Mathematics I

Week 4: Chap. $3-$ Systems of linear equations $k \times n$

1 Direct applications

1.1. Consider the following equations/systems: i) $x+3=1$
ii) $x^{2}=4$
iii) $\left\{\begin{array}{l}x+3=1 \\ x^{2}=4\end{array}\right.$.
a) Identify the non-linear equation.
b) Solve these equations analytically.
c) Solve these equations graphically.
1.2. Determine the set of solutions of the equation $x+y=1$ and classify it.
1.3. Solve and classify the system of equations: $\left\{\begin{array}{l}x+y=1 \\ x+y=-1\end{array}\right.$. Verify the result graphically.
1.4. Discuss the existence of solutions for the following systems, finding - whenever possible - the number of degrees of freedom and the solutions:
a) $\left\{\begin{array}{l}-2 x-3 y+z=3 \\ 4 x+6 y-2 z=1\end{array}\right.$
b) $\left\{\begin{array}{l}x-y+2 z+w=1 \\ 2 x+y-z+3 w=3 \\ x+5 y-8 z+w=1 \\ 4 x+5 y-7 z+7 w=7\end{array}\right.$
c) $\left\{\begin{array}{l}x-y+z=0 \\ x+2 y-z=0 \\ 2 x+y+3 z=0\end{array}\right.$
d) $\left\{\begin{array}{l}x+y+z+w=0 \\ x+3 y+2 z+4 w=0 \\ 2 x+y-w=0\end{array}\right.$.
1.5. Determine, for the system $\left\{\begin{array}{l}y+a z=0 \\ x+b y=0 \\ b y+a z=1\end{array}\right.$, depending on the real parameters a and b :
a) the number of independent equations;
b) the number of useless equations;
c) the number of incompatible equations.
1.6. Classify the system of equations depending on the parameter $a \in \mathbb{R}:\left\{\begin{array}{l}x+y+z=3 \\ x-y+z=1 \\ x-y-z=a\end{array}\right.$.

2 Definitions and proofs

2.1. Define equation, system of equations and degree of freedom of a system of equations.
2.2. Let $a \in \mathbb{R} \backslash\{0\}$ and $b, c \in \mathbb{R}$ be constants. Show that $a x+b=c \Leftrightarrow x=\frac{1}{a}(c-b)$.
2.3. Consider three vectors with dimension 4: $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \in \mathbb{R}^{4}$.
a) Show that the vector equation $\lambda_{1} \vec{v}_{1}+\lambda_{2} \vec{v}_{2}+\lambda_{3} \vec{v}_{3}=\overrightarrow{0}$, with variables λ_{i}, correspond to a system of 4 linear equations with 3 variables.
b) Is this system possible? Why?
c) Generalise the previous results for ℓ vectors with dimension p.
2.4. Say, justifying, is the statements below arevtrue or false:
a) A linear system of equations with the same number of equations and of variables has a unique solution.
b) A linear system of equations with the same number of equations and of variables has at least one solution.
c) A linear system of equations with more equations than variables can have an infinite number of solutions.
d) A linear system of equations with less equations than variables can have no solutions.

3 Problems and modelling

3.1. An auto factory uses 3 different types of steel for the production of each of its 3 car models: A, B and C. Each model needs the following amount of steel (in tons):

Steel type \Car	Model A	Model B	Model C
1	2	3	4
2	1	1	2
3	3	2	1

Find the amount of cars that can be produced using 29, 13 e 16 tons of type 1,2 and 3 steel, respectively.
3.2. Imagine a region with a closed economy depending on 3 industries: telecom services, electric power and fuel power. The yearly production of these industries is such that:

1. To produce 10 units of telecom services, the telecom industry spends 3 units of its own production, 3 units of electricity and 3 units of fuel.
2. To produce 10 units of electricity, the electric power industry spends 3 units of its own production, 4 units of telecom services and 5 units of fuel.
3. To produce 10 units of fuel, the fuel power industry spends 2 units of its own production, 3 units of telecom services and 6 units of electricity.

Knowing that it is a closed economy, where the production of each industry is the same as the total of what it spends, determine the production of each of the 3 industries.
3.3. Consider: $\left\{\begin{array}{c}x+2 y-\alpha z=1 \\ 2 x-y-z=\beta \\ 9 x-2 y+z=-1\end{array}\right.$, com $\alpha, \beta \in \mathbb{R}$.
a) Classify the system depending on α and β.
b) Solve it for $\alpha=\beta=0$.
c) Show that the distance between the solution in b) and the vector $\left(-\frac{24}{25},-\frac{38}{25},-\frac{2}{5}\right)$ is $\sqrt{5}$.

4 Additional exercises

4.1. Classify the systems with respect to the parameters a and b :
a) $\left\{\begin{array}{l}x+y+z=3 \\ x-y+z=1 \\ 2 x-2 y+a z=2\end{array}\right.$
b) $\left\{\begin{array}{l}x+y+z=1 \\ x-y+2 z=a \\ 2 x+b z=2\end{array}\right.$.
4.2. Let $A \vec{x}=\vec{b}$ a system with 4 equations and 5 variables. Knowing that it has 2 d.o.f., find the rank of the matrix A :
a) 2
b) 3
c) 4
d) 1
4.3. Consider $A=\left[\begin{array}{cccc}1 & 1 & a & 1 \\ 1 & 3 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 1 & 3 & 1 & b\end{array}\right]$, with $a, b \in \mathbb{R}$ and $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ with $x_{i} \in \mathbb{R}, i=1, \ldots, 4$.
a) Discuss the rank of the matix A as a function of a and b.
b) Find a and b such that $A \vec{x}=\overrightarrow{0}$ has a unique solution.
4.4. Let $\left\{\begin{array}{c}x+y+\quad z=1 \\ x+2 c y+2 c z=1 \\ 2 x+y+\quad c z=b\end{array}\right.$.

Find the correct answer:
a) If $c \neq 1$ and $b \neq 1$ the system has infinite solutions
b) If $c=1$ or $c=\frac{1}{2}, \forall b \in \mathbb{R}$ the system has a unique solution.
c) If $c=1$ and $b \neq 2$ the system has no solutions.
d) If $c \neq \frac{1}{2}, \forall b \in \mathbb{R}$ the system has infinite solutions.

4.5. Book:

15.1: $1,3,5$ e 6 ;
15.6: 1 a 4.

