Mathematics I

Week 4: Chap. 3 – Systems of linear equations $k \times n$

1 Direct applications

1.1. Consider the following equations/systems: i) x+3=1 ii) $x^2=4$ iii) $\begin{cases} x+3=1\\ x^2=4 \end{cases}$.

- a) Identify the non-linear equation.
- b) Solve these equations analytically.
- c) Solve these equations graphically.

1.2. Determine the set of solutions of the equation x + y = 1 and classify it.

1.3. Solve and classify the system of equations: $\begin{cases} x+y=1\\ x+y=-1 \end{cases}$. Verify the result graphically.

1.4. Discuss the existence of solutions for the following systems, finding — whenever possible — the number of degrees of freedom and the solutions:

a)
$$\begin{cases} -2x - 3y + z = 3\\ 4x + 6y - 2z = 1 \end{cases}$$
b)
$$\begin{cases} x - y + 2z + w = 1\\ 2x + y - z + 3w = 3\\ x + 5y - 8z + w = 1\\ 4x + 5y - 7z + 7w = 7 \end{cases}$$
c)
$$\begin{cases} x - y + z = 0\\ x + 2y - z = 0\\ 2x + y + 3z = 0 \end{cases}$$
d)
$$\begin{cases} x + y + z + w = 0\\ x + 3y + 2z + 4w = 0\\ 2x + y - w = 0 \end{cases}$$
.

1.5. Determine, for the system $\begin{cases} y + az = 0 \\ x + by = 0 \\ by + az = 1 \end{cases}$, depending on the real parameters *a* and *b*:

a) the number of independent equations

b) the number of useless equations;

c) the number of incompatible equations.

1.6. Classify the system of equations depending on the parameter $a \in \mathbb{R}$: $\begin{cases} x + y + z = 3 \\ x - y + z = 1 \\ x - y - z = a \end{cases}$

2 Definitions and proofs

2.1. Define equation, system of equations and degree of freedom of a system of equations.

2.2. Let $a \in \mathbb{R} \setminus \{0\}$ and $b, c \in \mathbb{R}$ be constants. Show that $ax + b = c \Leftrightarrow x = \frac{1}{a}(c - b)$.

2.3. Consider three vectors with dimension 4: $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^4$.

a) Show that the vector equation $\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \lambda_3 \vec{v}_3 = \vec{0}$, with variables λ_i , correspond to a system of 4 linear equations with 3 variables.

b) Is this system possible? Why?

c) Generalise the previous results for ℓ vectors with dimension p.

2.4. Say, justifying, is the statements below arevtrue or false:

a) A linear system of equations with the same number of equations and of variables has a unique solution.

b) A linear system of equations with the same number of equations and of variables has at least one solution.

c) A linear system of equations with more equations than variables can have an infinite number of solutions.

d) A linear system of equations with less equations than variables can have no solutions.

3 Problems and modelling

3.1. An auto factory uses 3 different types of steel for the production of each of its 3 car models: A, B and C. Each model needs the following amount of steel (in tons):

Steel type \setminus Car	Model A	Model B	Model C
1	2	3	4
2	1	1	2
3	3	2	1

Find the amount of cars that can be produced using 29, 13 e 16 tons of type 1, 2 and 3 steel, respectively.

3.2. Imagine a region with a closed economy depending on 3 industries: telecom services, electric power and fuel power. The yearly production of these industries is such that:

- 1. To produce 10 units of telecom services, the telecom industry spends 3 units of its own production, 3 units of electricity and 3 units of fuel.
- 2. To produce 10 units of electricity, the electric power industry spends 3 units of its own production, 4 units of telecom services and 5 units of fuel.
- 3. To produce 10 units of fuel, the fuel power industry spends 2 units of its own production, 3 units of telecom services and 6 units of electricity.

Knowing that it is a closed economy, where the production of each industry is the same as the total of what it spends, determine the production of each of the 3 industries.

3.3. Consider:
$$\begin{cases} x + 2y - \alpha z = 1\\ 2x - y - z = \beta\\ 9x - 2y + z = -1 \end{cases}, \text{ com } \alpha, \beta \in \mathbb{R}.$$

- a) Classify the system depending on α and β .
- b) Solve it for $\alpha = \beta = 0$.

c) Show that the distance between the solution in b) and the vector $\left(-\frac{24}{25},-\frac{38}{25},-\frac{2}{5}\right)$ is $\sqrt{5}$.

4 Additional exercises

4.1. Classify the systems with respect to the parameters *a* and *b*:

a)
$$\begin{cases} x + y + z = 3 \\ x - y + z = 1 \\ 2x - 2y + az = 2 \end{cases}$$
 b)
$$\begin{cases} x + y + z = 1 \\ x - y + 2z = a \\ 2x + bz = 2 \end{cases}$$
.

4.2. Let $A\vec{x} = \vec{b}$ a system with 4 equations and 5 variables. Knowing that it has 2 d.o.f., find the rank of the matrix A:

4.3. Consider
$$A = \begin{bmatrix} 1 & 1 & a & 1 \\ 1 & 3 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 1 & 3 & 1 & b \end{bmatrix}$$
, with $a, b \in \mathbb{R}$ and $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ with $x_i \in \mathbb{R}, i = 1, \dots, 4$.

a) Discuss the rank of the matix A as a function of a and b.

b) Find a and b such that $A\vec{x} = \vec{0}$ has a unique solution.

4.4. Let
$$\begin{cases} x + y + z = 1 \\ x + 2cy + 2cz = 1 \\ 2x + y + cz = b \end{cases}$$

Find the correct answer:

a) If $c \neq 1$ and $b \neq 1$ the system has infinite solutions b) If c = 1 or $c = \frac{1}{2}$, $\forall b \in \mathbb{R}$ the system has a unique solution. c) If c = 1 and $b \neq 2$ the system has no solutions.

d) If $c \neq \frac{1}{2}, \forall b \in \mathbb{R}$ the system has infinite solutions.

4.5. Book:

15.1: 1, 3, 5 e 6; **15.6:** 1 a 4.