extract factor

information from the market, we have to separate

these two effects. The following stochastic geometryy

technique is used.

yStochastic Geometry concerns the study of random geometric structures. Kendall et al. (1998) and Stoyan et al. (1997) provide
detailed information on the subject.
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3. From the matrix of distances compute the coordi-

nates for the N stocks in a Euclidean space of dimen-

sion smaller than N.

4. Apply the standard analysis of reduction of the

coordinates to the center of massy and compute

the eigenvectors of the inertial tensor.

5. Apply the same technique to surrogate data, namely

to data obtained by independent time permutation

for each stock.z

6. Compare the eigenvalues in point 4 with those in

point 5 and identify the directions for which the

eigenvalues are significantly different as being the

market characteristic dimensions. In so doing,

we are attempting to identify the empirically

constructed variables that drive the market and the

number of surviving eigenvalues is the effective

dimension of this economic space.

7. From the eigenvalues of order smaller than the

number of characteristic dimensions, compute the

difference between the eigenvalues in point 4

and those in point 5. The normalized sum of those

differences is the index S, which measures the

evolution of the distortion effect in the shape of the

market space.

For both surrogate and actual data, the sorted eigen-
values, from large to small, decrease with their order.
In the surrogate case, the amount of decrease is linear
in the order number, proving that the directions are
being extracted from a spherical configuration. The
display of a uniform and smooth decrease in the values
of the sorted eigenvalues is characteristic of random
cases and is also observed experimentally when the
market space is built from historical data corresponding
to a period of business as usual.

Considering the lack of uniformity among the market
effective dimensions we are able to characterize the extent
to which crashes act differently on specific directions,
causing changes in the shape of the market space.
Looking for relevant distortions in the shape of the
S&P 500 market space over the last 30 years, we found
that some of the highest values of the index are those
computed for some important dates, such as 19 October
1987, 27 October 1997 and 11 September 2001.

In addition to the geometrical analysis of the whole
S&P 500 market space, our measure is applied to sets of
stocks that belong to specific economic sectors. The
results show that some crashes act differently on specific
sectors and that the deviation from random behaviour
may be limited to a few days after the day of the crash
and also to a small number of sector-oriented groups
of stocks.

3. Measures

From the returns for each stock,

r ðkÞ ¼ logðptðkÞÞ � logðpt�1ðkÞÞ, ð1Þ

a normalized vector,

q ðkÞ ¼
rðkÞ � hrðkÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðhr2ðkÞi � hrðkÞi2Þ
p , ð2Þ

is defined, where n is the number of components
(number of time labels) in the vector q. With this vector,
one defines the distance between stocks k and l by the
Euclidian distance of the normalized vectors,

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CijÞ

q
¼ kqðkÞ � qðlÞk, ð3Þ

as proposed in Mantegna (1999), with Cij being the
correlation coefficient of the returns r(i) and r(j).

The fact that this is a properly defined distance gives a
meaning to geometric notions and geometric tools in the
study of the market.

Given the set of distances between points, the question
now is reduced to an embedding problem: one asks what is
the smallest manifold that contains the set. If the propor-
tion of systematic information present in the correlations
between stocks is small, then the corresponding manifold
will be a low-dimensional entity. The following stochastic
geometry technique was used for this purpose.

3.1. The stochastic geometry technique

After the distances (dij) are calculated for the set of N
stocks, they are embedded in RD, where D < n, with
coordinates xðkÞ. The center of mass R is computed and
coordinates reduced to the center of mass,

R ¼

P
k xðkÞ

k
, ð4Þ

yðkÞ ¼ xðkÞ � R, ð5Þ

and the inertial tensor,

Tij ¼
X
k

yiðkÞyjðkÞ, ð6Þ

is diagonalized to obtain the set of normalized eigenvec-
tors f�i, eig. The eigenvectors ei define the characteristic
directions of the set of stocks. The characteristic
directions correspond to the eigenvalues (�i), which are
clearly different from those obtained from surrogate data.

yThe concept of the center of mass is that of an average of the masses of the components of a object multiplied by their distances
from a reference point. It is also called the centroid or center of gravity, corresponding to the point of a body (or object) at which the
force of gravity can be considered to act and which undergoes no internal motion. It is a point at which the object’s mass can be
assumed to be concentrated.
zSurrogate data is generated by permuting data (one-day return) of each stock randomly in time. As each stock is independently
permuted, time correlations among stocks disappear while the resulting surrogate data preserve the mean and the variance that
characterize actual data.
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They define a reduced subspace of dimension d, which
carries the systematic information related to the market
correlation structure (Vilela Mendes et al. 2003). In order
to improve the decision criterion on how many eigenva-
lues are clearly different from those obtained from surro-
gate data, the normalized difference � is computed,

�ðiÞ ¼ �ðiÞ þ 1� �0ðiÞ, ð7Þ

and the significantly different eigenvalues are those for
which �ðiÞ > 1=2.

3.2. Index of market structure

Since the largest d eigenvalues define the effective dimen-
sionality of the economic space, at time t, we compute S as

St ¼
Xd
i¼1

�tðiÞ � �0tðiÞ

�0tðiÞ
¼

Xd
i¼1

�tðiÞ

�0tðiÞ
� 1, ð8Þ

where �tð1Þ, �tð2Þ, . . . , �tðdÞ are the largest d eigenvalues of
the market space and �0tð1Þ, �

0
tð2Þ, . . . , �

0
tðdÞ are the largest d

eigenvalues obtained from surrogate data, namely from
data obtained by independent time permutation of each
stock. In computing S, at a given time t, both �t and �0t
are obtained over the same time window and for the same
set of stocks.

Vilela Mendes (2001) proposed an index that quantifies
the effect of structure-generating mechanisms in
dynamical models, based on the fact that a structure in
a collective system acquires a characteristic length larger
than that of the individual components of the system.
We develop this strategy for the definition of our struc-
ture index S: as the dynamics of systems develop a struc-
ture-generating mechanism, the index S measures the
normalized difference between the characteristic size of
those structures and the characteristic size of the
individual components of the system. This is a geometri-
cal approach to define and to measure emergence.

In portfolio optimization models, when the systematic
and unsystematic contributions to the portfolio risk are
distinguished, the former is associated with the correla-
tion between stocks (collective structure) and the latter
with the individual variances of each stock (Vilela
Mendes et al. 2003). Consequently, when S is applied
to the market space, the eigenvalues obtained from
surrogate data (�0t) may be taken as reference values
that represent the characteristic size with which each
leading direction contributes to the shape of the market
whose components were uncorrelated. These eigenvalues
correspond to the characteristic size of the individual
(isolated) components of the market. On the other
hand, the eigenvalues obtained from actual data (�t)
represent the characteristic size of each structure emer-
ging from the dynamics of the market, that is, associated
with each leading direction of the market space.

Although the dynamical structure-generating mechan-
ism in market spaces is not related to positive Lyapunov
exponents as proposed in Vilela Mendes (2001), the

dynamical features we attempt to capture are those
associated with changes occurring in the leading direc-
tions of the market space. As the eigenvalues obtained
from actual data describe the structure emerging from
the dynamics of the correlations between stocks, they
may be taken as a measure of the collective structure
of the market, this being the structure generated by
the dynamics of the market (i.e. by the synchronous
behaviour of stocks).

4. Results and discussion

Results were computed in relation to actual daily returns
data as well as to surrogate data that were generated by
permuting each stock (one-day return data) randomly
in time. As each stock is independently permuted, time
correlations among stocks disappear, while the resulting
surrogate data preserve the mean and the variance that
characterize the actual data.

4.1. The S&P 500 effective dimensions

The first set of actual data consists of 249 stocks present
in S&P 500 from July 1973 to March 2003, considering
all the surviving firms for the whole period. Part of the
ordered eigenvalue distributions obtained from
actual data and surrogate data is shown in figure 1.
The plots represent the largest 25 eigenvalues
obtained for the first set of actual data. The largest
25 eigenvalues are compared with the largest 25 eigenva-
lues obtained from surrogate data. In the lower plot,
the comparison between actual and surrogate data is
emphasized by computing their normalized difference �
(equation (7)).

Given the decrease obtained from the seventh eigenva-
lue, we conclude that the market structure is essentially
confined to a six-dimensional subspace. This demon-
strates that this subspace captures the structure of the
deterministic correlations that are driving the market
and that the remainder of the market space may be
considered, for the current purpose, as being generated
by random fluctuations.

To test the robustness of this conclusion, we divided
the data into two chronologically successive batches
(the first consisting of daily data from July 1973 to
March 1988, and the second batch including data from
March 1988 to March 2003) and performed the same
operations. In spite of the changes in the market through
time, in both cases the behaviour of the eigenvalues
distribution is very much the same.

Apart from statistical fluctuations, the reconstructed
spaces exhibit a reasonable degree of stability, confirming
that the number of characteristic dimensions of the
S&P 500 market space is six. Considering this result,
our analysis of the S&P 500 market shape is based on
six-dimensional subspaces. The question now is to assess
the extent to which the occurrence of extreme phenomena
modifies the shape of this subspace and the pattern of
behaviour of firms and sectors.
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Figure 1. S&P 500 249 stocks: decrease of the largest 25 eigenvalues.
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Figure 2. S&P 500 deviation from randomness on different dates, comparing crises and a day of business-as-usual (6 May 1997).
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4.2. The dynamics of crashes

As extreme phenomena are dated events and as we look
for their consequences in the distributions of the six lead-
ing directions, the geometry of the historical data is
defined considering short periods. In this sense, instead
of the large time intervals that defined the reconstruction
of the S&P 500 space as in Vilela Mendes et al. (2003),
we adopted a 16-day window as the chosen time interval
and computed the structure index with the time window
centered at several different dates.

The plots in figure 2 show some of these dates, namely
the crashes of 19 October 1987, Black Monday,
11 September 2001 and 27 October 1997, the second
Black Monday. The second plot in this figure shows
an unimportant date: May 6, 1997, as suggested in
Bonanno et al. (2001b), a typical normal day on the
US stock market. The plots in figure 2 show �(i)
(with i ¼ 1, . . . , 6) obtained from the S&P 500 market
space on four different dates. It is clear that the values
of S obtained for the first and second Black Mondays and
for 11 September 2001 are high, as there is a large
difference in the decrease of the first six eigenvalues
computed from actual and surrogate data.

On the contrary, when the same calculation is
performed around a typical normal date, the results
show that, comparing actual data with surrogate data,
there is quite a small difference in the decrease of the
first six eigenvalues, which is a further piece of evidence
for the robustness of our method.

The geometrical changes in the shape of the market
space describe the structural evolution of the character-
istic dimensions. As previously indicated, normal periods

qualitatively tend to randomness, whereas disturbed
periods will tend away from randomness. The null
hypothesis for calculating S would state that, independent
of the period (normal or disturbed) around which the
index is computed, the decrease of the first six eigenvalues
is equivalent to that obtained from uncorrelated data
(with the same mean, distribution and variance of the
actual data and S calculated using the same time window
in both situations).

A less detailed but more extensive result is presented in
figure 3, where the plot shows the daily values of S for the
30 year period. We used a time moving window of 16 days
on a market space including 249 stocks, i.e. all firms
surviving throughout the whole period. The eight highest
values of S are marked on the plot. The highest peaks are
identified and correspond to the following crashes:

1. October 1987 5. April 1999

2. October 1989 6. Dec. 2000/Jan. 2001

3. October 1997 7. April 2001

4. October 1998 8. September 2001

The ranking of the crashes according to the measure of
S and its explanation is as follows.

1. October 1987: Black Monday.
2. December 2000 to January 2001: Argentinean

financial crisis (Argentina and Turkey bond market
sell-off).

3. October 1989: the US stock market falls almost
7%.

4. September 2001: attack on the Twin Towers.
5. April 1999: Nikkei crash (Japan).
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Figure 3. Evolution of the index S, measuring the evolution of the S&P 500 structure.
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6. March/April 2001: according to the NBER a
recession began in the US in March 2001.

7. October 1998: Russian crash.
8. October 1997: Asian crash, the second Black

Monday.

It is quite obvious from figure 3 that we have two periods
of crises, clustering in 1987–1989 and in 1997–2001: the
nature of these periods is discussed below. It should also
be noted that some of the events in the list refer to crises in
emergent market countries, with considerable effects
on the dynamics of the world economy; others refer to
the effect of different factors. Indeed, the nature of the
triggering factors varies widely. The 1987 crash is well
researched and corresponds to a major malfunctioning of
the financial system. AsWright (2002) points out, the Dow
Jones suffered a major loss of 22.61% on 19 October 1987,
whereas the losses were 12.82% on 28 October 1929
and 11.73% on 29 October. Considering the 55 days
around the trough, the accumulated loss was 39.6% in
1929 and 36.1% in 1987.

Having identified the events corresponding to the eight
highest values (peaks) of S in the last 30 years (figure 3),
we reconsidered our data, investigating the periods
around each peak. In addition to providing a more
accurate picture of the evolution, it allows for a better
measurement, since, at each window, we consider a larger
number of companies in the S&P 500. For the purpose of
comparison, the first plot in figure 4 shows the behaviour
of S in the region of the highest peak compared with the
values of S around a typical normal day on the US stock
market (table 1).

Unsurprisingly, the highest peak corresponds to Black
Monday, which is not only the largest peak, but also

the longest-lasting crisis. The most interesting change in
the ranking of crashes concerns the appearance of the
NASDAQ collapse in April 2000, which was hidden by
the fact that some emerging firms in the nineties were not
considered in our previous data set since they did not exist
for the whole (30 year) period. Yet, when they are
considered, the real picture of a turbulent market appears
very clearly: it was in the Information Technology and
Telecommunication sector that most speculation and
stock activity concentrated in the late nineties, during
the Internet bubble, and the NASDAQ crash marks
its end. This crash demonstrates the dimension of this
speculative process. The NASDAQ attained its highest
peak by early March 2000, and then its all-time largest
loss by April (35% of the loss in relation to the peak the
previous month) (figures 5 and 6).

In order to check the predictive character of our
structure index, a smaller time interval (10 day window)
was chosen for the computation of S. The idea was to
better observe the behaviour of S before the window hit
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Figure 4. Black Monday and a day of business-as-usual.

Table 1. Ranking of crises according to the value of Smax.

Ranking Date Smax

Stocks
included

1 October 1987 37.7 312
2 Dec. 2000/Jan. 2001 16.2 426
3 October 1987 11.3 330
4 Mar/April 2001 8.5 426
5 April 2000 8.6 424
6 April 1999 8.1 417
7 October 1997 7.1 408
8 October 1998 6.4 414
9 September 2001 6.3 426
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the specific day of the crash, mainly on 19 October 1987
and 27 October 1997. It is remarkable that the behaviour
of S remains almost unchanged before the 10 day window
hits the day of the crash and after leaving the region
comprising that time interval.

In the next section, sectoral dynamics is taken into
account, showing that some crises tend to concentrate
in specific sectors, while other crises tend to exhibit a
pattern of perturbation in all sectors.

4.3. Comparison of sectoral dynamics

When, instead of the whole set of stocks, we consider
sub-sets including the stocks of firms belonging to the
same economic sectory and compute the index of market
structure for each of these sub-sets, evidence of some
interesting properties emerges.

In a previous paper and using several topological
indexes (Vilela Mendes et al. 2003), we verified that, in
periods of expansion, sector-oriented sub-sets are charac-
terized by a smaller average distance between stocks.
The average behaviour of companies belonging to the

same economic sector is more synchronous than the beha-
viour of the overall market taken as a whole: in the jungle
of the crisis, tribes of firms act together.

We now analyse sectoral dynamics by considering
the consequences of crashes on the leading directions of
nine sector-oriented market spaces, each restricted to
stocks in one of the following sectors: Energy,
Materials, Industry, Consumer Discretionary, Consumer
Staples, Health Care, Financials, Information
Technology and Utilities.

The histograms in figures 7–9 show the value of Smax

obtained from the nine different market spaces, all for the
same time period, which is indicated at the top of the plot.
The results show the remarkable impact of the Asian
crisis on the Financial sector and the strong effect of the
attack on the Twin Towers on the Materials and
Industrial sectors.

From the plots in figures 7–9 we can see that some
crises tend to concentrate in a few specific sectors
(financial companies for the Asian crash, industrial
materials and financial companies for the case of the
reaction to 11 September). In contrast, the Black
Monday crisis exhibits a pattern of perturbation in all
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Figure 5. Crises of 1997, 1998, 1999 and September 2001.

yDetailed structures of sectors and other information from Global Industry Classification Standard (GICS�), available at
http://www.standardpoors.com/, referenced in June, 2005.
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sectors (figure 9). The plot in figure 9 shows the extra-
ordinarily unique character of Black Monday 1987: this is
the only case of a crash provoking similar dynamics in all
major sectors, whereas in all other crises the dynamics
and time pattern of the main sectors is clearly divergent.
Table 2 summarizes the sectoral pattern of the crashes,
indicating the sectors leading the structural change.

From the above results, one can observe that the
Financials sector is the sector that most frequently
appears as a leading sector. Its appearance as the leading
sector in both the Argentinean and Asian crises is in
accordance with the appropriate expectations, since
each of these crises corresponds to a major malfunction-
ing of the financial system. Another encouraging result
refers to the Information Technology leadership in the
NASDAQ crisis, settling the end of the Internet Bubble
in the second half of the nineties.

Finally, we compare the sectoral dynamics among
different crashes, taking the examples of Materials
and Financials. Because in the Black Monday crisis
the index S reaches very high values in all sectors,
this crisis was intentionally excluded from the plots in
figure 10.

Returning to the geometrical tail of our index, a three-
dimensional look at the market space that evolves
from October 1989 to September 2001 and comprises,
on average, 80 Financial stocks (the lower plot in
figure 10) reveals that: (i) it starts from an elliptical
form (in 1989), (ii) it acquires prominence in a particular
direction in the 1997 Asian Crash, and (iii) it returns to
a close-to-spherical form until the Argentinean
Financial crisis in December 2000. After a partial
shape recovery, a new relevant distortion appears in
September, 2001.

A smoother dynamics characterizes the market space
built from stocks in the Materials sector along the
same time period (1989 to 2001). According to the
results presented above (the upper plot of figure 10),
the only relevant shape distortion of that market space
is that taking place on 11 September 2001, when the
structure index S reaches a value three times higher
than the highest value obtained so far for the Materials
market space.

5. Conclusions

A stochastic geometry technique has proven to be useful
for the purpose of describing and interpreting the
evolution and changes in the dynamics of a market.
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Figure 10. Materials and Financials dynamics.

Table 2. Description of the sectors dominating each crash.

Date Leading sectors

October 1987, Black Monday All
January 2001, Argentinean crisis Financials
October 1989, US stock market Consumer staples/

Financials
September 2001, Twin Towers Industrials/Materials/

Financials
April 2000, NASDAQ Information

Technology (IT)
October 1998, Russian crash Energy/Utilities
April 1999, Nikkei crash Consumer discretionary
April 2001, US recession Energy/IT
October 1997, Asian crash Financials
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Furthermore, the index S, as defined in this paper,
allows for a useful taxonomy of the nine major stock
market crises occurring in the last 30 years. The measure
S proved to be useful and capable of discriminating
among the distinct processes at work in the stock market.

As the index S captures the lack of uniformity among
themarket effective dimensions, we are able to characterize
the extent to which crashes act differently in specific direc-
tions, causing changes in the shape of the market space.
Looking for relevant distortions in the shape of the
S&P 500 market space over the last 30 years,
we identified the events corresponding to crises in
emergent market countries, with considerable effects on
the dynamics of the world economy. Others events
that were also identified refer to the effect of different
factors, showing that the nature of the triggering factors
varies widely.

The identification of the characteristics of each crisis
allows for their differentiation. Some crises were caused
either by disarrangements of national stock markets
from emerging economies (Russia, Asia) and global
players (Japan) or by purely exogenous factors (the
11 September attack). The crash provoked by exogenous
factors is less consequential and is rapidly superseded.
Instead, the Black Monday crisis followed another
pattern: it is deeper, longer and involved a large number
of sectors. The Argentinean crises (December 2000 to
January 2001) and the following NASDAQ crisis
(April 2000) and the US recession (April 2001) initiated
or followed the end of the Internet Bubble of the second
half of the nineties.

Black Monday (1987) was the deepest and longest of
all the crashes, as well as the more general, since it
involved all economic sectors. The data suggest that
another structural crisis may be at work in the clustering
of six crashes between April 1997 and September 2001.

Finally, we have provided evidence of the existence of
structure in financial market dynamics and, furthermore,
of relevant changes in structure, mostly in periods
of crises and crashes. Considering this evidence, the
predictive character of our structure index is to be
explored in future work.
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