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The main problem we address in this paper is whether function deter-
mines form when a society of agents organizes itself for some purpose or
whether the organizing method is more important than the functionality
in determining the structure of the ensemble.

As an example, we use a neural network that learns the same function
by two different learning methods. For sufficiently large networks, very
different structures may indeed be obtained for the same functionality.
Clustering, characteristic path length, and hierarchy are structural differ-
ences, which in turn have implications on the robustness and adaptability
of the networks.

In networks, as opposed to simple graphs, the connections between the
agents are not necessarily symmetric and may have positive or negative
signs. New characteristic coefficients are introduced to characterize this
richer connectivity structure.

| 1. Introduction

Networks of interacting agents play an important modeling role in fields
as diverse as computer science, biology, ecology, economy, and sociol-
ogy. An important notion in these networks is the distance between
two agents. Depending on the circumstances, distance may be mea-
sured by the strength of interaction between the agents, by their spatial
distance, or by some other criterium expressing the existence of a link
between the agents. Based on this notion, global parameters have been
constructed to characterize the connectivity structure of the networks.
Two of them are the clustering coefficient and the characteristic path
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length. The clustering coefficient (CC) measures the average probability
that two agents, having a common neighbor, are themselves connected.
The characteristic path length (CPL) is the average length of the shortest
path connecting each pair of agents. These coefficients are sufficient to
distinguish randomly connected networks from ordered networks and
from small-world networks. In ordered networks, the agents are con-
nected as in a crystal lattice, clustering is high and the CPL is large too.
In randomly connected networks, clustering and path length are low,
whereas in small-world networks [1-3] clustering may be high while the
path length is kept at a low level.

An important question is to find out what the mechanisms are, that
lead to each type of structure, when a network of interacting agents
evolves in time. In general, networks of agents organize themselves for
some purpose. For example, a country is organized to insure the survival
and well-being of its inhabitants (or of a subset thereof, anyway), supply
networks are organized to bring food to a town every day, and the
network of neurons in the brain is organized to process the information
that arrives through the sensorial organs. Therefore one might be led
to think that it is the function of the network that determines its form.
A simple example shows that it is not necessarily so. Restaurants and
private homes in a large city do not keep more than a few days worth
of food and without a continuous replenishment of their reserves the
city would collapse within a few days. The supply problem of several
million inhabitants is solved every day in most cities by a self-organized
network of producers, transporters, and retailers where clustering and
a short path length are the rule. Alternatively, in a centralized economy,
a different, very structured system may be organized with producers
delivering their goods to a local cooperative, where they are collected
by a state-organized transportation agency, which then delivers it to
a few centralized stores, where all consumers are supposed to acquire
their goods. In this case one has a very regular structure. People might
say that one system is more efficient than the other, but that is quite
irrelevant as far as functionality is concerned. In both cases the city is
supplied and the fact is, that the structure of the two networks is quite
different.

That institutions used in different societies to achieve similar aims
may be very different is a well-known fact. This also casts consider-
able doubt on any attempts to characterize the uniqueness of optimal
solutions. The solutions that are arrived at must be largely history-
dependent. Any optimality criterium should therefore not be based
on the functionality of the solution, but on other factors like stability,
resistance to change, adaptability to a changing environment, and so
forth.

Of course, if there is only one possible configuration of the net-
work for each desired functionality then, whenever the functionality is
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achieved, the form is fixed. In that case function determines form and
the form does not depend on the method by which the functionality is
achieved. However, this is not the most frequent situation in networks
of many agents. What we call the function of the network is associated
to a few collective variables, like survival of the group, making war on a
neighboring country, maintaining a few simple myths, extracting global
concepts like color or pain from a multitude of external stimuli, and
so on. That is, the function of the network is related to a number of
variables much smaller than the number of agents or internal degrees
of freedom of the network. In that case it is to be expected that several
distinct configurations of the network will be associated to the same
functionality.

In the space of all the configurations that realize a given function,
an important question is to know what types of network structures
do exist, concerning in particular their connectivity properties (e.g.,
clustering, path length). This is the main problem we address in this
paper. Because general statements about networks tend to be vague
and do not go a long way, we concentrate on neural network (NN)
models that learn to represent a given function.! The use of NNs as
a paradigm for networks of interacting agents is not so restrictive as
it may seem because, as shown in [§], they are largely equivalent to
many other connectionist systems. The distance between the agents
(nodes) in the network is defined by the inverse of the absolute value of
the connection strength. Nodes are considered to be connected if the
connection strength exceeds a certain threshold. This threshold is not
fixed a priori, but is determined by a clustering algorithm as the lowest
value that insures connectivity of the whole network.

Two learning methods for the same function are tested and, using
the distance defined by the connection strengths, CCs and CPLs are
computed. The general conclusion is that, in fact, function does not de-
termine form, very different structures are obtained (on average) by the
two methods.? The first learning algorithm is in the class of reinforce-
ment learning methods, of which several variants exist [7, 8], whereas,
in the second, the agents (nodes) are punished by mistakes but nothing
happens when the answer is the desired one [9]. We will denote the
first method by reinforcement learning method (RLM) and the second
by learning from mistakes (LEM).

YAlbertini and Sontag [4] have written that on NNs “function determines form.”
However, they refer to the full detailed dynamics of the network, not to the input-output
binary relationship between a few nodes that we are considering in this paper.

*The V-space of the network configurations compatible with a specified mapping or
a given training set determines what has been called the entropy of the network. An
adequate control of this quantity is important for the generalization problem [6]. The
metric characterization of the V-space given in this paper provides a refinement of the
residual entropy configurations after the learning process.
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The NN, as a network of agents, is richer than the graphs that, in
the past, have been used to study connectivity in networks. This arises
from the fact that not only the connections between nodes may be pos-
itive (excitatory) or negative (inhibitory), but also the connections are
in general asymmetric, one node having an influence over another node
different from the influence it receives from the latter. To characterize
this additional information on the structure of the network we have
introduced new quantities to measure these properties, namely: sym-
metry, cooperation, antagonism, and residuality coefficients as well as
directed path lengths.

I 2. Clustering and path length in goal-oriented networks

As a paradigm for goal-oriented networks, we study a NN which starts
randomly connected (with small connection strengths) and learns to re-
produce a function by two different learning methods. A certain number
of nodes are defined to be input nodes and some others output nodes.
In the numerical experiments we report here, we have taken two nodes
as input, one as output, and the function to be reproduced is a boolean
function like the exclusive OR, for example. Similar results are obtained
for other more complex functions. The only care to be taken is that the
network should have a sufficiently large number of nodes to guarantee
that the subspace of strength connections, compatible with implemen-
tation of that function, is large. Otherwise, if there is only one possible
configuration of connection strengths, function determines form and
the dependence on the learning method cannot be detected. It is also
obvious that, even when the regions in function space, explored by dif-
ferent learning methods, are distinct, it may happen that, by chance,
configurations obtained by different methods do coincide. This is borne
out in our experiments, some overlap being observed between the con-
figurations obtained by different learning methods. However, on av-
erage, different methods explore quite different regions of the function
space.

The results we obtain indicate that the structures resulting from the
RLM exhibit a high CC together with an intermediate value for the CPL.
On the other hand, the structures obtained by the LFM method have a
low CC with CPLs similar to those obtained from random structures,
that is, similar to the structures used to initialize the network. RLM
seems to be largely dependent on the establishment of a highly clustered
configuration while LFM does not require the creation of such an or-
dered structure. One may think of the structures created by the latter
method as being those of a highly adaptive system where specific tasks
are performed without strongly committed configurations.
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i 2.1 The network and the learning algorithms

The network we study is characterized by a nonlayered architecture
representing a fully connected system of 12 agents with connection
strengths initially chosen at random in the interval -0.5 < w,; < 0.5.

The absolute value of the connection strength w;; corresponds to
the inverse distance of the agent pair 7,j. From the initial random
configuration two different learning algorithms were used to obtain an
XOR function. The first one is a hebbian-like method, while the second
relies on the LFM approach, with reinforcement being replaced by a
process of depressing the synaptic connections involved in mistakes [9].
Both have a biological inspiration, the first one corresponding to long
term synaptic potentiation [7] and the second to long term synaptic
depression [10].

In both learning methods, a sigmoid function ¢ is used as the activa-
tion function and the computation of the output signal includes a bias
@, which operates as a regulatory mechanism for the overall activity of
the network. If the network activity is too low, the bias « is decreased
until an appropriate number of firing neurons is obtained. On the other
hand, if the activity exceeds a certain limit, « is increased in order to
keep a low level of activity in the network. A neuron is defined as firing
if its output is above 50% of the maximum output, which is one.

Reinforcement learning method
The connections between firing neurons are strengthened or weakened
according to whether the output is successful or not. The process affects
all firing neurons in the same way. The reinforcement updating rule
follows.
If the output is the correct one
W,

;= W+ ((ﬁ'Y:.Y!.)
otherwise
W = W — (6YI-Y’,-)

i
Y.=¢ (Zk w;.Y,) is the output of neuron 7 and § < 1.
Also, as stated before, the bias is adjusted to keep the overall network
activity at a low level. Saturation is avoided by a global rescaling of all
the coupling strengths, when one of them exceeds a fixed threshold.

Learning from mistakes

If the output happens to be the desired one, nothing is done, otherwise
the connections between firing neurons are depressed by a fixed amount
¢, which is redistributed among the connections between nonfiring neu-

rons,
Wi 1= W — 0
with 6 < 1.
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Asin RLM, there is a global regulatory mechanism to keep the overall
activity at a low level.

I 2.2 Clustering coefficient and characteristic path length

CC and CPL are important statistical parameters used in graph theory.
These two parameters have been the object of growing attention ever
since the small-world phenomenon was identified as an interesting prop-
erty of the structures found in many different fields. The small-world
feature [3] is characteristic of structures with CCs similar to those ob-
tained in regular structures but with CPLs close to those of random
networks.

In the past, graph modeling concerned itself mostly with completely
random or completely regular structures. Regular graphs combine high
CC with large CPL while, in the opposite case, random graphs exhibit
low CC and small CPL. Starting from a completely regular structure and
applying a random rewiring procedure to interpolate between regular
and random networks it has been found [2] that there is a broad interval
of structures over which CPL is almost as small as in random graphs and
yet CC is much greater than expected in the random case. This rewiring
procedure helps to characterize the structural aspects of a network in
the transition from order to disorder.

In the work presented here, the networks move in the opposite direc-
tion, from completely random towards a goal-oriented structure. The
basic intuition is that forcing a randomly weighted network to learn
a function by different learning methods, may lead to different forms
of organization even though the methods are both targeted at reaching
the same functional goal. In particular, we want to find out to what
extent the success of a learning method is dependent on the transition
from disorder to order in the network structure. The connectivity of
the (starting) randomly connected networks provides reference values
that help to characterize the lack of order. In the other extreme, the
more regular structures that arise from learning are evaluated by find-
ing out how much their CC and CPL differ from those that characterize
randomness in the starting configurations.

CC and the CPL usually apply to graph structures that are connected
and sparse. Since the networks we work with are fully-connected struc-
tures, a first step is targeted at obtaining a sparse representation of the
network, with the degree of sparseness generated by the learning method
itself, instead of an a priori specification. Note that, when looking for
a suitable degree of sparseness, one must avoid disconnected graphs
(where the value of the CPL of any disconnected element would be
infinite). For this purpose we construct a graph structure from the
connection strengths.

Complex Systems, 12 (2000) 357-378
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The graph representation of the network

From the # X n matrix W of connection strengths {w ;j} We construct
a n x n distance matrix Dy, with elements d;; = |1/w, | Based on the
distances d;; € Dy, a hierarchical clustermg is then performed using
the nearest nelghbor method. Initially 7 clusters corresponding to the
n agents are considered. Then, at each step, two clusters ¢, and ¢; are
clumped into a single cluster if

d o = min[d%_]

with the distance between clusters being defined by

dc,-cj- = min{d,,}
with p € ¢;and g € ¢;.

This process is continued until there is a single cluster. This clustering
process is also known as the single link method, being the method by
which one obtains the minimal spanning tree (MST) of a graph. In a
connected graph, the MST is a tree of # — 1 edges that minimizes the
sum of the edge distances.

In a network with 7 agents, the hierarchical clustering process takes
n — 1 steps to be completed and uses at each step a particular distance
d; DW to clump two clusters into a single one. Let Cy = {d,},
g =1,...,n—1, be the set of distances d;; € Dy, used at each step of the
clustering, and Ly = max{d_}. It follows that Ly, =d ;.

At this point we are able to define a representation of Dy, with
sparseness replacing full-connectivity in a suitable way. For this purpose,
a boolean graph By, (with 7 vertices being the network nodes) is defined
setting b; = 1if d;; = Ly and b; = 0if d; > Ly,. As usual, null arcs of
Byy are those for which b,; = 0 while for unit arcs b; = 1. Here we want
to consider two nodes i and j to be connected if mthur djord; = Ly,.
Therefore we take b = max{b. b ;}. In section 3 we take into account
directional effects.

Let Ay, be the matrix associated with By,. Fach element a, is the
number of edges of By, that join the vertices i and j and, since BW is a
simple graph, a; {0, 1}.

The degree of By, or its coordination number k, represents the av-
erage number of unit arcs leaving each element of the graph. The
coordination number characterizes the sparseness of the graph and has
an important bearing on its properties [3]. In our approach we obtain
the value of k from the network itself. Therefore we avoid any a priori
estimation and, by the hierarchical clustering method, we also avoid
disconnectivity.

We are also interested in defining Cw = {d}}, [ = 1,...,m, as the set
of distances d;; € Dy, whose values are less than or equal to Ly, and

Tk
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computing 7 = m — (n — 1). Clearly r = 0 is the number of redundant
elements in Cw, that is, the number of distances d;; that, although being
smaller than Ly,, need not be considered in the hierarchical clustering

process. Later on, we discuss the relation between the value of 7 and
the CC of the graph.

Clustering coefficient

The CC of a graph G (averaged over all vertices v of G) measures
whether two vertices adjacent to another vertex v are adjacent to each
other. When CC = 1 one has a group of disconnected but individually
complete subgraphs, while CC = 0 implies that no neighbor of any
vertex v 1s adjacent to any other neighbor of v.

At the end of the learning process, we build an adjacency list from
the matrix Ay, associated with By,. This is done by listing all vertices of
By, and, next to each one, its neighboring vertices. From the adjacency
list of By, the CC of By, may be found in two different ways.

1. The first method computes CC , the value of the CC of each vertex v, by
dividing the number of unit arcs in the neighborhood of v by the total
number of arcs in such a neighborhood, which is given by s (s, — 1)/2, s,
being the size of the adjacency list of vertex v. Averaging over all vertices
of By, we obtain a coefficient which we denote by CAp_.

2. In the second method the calculation of the clustering of By, does not
consider the vertices v of G that have just one vertex in its neighborhood.
For each pair of unit arcs (v,,v,) and (v,,v;) of By, that share a common
vertex v, we count one if (v,,v;) corresponds to a unit arc, otherwise we
count nothing. The total sum is then divided by

1

Z s, (s, = 1)/2

v=1

where s, is the size of the adjacency list of each vertex v of By,. In this
way, vertices with a single vertex in its neighborhood do not contribute
to the value computed by the above expression (since s, — 1 = 0), being
those vertices consequently excluded from the computation of CCy .

Note that, for a typical network, the values of CCy and CAg

tend to be very similar. A significant difference between these val-
ues indicates either that the network has many single-neighbor vertices
(CCB“.,. > CA Bw) or that the distribution of the CCs for each vertex is

very heterogeneous (CCB“J_ < CAB“,)- To control these effects we have,
for our simulations, computed both CAg, and CCyg, -

Previously we defined Cw = {d}} (l = m] as the set of distances
d; € Dy, with values less than or equal to Ly, and 7 = m — (n—1) as the

number of redundant elements in Cw, that is, the number of distances
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d,; that, although being smaller than Ly, are not used in the hierarchical
clustering process.

In a connected graph r provides the cardinality of the cycle basis of
By, or its cyclomatic number. Being a cycle basis of a graph defined
by the set of its elementary cycles that taken together yield the entire
graph, itself a cycle. Later, when discussing the simulation results, we
notice that, depending on the learning method, cycles and trees (i.e.,
connected graphs without cycles) may or not appear in the resulting
network structures. The clustered networks have a high coordination
number while in the opposite case the networks approach a tree-like
structure and, consequently, a low CC.

Characteristic path length

The CPL of a weighted graph is the average length of the shortest path
between any two vertices in the graph. From the # x #n matrix W of
connection strengths {w;} and its corresponding distance matrix Dy,
the weighted graph G, (with # vertices corresponding to the network
nodes) is defined by

g; = min{d;, d;;}.

3}’

We compute the CPL of a weighted graph Gy, by taking for each
pair (,7) in G, with i # j, the smallest distance spl(i,j) between i and ;.
The n(n — 1)/2 edges g,; are sequentially taken from a list where the 8
were sorted in ascending order. In the first step, the smallest g;; in the list
provides the shortest distance between 7 and ;. In the next steps, the new
edge g, ., provides the shortest spl(e,, e,) distance between e; and e, and
may also provide another smallest path length by spl(i,7) + spl(e,, e,) if
e, or e, € {i,f}, namely:

ifi=e, splle,,j)= mm{spl(e’z, ), splley,eq) + splliyj)}
if i =e, sple,,7) = min{spl(e,j),splle,,e;) + spl(i,j)}
ifj=e, splle,,i) = min{spl(e,,i ),spl(ez,el) + spl(i,j)}
ifj=e, spley,i) =min{sple,,i),splie,,e,) + spli,j)}.

In the following steps we check whether the edge being considered,
composed with the previously established minimal paths, defines a path
spl*(i,7) that is smaller than a previously computed spl(i,j). If that
happens spl*(i,j) replaces spl(i, ).

This computation is sequentially repeated until the shortest distance
spl(i, ) between each pair of nodes in the graph is obtained. Averaging
over the n(n — 1)/2 edges of Gy, we obtain the CPL of Gy,.

Results
The results presented here were obtained from several simulations in
networks which start randomly connected. A typical random network
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Figure 1. A typical random network.

is shown in Figure 1. In this figure, the absolute value of each con-
nection strength (1) of the network specifies the gray intensity of the
corresponding patch in the image. White patches represent null connec-
tions (null arcs). Units 1 and 2 are taken to be inputs and unit 12 is the
output. This is the reason why the other units do not connect back to 1
and 2 and unit 12 does not connect back to the others.

The absolute values of the connection strengths correspond to the in-
verse of distances, dark patches represent small distances. With connec-
tion strengths chosen in the interval ~0.5 < w;; < 0.5, an almost black
patch means d; ~ 0, while a white patch corresponds to |d;l ~ 0.5.

The connectivity of random networks provides reference values to
characterize the goal-oriented structures that are obtained by the learn-
ing methods. For this purpose, Figure 2 shows the image of the adja-
cency matrix of a typical random network. It was obtained as follows.

1. Take the network structure represented in Figure 1.

2. Apply the hierarchical clustering process to obtain the distance d,_; € Cy,
used in the previous step of hierarchical clustering.

3. Build the corresponding boolean graph with adjacency matrix shown in
Figure 2. Unit arcs (d,; < d,_,) are represented as black patches while null
arcs (d; > d, ) correspond to white ones.

As shown in Figure 2, the graphs that represent the random struc-
tures used to initialize the network are characterized by a high degree
of sparseness (a small number of black patches in the corresponding
image). The degree k of the graph is much smaller than the number of
agents in the network. Moreover, in these graphs the number of unit
arcs u is usually only slightly larger than 7 — 1, which is the minimum
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Figure 3. Typical LFM network.

value that ensures connectivity. As a consequence, the number of redun-
dant elements in the graph is small and the graph approaches a tree-like
structure, with a small CC (see Table 1).

Figure 3 shows the typical final structure of a network that starts
randomly connected and is organized by LFM. The image shows that
LFM networks are similar to the typical random structure shown in
Figure 1. The distribution of connection strengths is not, in general,
very different from those generated at random, suggesting that LFM
does not require the creation of a very organized structure in order to
reach its functional goal.

The image shown in Figure 4 was obtained following the same steps
as used for the image in Figure 2. It is built from the network shown
in Figure 3 and represents the adjacency matrix of a typical LFM net-
work. Given that the typical LFM structures differ little from a random
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.a-
;

Figure 5. Typical RLM network.

configuration, it exhibits a significant degree of sparseness. Looking at
Figure 4 we see that the number of unit arcs (#) remains close to n — 1,
hence the number of redundant elements in the graph is almost as small
as in random networks. In a significant number of simulations, the final
structures are even closer to tree-like structures, with a consequently
low CC.

Figure 5 shows a typical configuration for a network that learned
through RLM. Small and large distances are not so well distributed as
they were at random, showing that RLM networks move away from the
initial configuration in order to reach its functional goal. The degree of
sparseness of Figure 6 confirms this fact. The degree of sparseness of
a typical RLM structure is smaller than that of a random one and also
smaller than the degree of sparseness of a typical LFM network. Some
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Figure 6. Adjacency matrix of a typical RLM network.

Random | 0.26 0.16 024 0.17 1.6 0.05 33 1.0 |
LFM 025 0.15 0.35 020 2.1 0.2 3.0 0.69
RLM 057 0.19 0.53 0.16 5.6 1.16 45 1.3 |

Table 1. k, CC, and CPL typical values.

of the connection intensities are strongly increased during the learning
process and the final network very often presents a significant degree of
symmetry.

The number of black patches strongly increases in the structure rep-
resented in Figure 6 showing that the number of unit arcs (#) is much
greater than # — 1. Consequently, the number of redundant elements in
the graph is significantly greater than in random networks. As shown
in this figure, the final RLM structures tend to contain cycles and move
away from the tree-like structures that appear in random and LFM
networks.

Table 1 shows typical values for the degree of the graphs k, the
coefficients CC and CA, and the CPL for random, LEM, and RLM
networks. In each case we show the mean x and the standard deviation
o, obtained in the simulations.

Figures 7 and 8 show the distributions of the CC and the CPL for
random, LFM, and RLM networks. As mentioned in the introduction,
even though the regions in function space explored by different learning
methods are distinct, it happens that, by chance, configurations obtained
by different methods may coincide.

Complex Systems, 12 (2000) 357-378
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Figure 8. CPL distribution.

The histograms of both CPL and CC confirm that there is some over-
lap between the configurations obtained by different learning methods.
However, on average, as far as clustering and CPL are concerned, LFM
and RLM exhibit quite different structures.

On the other hand, as far as these parameters are concerned, LFM
networks have structures similar to random networks.
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| 3. Directional network coefficients

The coefficients introduced in this section aim at characterizing the
richer connectivity structure of the learning networks because the strengths
of interaction between agents (and their corresponding spatial distances)
are not necessarily symmetric and may have positive or negative signs.

I 3.1 Directed path length

The directed path length (DPL) of a weighted graph provides the average
length of the shortest directed path between any two vertices in the
graph. In order to compute the DPL of a network we take the n x
matrix W of connection strengths {w,;} and its corresponding distance
matrix Dy, d; = [1/w;l. The weighted and directed graph dG is
defined by setting

dg‘,}- = df;'-

As in the computation of the CPL, the (n(n — 1) — 2) edges are se-
quentially taken from a list with the dg; sorted in ascending order. In
the first step, the smallest dg;; in the list provides the shortest distance
between i and j. In the following steps, each new edge in the list plays a
double role: dg, , provides a distance dpl(e,,¢,) between ¢, and e, by
dplley,e;) = & e, and it may also provide a smaller distance dpl(e,, ) or
dpl(i,e,) whenever e, = j or e, = i. Namely,

if i =e, dplle,j) =min{dpl(e,)),dpl(e;,e,) + dpl(i,j)}
if j = e, dpl(i,e,) = min{dpl(i,e,),dplle,, e;) + dpl(i, ])}.

At each step one checks whether the edge being considered defines a
path dpl*(i,) that is smaller than a previously computed dpl(, ). If that
happens dpl*(i,j) replaces dpl(i,j).

This computation is sequentially repeated until all the 72+ (# - 1) - 2
edges in the list are considered. In so doing, the smallest distance dpl(i, j)
between all pairs of nodes in the graph is obtained. Averaging over the
n(n — 1) — 2 edges of dGyy, we obtain the DPL of dGyy.

Results
Figure 9 shows the distributions of the DPL for random, LFM, and
RLM networks.

Table 2 shows typical values for the degree of the graphs & and the
DPL for random, LFM, and RLM networks. In each case we show the
mean & and the standard deviation o;, obtained in the simulations.

When the orientation of the edges is taken into account, the aver-
age length of the shortest path in random, LFM, and RLM networks
naturally increases. The results show that the three types of networks
exhibit a similar increase as compared to the previously obtained CPL

Complex Systems, 12 (2000) 357-378



372

20

10

Q
1

12

10

Rand

T

1.8 1.9 2 2.1 2.2
Directed Path Length

RLM

-

5 10 15
Directed Path Length

T. Ararijo and R. V. Mendes

LFM
12

10

1 2 3 4 5
Directed Path Length

Rand - LFM- RLM

15

Directed Path Length

Figure 9. DPL distribution.

DPL opp; Kk o

Random | 2.1 0.7 3.3 1.0
LFM B 2.3 3.0 0.69
RLM 7.5 56 45 1.3

Table 2. Typical k and DPL values.

values (see Table 1). It is still between random and LFM networks that
we find closer values. The typical RLM networks have a higher DPL,
showing that, when the directions of the edges are considered, a RLM
network still exhibits properties that characterize structures away from
randomness. This is in accordance with the idea that the success of its
underlying method is much more dependent on the acquisition of an
ordered structure than the learning by mistakes method.

§ 3.2 Symmetry, cooperation, antagonism, and residuality coefficients

As opposed to simple graphs, the connections between the agents in the
networks that we have been studying (and in most natural occurring
networks) are not symmetric and may have positive or negative signs.
It is therefore convenient to be able to characterize this richer connec-
tivity structure. For this purpose some new coefficients are defined. A
symmetry coefficient S is defined by

S=1-) lwlij)=wiji) |/ Y max(b(i, ), lw(j,i)).
i>] i>]
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It follows that —1 = § < 1. From the value of § we are able to evaluate
how far the learning networks are from a perfectly symmetric structure
(S = 1) and which learning method contributes more to changing the
values (S ~ 0.5) that characterize a typical random network. The results
in Table 3 show that on average, after learning, the symmetry coefficient
increases both for RLM and LFM networks. As far as symmetry is
concerned, the two methods behave similarly.

In addition we may also define cooperation C and antagonism A
coefficients by

n

Ci= Z w(z’,;’)/ilw(f,f)l

w(i,j)=0 ]
A== > wlij) Y 1wl
w(i,f)<0 i#]
with C+ A = 1.

Initially, the networks are initialized at random in the interval —0.5 <
w;; < 0.5. The randomly chosen connections tend to be uniformly dis-
tributed between positive and negative strengths (C ~ A ~ 0.5). One
may think of the positive connection strengths as representing coop-
eration between agents, while the negative ones represent antagonistic
interactions. The highest degree of cooperation (and the lowest of an-
tagonism), corresponding to C = 1 (and A = 0), is reached when every
network connection has a positive sign. Conversely the lowest degree
of cooperation (C = 0, A = 1) is characteristic of a network where every
connection strength is negative.

The last coefficient we will define is the residuality R coefficient:

= Z | w(iyj) |/ Z | (i, ]) |

Wewlin)i> Ly w(i)l<Ly

where Ly, is the highest threshold distance value |1/w(, /)| that insures
connectivity of the whole network in the hierarchical clustering process
of section 2.1. Residuality relates the relative strengths of the connec-
tions above and below the threshold value.

Table 3 shows the average values obtained for the symmetry S, co-
operation C, antagonism A, and residuality R coefficients in random,
LFM, and RLM networks.

The results show that, before learning, in the random networks the
weight of the connections below the threshold 1/Ly, is two to three
times higher than the weight of the connections above the threshold.
After learning the residuality coefficient decreases in both the LFM and
RLM networks, with a very significant decrease in the RLM networks.
This is due to the fact that RLM networks become less sparse after
learning (see k in Table 2) forcing several residual connections to leave
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S C A R

Random | 0.57 0.51 049 2.6
LFM 0.70 0.94 0.05 1.8
RLM 0.75 0.66 0.33 0.6

Table 3. Symmetry, cooperation, antagonism, and residuality.

this category. For the LFM networks, although sparseness does not
change much after learning, the decrease of R happens because, the
connection strengths above 1/Ly, tend to be stronger than those that
remain below the threshold.

Cooperation (and antagonism) behaves quite differently depending
on the learning method. In LFM networks, C approaches 1 after learn-
ing, while in a typical RLM network the value of the cooperation co-
efficient stays around 2/3. Antagonism seems to disappear with LFM
learning. On the other hand, RLM learning keeps a reasonable degree
of antagonism (A = 0.33) in the network structure.

I 4. Robustness and adaptability

The networks we have studied acquire a structure while learning a
function. While clustering and path length bring information on the
connectivity of the structures, the characterization of the mechanisms
leading to each type of structure raises a few other questions.

= How easily will the acquired structure adapt itself to the representation
of another function?

» To what extent do the structures succeed in keeping the same functionality
when some of their connections are suppressed?

As a first step to answer these questions we have measured the adapt-
ability of RLM and LFM networks as follows.

1. A network with connection strengths chosen at random in the interval
—0.5 <w,;; < 0.5, learns to reproduce the exclusive OR function.

2. After learning, the matrix x; keeps the resulting normalized (x; = w,/
max(w;)) connection strengths.

(O8]

. The network with connection strengths x, learns to reproduce the AND
function.

4. After learning we obtain the matrix g, of the resulting normalized con-
nection strengths.
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5. The network adaptability coefficient y is computed by
H
'J’N:Z1x;‘;'_aff|~
=1

Averagingy over the results of several simulations we obtained ¥, gy, =
30.8, yielding an average change Ax;; = 0.25 when LEM is the method
chosen.

Following the same set of steps as above in order to compute the
adaptability of RLM networks turns out to be quite difficult because
step 3 frequently fails. In contrast with LFM structures, adaptation in
RLM networks is almost absent and new learning is efficient only if
one starts from scratch, that is, from a randomly connected network
structure.

These results indicate that the configurations obtained by different
learning methods behave quite differently as far.as adaptability is con-
cerned. The structures created by the LFM method are those of a highly
adaptive system whereas for RLM the structures that are created seem
to become highly specialized for its purpose.

To evaluate the robustness of the structures the following algorithm
is applied.

1. A vector {x;} of n(n— 1) components 1s defined, corresponding each com-
ponent to a particular connection in the network. The vector is initialized
with zeros.

2. After the learning process, one cuts each of the connections in turn and
tests whether the learned function is still reproduced. If the test fails, add
a one to the corresponding component of the vector {x;}.

3. The test is repeated for all the connections and for a certain number of
different networks (60 different networks in our simulations).

4. The distribution P(x) of the values stored in the vector {x,} is plotted.

Figures 10 and 11 show the results corresponding to LFM and RLM
networks with the same number of trials in each case.

The results indicate that RLM networks are more robust than those
resulting from the LFM method. The former exhibit on average a
smaller number of errors, suggesting that the role of any specific indi-
vidual connection is less important for reaching the desired functionality
than in RLM networks. Moreover, in the case of RLM networks the
distribution of failures (Figure 11) shows that some connections are
much more important than others (those that contribute to the fat tail),
while a large amount of connections play a smaller role.

- -
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Figure 10. Distribution of failures for LFM networks.
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Figure 11. Distribution of failures for RLM networks.

| 5. Conclusions

In multi-agent networks the overall functionality or collective behav-
ior does not uniquely determine the interaction topology and the graph
structure of the network. This happens because, in general, many differ-
ent configurations are associated to the same (small number) of relevant
collective variables. Then, the organizing method, that is, the evolution
history of the network, is the main determining factor for establishing a
particular type of structure on the network. These general conclusions
are borne out by our study of networks that, starting from a random
configuration, learn to represent a function by two different learning
methods.

Clustering coefficients and (nondirected) characteristic path lengths
turn out to be appropriate to discriminate the two organizing methods
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that were used. In particular, a striking confirmation of the “function
does not determine form” assertion is obtained from the fact that the
high clustering and intermediate path length of reinforcement learning
method (RLM) networks indicate that reinforcement learning estab-
lishes a highly ordered configuration, whereas the same functionality is
obtained in learning from mistakes (LFM) networks with low clustering
and path lengths similar to random networks.

The idea that learning something or reaching some goal requires
some degree of order is well accepted. So is the knowledge that regular
structures—in opposition to those generated at random—exhibit high
clustering and large path length. Recent work has shown that there
is a multitude of cases where the structures of interest lie in a broad
interval between regular and random. In this paper we have shown
that there are cases where the same goal may be achieved by structures
near both extremes. Achieving a goal does not necessarily require very
organized structures. Moreover when the method followed to achieve
the goal implies the establishment of a high degree of order, the resulting
structures tend to be hard to adapt to any different goal. As shown in
section 4, algorithms may be developed to characterize, in a quantitive
manner, the degree of robustness and adaptability of the networks.

In the neural-like networks that we have been using (and in most
naturally occurring networks) the interactions between the agents are
not symmetric and may have positive or negative signs. This is in con-
trast to the simple graph structures used in the past to study interaction
topologies. Directed path lengths, as well as symmetry, cooperation,
antagonism, and residuality coefficients were defined, which provide
a refined characterization of the network structures. Relevant differ-
ences were also found between the learning methods when these new
coefficients are measured. For example, starting from a random net-
work, LFM seems to strongly improve cooperation, whereas in RLM
cooperation increases only slightly.
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