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Abstract

Small-world (SW) networks have been identified in many different fields. Topological coefficients like the clus
coefficient and the characteristic path length have been used in the past for a qualitative characterization of these
Here a dynamical approach is used to characterize the small-world phenomenon. Using the Watts–Strogatzβ-model, a coupled
map dynamical system is defined on the network. Entrance to and exit from the SW phase are related to the behav
ergodic invariants of the dynamics.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Networks are prevalent in all domains of life a
science. Social, economic and political networks
the backbone of human society. The internet i
network. The metabolic processes of living bein
are a network with the substrates as nodes that
linked together whenever they participate in the sa
biochemical reaction. Protein–protein as well as g
expression and regulation are biological networks,
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Regular lattices and random graphs [1] have b
studied for a long time. More recently [2,3] sma
world networks became the object of growing atte
tion and were identified in many different fields. Th
seem to be the underlying structure for some imp
tant phenomena like the rapid spread of diseases
social networks, cooperative behavior between c
peting agents [5], problem solving organizations a
communication networks.

Topologically, small-world (SW) networks ar
identified by the values of two statistical properties

– theclustering coefficient(CC) that measures th
average probability for two agents, having a co
mon neighbor, to be themselves connected an
.
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– the characteristicpath length(PL), that is, the
average length of the shortest path connec
each pair of agents.

Regular lattices have long path lengths and h
clustering, whereas random graphs have short
lengths but low clustering. SW networks exhibit sh
PL’s and, at the same time, high CC’s.

In many model networks, the simultaneous occ
rence of high CC and low PL is observed over an
terval, between order and randomness, which is ca
the SW phase. However, this phenomenon can onl
defined as a phase, in the statistical mechanics sen
order parameters are found to characterize the reg
to-SW and the SW-to-random phase transitions.
ternately, the SW region might simply be a crosso
phenomenon between regular and random graphs

Further information on the SW phenomenon h
been obtained in the past from the study of sev
quantities. Farkas et al. [7] studied the spectral den
of the adjacency matrix, with increasing randomne
concluding that, in spite of the blurring of singula
ties, a consistently high value of the third moment i
plies the existence of a large number of triangles in
SW network. Monasson [8], on the other hand, stud
the spectral properties of the Laplacian operator,
characterizes the time evolution of a diffusive field a
localization properties on the graph.

In this Letter a dynamical systems approach
used to characterize the small-world phenomen
Using the Watts–Strogatzβ-model [3], we study a
coupled map system on the network, with interactio
defined by the network connections. The SW ph
is related to the behavior of the ergodic invariants
the dynamics. Entrance to the SW phase is rela
to the Lyapunov spectrum and exit from the S
phase corresponds to the region where “entropy”
“conditional exponents entropy” [9,10] split apart.

2. The dynamical model

Consider aβ-family of models, each one withN
agents on a circle and periodic boundary conditio
For β = 0, each agent in the model is connected to
2v nearest neighbors. Forβ �= 0, the network structure
is obtained by looking at each one of the connecti
f

of theβ = 0 structure and, with probabilityβ , replac-
ing this connection by a new random one [3].

On each one of theβ-networks, a dynamica
system is defined, with a map at each node
convex-coupling interactions defined by the netw
connections

(1)xi(t + 1) =
N∑

j=1

Wij f
(
xj (t)

)
,

where

(2)

Wij =



1− nv(i)
2v

c if i = j,
c

2v
if i �= j andi is connected toj,

0 otherwise,

nv(i) is the number of agents connected toi andc is a
control parameter.

For the agent dynamics we choose

(3)f (x) = αx mod1.

Typically α = 2.
For theβ = 0 network, each agent has exactlyv

neighbors and the Lyapunov exponents are [10]

(4)λ0(k) = log

{
α

(
1− c + c

v

v∑
j=1

cos(jθk)

)}
,

with θk = 2πk
N

, k = 0, . . . ,N − 1. In the N → ∞
limit, the Lyapunov spectrum is a continuous smo
function, as illustrated in the upper plot of Fig.
As we will shortly see, the random rewiring of th
network induces shifts on the Lyapunov spectru
For simplicity c is chosen in such a way that, fo
β = 0, the lowest Lyapunov exponent is zero. Asβ

increases, the matrices of the tangent map cease
regularly organized, the Lyapunov spectrum devel
gaps and some of the exponents become negative.
is illustrated in the lower plot of Fig. 1 forN = 800
and 2v = 6.

It is also the appearance of random long ran
connections that is responsible for the reduction of
path length in SW networks. Therefore it is natura
consider the modifications in the Lyapunov spectr
as the dynamical signature of the onset of the
phase. Of particular dynamical significance is the s
of part of the spectrum towards negative values. T
is, in this model, the randomness arising from
rewiring leads to an effective reduction on the num
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Fig. 1. Lyapunov spectrum forβ = 0 and for a typical network a
β = 0.2 (N = 800, 2v = 6).

of dynamical degrees of freedom. We defineDβ

(5)Dβ = −
∑
λi<0

λi

to quantify this effect.1 To characterize the modifica
tions of the Lyapunov spectrum, another possibi
would be to measure the singular part of the spect
associated to the gaps. However, the natural inter
in the spectrum, that arise from the finiteness ofN ,
make this measurement less reliable.

In the upper plot of Fig. 2 we show the avera
values ofDβ taken over 100 different samples for ea
β (with N = 800 and 6 as the average degree of
network). A good fit to all the data shown in the log
log lower plot of Fig. 2 is

(6)Dβ = cN(β − βc1)
η1,

with βc1 � 10−5 andη1 = 1.01± 0.06.
In practice it is only afterβ 	 10−3 that small-

world effects (andDβ values) become appreciab
Nevertheless, the fact that the data is consistent
βc1 = 0 implies that, using1

N
Dβ as an order paramete

for the small-world phase, this phase starts atβ = 0+,
the regular phase being only the isolated pointβ = 0.
This is consistent with the analysis in Ref. [11].

1 For otherc values we would define

Dβ = −
∑

(λi−λmin(β=0))<0

(
λi − λmin(β = 0)

)
.

Fig. 2. TheDβ parameter (“SW order parameter”) averaged o
100 sample networks (N = 100, . . . ,800, 2v = 6).

Barthélémy and Amaral [6] have studied the av
age path lengthL for this model as a function of th
network sizeN . They findL to be a scaling function o
N/N∗, N∗ being a crossover size, function of the d
gree of disorder(N∗ ∼ β−2/3). This would imply the
small-world (SW) effect to be not a phase transiti
but a crossover phenomenon. An alternative poin
view would be that SW is indeed a phase but thatL is
not the appropriate order parameter. WithDβ we find
no evidence for a crossover. Notice that in Fig. 2 p
of the data consistent with Eq. (6) is obtained for n
work sizes belowN∗ (as determined by the authors
Ref. [6]).

To characterize the exit from the SW phase, we
the notion ofconditional Lyapunov exponents. They
were introduced by Pecora and Carroll in their stu
of the synchronization of chaotic systems [12]. Li
the Lyapunov exponents, the conditional expone
are well-defined ergodic invariants [9]. The idea is t
the conditions that in Oseledec’s theorem insure
existence of the Lyapunov exponents also estab
the existence of characteristic exponents formed
subblocks of the tangent map matrix. For deta
on the role of the conditional exponents as ergo
invariants characterizing self-organization in mu
agent systems, we refer to [10].

Here, for each agenti, we consider a subblock o
dimensiondi × di formed by himself and those th
are connected to it. The positive conditional expone
λ∗

β(j) associated to each subblock are compu
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and a dimension-weighed sum is performed over
subblocks. This gives a version of what elsewh
[9,10] has been called aconditional exponents entrop.

(7)h∗
β =

N∑
i=1

(
1

di

∑
λ∗

β>0

λ∗
β(j)

)
.

Subtractingh∗
β from the sum of the positive Lyapuno

exponents,hβ = ∑
λβ>0 λβ(j), we define the coeffi

cient

(8)Cβ =
∣∣∣∣ h∗

0 − h0

h∗
β − hβ

∣∣∣∣,

which is also an ergodic invariant.
This coefficient has the following dynamical inte

pretation: the Lyapunov exponents measure the ra
information production or, from an alternative point
view, they define the dynamical freedom of the syste
in the sense that they control the amount of cha
that is needed today to have an effect on the fut
In this sense the larger a Lyapunov exponent is,
freer the system is in that particular direction, beca
a very small change in the present state will induc
large change in the future. The conditional expone
have a similar interpretation concerning the dyna
ics as seen from the point of view of each agent
his neighborhood [10]. However, the actual inform
tion production rate is given by the sum of the posit
Lyapunov exponents, not by the sum of the conditio
exponents. Therefore, the quantityh∗

β − hβ is a mea-
sure of apparent dynamical freedom (or apparent
of information production). As self-organization in
system concerns the dynamical relation of the wh
to its parts, this quantity may also be looked at a
measure of dynamical self-organization.

Cβ involves the ratio of differences between loc
and global rates of entropy production. Notice ho
ever that, whereas in the numerator neighborhoods
local in the Jacobian matrix, in the denominator,
cause of the random rewiring, neighborhoods invo
very different sites. Therefore one should not exp
Cβ to be a simple function.

In Fig. 3 we show the average values ofCβ

taken over 100 different samples for eachβ (with
6 as the average degree of the network andN =
Fig. 3. TheCβ parameter (“SW exit”) averaged over 100 sam
networks (N = 100, . . . ,800, 2v = 6).

100,200,400,600,800).Notice theN -independence2

of Cβ which follows from the fact that, in Eq. (8)
is defined as a ratio of two quantities with the sa
N -dependence. For smallβ values the difference be
tween the entropy and the conditional exponents
tropy is a small quantity, that may be easily co
puted from the network parameters. It means that e
agent may have exact information on the global beh
ior from observation of his own neighborhood. Wh
β increases the difference changes sign and beco
very large, meaning that the neighborhood inform
tion has ceased to provide reliable information on
global dynamics of the network. This is the dynami
correlate of the decreasing cluster properties and
lows us to define the transition at the divergence p
βc2 of Cβ . We find

(9)βc2 	 0.04.

Near the transition region

Cβ ∼ |β − βc2|−η2,

with η2 	 1.14 below the transition andη2 	 0.93
above it.

2 The apparentN -dependence nearβc2 is due to numerica
imprecisions near the point whereh∗

β − hβ changes sign.
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3. Remarks and conclusions

(1) The ergodic invariants (Lyapunov spectru
and conditional exponents) provide a link between
topological properties of SW networks and the dyna
ical behavior of a coupled map system modelled
the network. In addition, the power laws obeyed
these invariants provide a framework to identify t
SW phenomenon as a phase in the statistical mec
ics sense.

(2) Coupled map behavior, evolution of a diffusi
field [8] and spectrum of the adjacency matrix
13] supply complementary information on the S
phenomenon. It is therefore conceivable that quant
obtained from these other approaches might also
used to construct order parameters characterizing
SW phase.

(3) A direct relation seems to exist between
topological properties of a network and the dynami
behavior of dynamical systems living on that netwo
However, this relation is only circumstantial and
would be interesting to establish it in a more rigoro
basis.

(4) We have also computed theCβ andDβ coeffi-
cients for other neighborhood structures, ranging fr
2ν = 4 to 2ν = 10. The conclusion was that bothCβ

andDβ are robust dynamical characterizations of
-

SW phenomenon. On the range that was explored
transition point ofCβ was found to be 2ν-independent
As forDβ , although it has a weak dependence onν for
largeβ , for smallβ its behavior is always consiste
with a transition atβ ≈ 0 and slope≈ 1.
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