Semana 9: Cap. 6 – Derivadas, Diferenciais, Elasticidade

NOTA: Nesta ficha usa-se indiferentemente as seguintes notações: $\frac{d}{dx}f(x) = \frac{df(x)}{dx}$.

Exercícios de aplicação directa

1.1. Seja
$$f(x) = \sqrt{x}$$
. Calcule: $\frac{df(x)}{dx}$, $\frac{d^2f(x)}{dx^2}$, $\frac{d^3f(x)}{dx^3}$ e $\frac{df(x)}{dy}$.

1.2. Calcule o diferencial das seguintes funções em ordem à respectiva variável:

a)
$$x^5 + 2x^4 + 1$$
 b) $-\sqrt{u}$ c) e^y d) $\ln z$ e) $\frac{1}{x}$ f) $\sin u$ g) $\frac{\sin x}{\cos x}$.

b)
$$-\sqrt{u}$$

$$e^y$$
 d)

f)
$$\sin u$$

g)
$$\frac{\sin x}{\cos x}$$

1.3. Seja $f(x) = e^x$, $g(x) = \sqrt{x}$, e $h(x) = \sin x$. Determine o domínio e contra-domínio das seguintes funções:

a)
$$f \circ g$$

b)
$$f \circ h$$

c)
$$h \circ f$$

d)
$$h \circ f \circ g$$

a)
$$f \circ g$$
 b) $f \circ h$ c) $h \circ f$ d) $h \circ f \circ g$ e) $f \circ h \circ f \circ g$

1.4. Derive as seguintes funções em ordem a x:

a)
$$(5x^{70} + 3x + 1)^2$$
 b) $(5x^2 + 3x + 1)^{70}$ c) $\cos(3x^5 - x)$ d) $e^{-\frac{x}{2}}$

b)
$$(5x^2 + 3x + 1)^{70}$$

c)
$$\cos(3x^5 - x^5)$$

d)
$$e^{-\frac{x}{2}}$$

e)
$$\sqrt{x-3}$$
 f) $\frac{1}{\ln x}$

f)
$$\frac{1}{\ln x}$$

g)
$$e^{\sin x}$$

g)
$$e^{\sin x}$$
 h) $x + \sqrt{x^2 - 1}$

i)
$$\ln(\sin x)$$

j)
$$\ln(x^2+1)$$

j)
$$\ln(x^2 + 1)$$
 k) $\ln^4(\sqrt{1 - x^2})$ ℓ) $e^{-\cos(\sqrt{x^4 + x^2 + 1})}$

$$\ell$$
) $e^{-\cos(\sqrt{x^4+x^2+1})}$

1.5. Calcule a elasticidade em ordem a x de cada uma das seguintes funções:

a)
$$e^x$$

a)
$$e^x$$
 b) $e^{\lambda x}$, com $\lambda \in \mathbb{R}$ c) $\frac{1}{x}$ d) $\cos(x^2)$.

c)
$$\frac{1}{x}$$

d)
$$\cos(x^2)$$
.

2 Definições e Demonstrações

2.1. Seja $f(x) = x^2$. Demonstre, pela definição, que: $\frac{df(x)}{dx} = 2x$.

2.2. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$. Mostre que $\frac{f(a) - f(x)}{a - x} = \frac{f(x + h) - f(x)}{h}$, com h = a - x.

2.3. Seja $f: \mathbb{R} \longrightarrow \mathbb{R} \setminus \{0\}$ uma função diferenciável em \mathbb{R} . Dada uma variação Δx da sua variável x, a função sofre uma variação $\Delta f(x) = f(x + \Delta x) - f(x)$.

Demonstre que $\lim_{\Delta x \to 0} \frac{\frac{\Delta f(x)}{f(x)}}{\frac{\Delta x}{\Delta x}} = \frac{x}{f(x)} f'(x).$

3 Problemas e Modelização

- **3.1.** O preço das acções das seguintes empresas é dado em função do tempo t por:
 - Empresa $A: 2t^2 + 4t$
 - Empresa $B: 3t^2 + t$
 - Empresa C: $\frac{2t}{t^2+1}$.
- a) No instante t=1 qual a empresa cujo preço das acções está a crescer mais depressa?
- b) Qual o período durante o qual o preço das acções da empresa C está a crescer?
- **3.2.** Numa fábrica de chocolate em pó, o custo de produção f do chocolate, expresso em €/kg, depende do preço x do cacau, também em €/kg, da seguinte forma: $f(x) = x^2 + 3$, definido para $x \ge 0$. Considere um cenário em que o preço do cacau mudou de 1 €/kg para 2 €/kg. Responda às seguinte perguntas (indicando as unidades adequadas):
- a) Qual foi a variação absoluta do preço do cacau?
- b) Qual foi a variação absoluta do preço do chocolate?
- c) Qual foi a variação relativa do preço do cacau?
- d) Qual foi a variação relativa do preço do chocolate?
- e) Qual foi a taxa de variação absoluta do preço do chocolate face ao aumento do preço do cacau.
- f) Qual foi a taxa de variação relativa do preço do chocolate face ao aumento do preço do cacau.
- g) Considere agora um acréscimo infinitesimal dx no preço x do cacau. Calcule a taxa de variação absoluta e a taxa de variação relativa (elasticidade) do preço do chocolate face a este aumento infinitesimal do preço do cacau.
- **3.3.** Seja a função $f(x)=\left\{ \begin{array}{ll} e^x & \sec x<0 \\ e^{-kx} & \sec x\geq 0 \end{array} \right.,$ com k>0.
- a) Indique o domínio de f e esboce o gráfico da função.
- b) Discuta a continuidade da função no seu domínio.
- c) Discuta a diferenciabilidade de f no seu domínio.
- d) Considere a função $g(x) = \sqrt{x}$. Discuta a continuidade e a diferenciabilidade de $g \circ f$, e calcule a sua derivada onde possível.
- **3.4.** Seja a função $h(x) = f(x \ln x)$, com f diferenciável em \mathbb{R} . Sabendo que $f(0) = \sqrt{3}$ e que f'(0) = 2, indique a equação da recta tangente ao gráfico da função h em x = 1.
- 3.5. Estude a diferenciabilidade das funções do exercício 3.2 da ficha da semana 8.

4 Exercícios adicionais

- **4.1.** Seja $f(x) = \frac{1}{2}x^k h(x)$, com $k \in \mathbb{R}$ e h função real diferenciável no seu domínio. Calcule $El_x f(x)$.
- **4.2.** Seja f uma função diferenciável duas vezes em \mathbb{R} tal que: $2x^2 + 6xf(x) + [f(x)]^2 = 18$. Calcule $\frac{df(x)}{dx}$ e $\frac{d^2f(x)}{dx^2}$.

4.3. Sejam $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ funções diferenciáveis e $k\in\mathbb{R}$. Mostre que:

a)
$$\frac{d}{dx}[f(x) + g(x)] = \frac{df(x)}{dx} + \frac{dg(x)}{dx}.$$

b)
$$\frac{d}{dx}[kf(x)] = k\frac{df(x)}{dx}$$
.

4.4. Seja $f(x) = e^x$, $g(x) = x^n$ com $n \in \mathbb{Z}$, e $h(x) = \sin x$. Calcule:

a)
$$\frac{d}{dx}[f(x) + g(x) + h(x)]$$
 b) $\frac{d}{dx}[5f(x) + 2g(x)]$ c) $\frac{d}{dx}[g(x)h(x)]$

d)
$$\frac{d}{dx} [f(x)g(x)h(x)]$$
 e) $\frac{d}{dx} \left[\frac{h(x)}{f(x)} \right]$ f) $\frac{d}{dx} \left[\frac{g(x)h(x)}{f(x)} \right]$.

4.5. Derive as seguintes funções em ordem a x:

a)
$$\left(\frac{x-1}{x+2}\right)^2$$
 b) $\left(\frac{x^2-1}{2x}\right)^3$ c) $\sqrt{e^x+1}$ d) $e^{-\sqrt{x}}$

e)
$$e^{x^3} \ln (x^2)$$
 f) $\frac{3}{\sqrt{x}}$ g) $\sqrt[3]{\frac{3-x}{x-1}}$ h) e^{x^2}

i)
$$\ln \left(e^{3x} + x^2\right)$$
 j) $e^x \ln x$ k) $\sin (2x+1)$ ℓ) xe^x

m)
$$\cos x + x \cos^2(x^2)$$
 n) $\sin x \cos x$ o) $\tan(x^2 + 1)$ p) $\ln \frac{1+x}{1-x}$

4.6. Três empresas de moldes plásticos têm os seguintes custos de produção, que dependem directamente do preço p do petróleo:

• Empresa 1: $5p^3 + 2p + 1$

• Empresa 2: $2p^{3/2} + p$

• Empresa 3: $\sqrt{p} + \frac{1}{p}$.

a) Determine para cada empresa a taxa de variação média do custo de produção dada uma variação do preço do petróleo de $1 \in /\ell$ para $4 \in /\ell$.

b) Determine para cada empresa a taxa de variação instantânea do custo de produção quando o preço do petróleo é de $1 \in /\ell$.

c) Sabendo que durante um breve período de crise $t \in [0; 2]$ o preço do petróleo em função do tempo foi: $p(t) = e^t$, determine qual a empresa cujo custo de produção estava a crescer mais depressa no instante t = 1.

4.7. Sejam f e g duas funções diferenciáveis em \mathbb{R} tais que h(x) = f[g(x)]. Sabendo que f(-1) = 2, f'(-1) = 1/3, g(3) = -1, e g'(3) = -4, indique a equação da recta tangente ao gráfico da função h, em x = 3:

a)
$$y = -\frac{4}{3}x + 2$$
 b) $y = -\frac{4}{3}x + 6$ c) $y = -4x + 2$ d) $y = -x + 5$

4.8. Exercícios do livro (K. Sydsaeter & P.J. Hammond, *Essential Mathematics for Economic Analysis*, Prentice Hall, 2008):

Secção 6.2: Exercícios 5 e 7.