Week 10: Chap. 7 - Polynomial approximations, Intermediate value theorem and mean value theorem

1 Direct application

1.1. Let $f(x)=\ln x$.
a) Find the linear approximaton of f around $x=1$.
b) Find the quadratic approximation of f around $x=1$.
c) Sketch the graph of f and compare it with the graphs of the previous approximations.
d) Make an estimate of $\ln (1.1)$.
1.2. The quadractic approximation of $f(x)=(x+1)^{5}$ around $x=1$ is given by:
a) $f(x) \simeq 80 x^{2}-80 x+32$
b) $f(x) \simeq-80 x^{2}+80 x+32$
c) $f(x) \simeq-80 x^{2}-80 x-32$
d) $f(x) \simeq 80 x^{2}+80 x+32$
1.3. Let $f(x)=\left(\frac{1}{x}-1\right)^{2}$. The Taylor approximation of second degree of f around $x=1$ is:
a) $x-1+(x-1)^{2}$
b) $x-1-(x-1)^{2}$
c) $-(x-1)^{2}$
d) $(x-1)^{2}$
1.4. Write Taylor's formula of degree n for $f(x)=e^{x}$ around $x=1$, with the Lagrange's remainder. Compute the limit of the remainder when $n \rightarrow+\infty$.
1.5. Show that the equation $x e^{x}=\frac{1}{2}$ has one unique solution in $]-1,1[$.

2 Definitions and proofs

2.1. Use the linear approximation to show that around the origin we have: $\sin x \simeq x$.
2.2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on $] a, b[$.
a) Define increasing function.
b) Prove that if $f^{\prime}(x) \geq 0$ for $\left.x \in\right] a, b[$, then f is increasing.
2.3. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be twice differentiable on \mathbb{R} and let $p(x)=\alpha x^{2}+\beta x+\gamma$, with $\alpha, \beta, \gamma \in \mathbb{R}$. Determine the coefficients α, β, γ that satisfy the following conditions for $a \in \mathbb{R}$:
$\left\{\begin{array}{rl}f(a) & =p(a) \\ f^{\prime}(a) & =p^{\prime}(a) \\ f^{\prime \prime}(a) & =p^{\prime \prime}(a)\end{array}\right.$.

3 Problems and modelling

3.1. Estimate the approximate value of $\sin (0.1)$ and its approximation error.
3.2. Let f be implicitly defined by the equation $[f(x)]^{3}=x^{3} f(x)+x+1$. Knowing that $f(0)=1$, find the linear aproximation of $f(x)$ around $x=0$.
3.3. Consider $f(x)=e^{x-1}$.
a) Write the Taylor formula of degree n of f around 1 .
b) Find an upper bound on the remainder for $x=\frac{1}{2}$ and $n=3$.
3.4. Use the Taylor formula to compute: $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{2}}$.
3.5. Let $f(x)=\sqrt{x}$. Determine the linear approximation of f around $x=1$ and use it to get an approximation of $\sqrt{1.1}$.

4 Additional exercises

4.1. Use the Taylor formula to write the polynomial $x^{3}-2 x^{2}-5 x-2$ as a sum of powers of $(x+2)$.
4.2. Let $y=f(x)$ implicitly defined by $x y-x^{2}=2 y+x$. The linear approximation of f around 4 is given by:
a) $-5 x+3$
b) $-\frac{1}{2}(x-24)$
c) $\frac{1}{3}(x+25)$
d) $x+3$
4.3. Let $f(x)=(2 x-a)^{m}$, with $m \in \mathbb{N}$. Show that the Taylor approximation of second degree of f around 0 is:

$$
(-a)^{m}+2 m(-a)^{m-1} x+2 m(m-1)(-a)^{m-2} x^{2} .
$$

4.4. Book:
7.4: 1 to $4,7,9,10$
7.5: 1, 2, 4, 5
7.6: 1, 2, 4;
7.10: 1, 2;
8.4: 6, 7 .

