Week 11: Chap. 8 – Extremes and concavities, Chap. 9 – Integrals and areas

1 Direct applications

1.1. Book:

8.6: 4, 5;

8.7: 5, 6.

1.2. Let $f(x) = x^3 - 4x^2 + 4x + 12$.

- a) Determine the stationary points of f.
- b) Determine the extreme points of f using the second derivative.
- c) Find out if the extreme points are local or global.
- **1.3.** Let $f: I \to \mathbb{R}$ such that $f(x) = \sin(x^2)$, with $I = [-\sqrt{\pi}, \sqrt{\pi}]$.
- a) Determine the stationary points of f.
- b) Determine the extreme points of f using the second derivative.
- c) Find out if the extreme points are local or global.
- **1.4.** Let $f(x) = x^4$, $g(x) = -x^4$ and $h(x) = x^3$.
- a) Determine the stationary points of each function.
- b) Using the derivatives of order 2 or higher, determine if those points are minima, maxima or inflection points.
- c) Determine the concavities of each function.
- **1.5.** Is an inflection point always a stationary point?

2 Definitions and proofs

- **2.1.** State the definition of increasing and decreasing functions.
- **2.2.** State the definition of stationary point.
- **2.3.** Let $f:\mathbb{R} \longrightarrow \mathbb{R}$ have a second derivative continuous on I, and a an interior point of I.
- a) State the definition of inflection point of f.
- b) Prove that if a is an inflection point of f, then f''(a) = 0.

3 Problems and modelling

- **3.1.** A faulty freezer operates between -3°C and +2°C, and it has an energy consumption that varies with the temperature t as: $t^3 + \frac{3}{2}t^2 6t + 10$.
- a) Determine the temperatures for which the energy consumption is maximum and minimum.
- b) Does the function energy consumption have an inflection point?

3.2. Let
$$f(x) = \begin{cases} (x+2)^2, & x < -1 \\ |x|, & -1 \le x \le +1 \\ e^{-x+1}, & x > +1 \end{cases}$$

- a) What is the domain of f?
- b) Discuss the continuity and differentiability of f in its domain.
- c) Determine the stationary points of f.
- d) Determine the extreme points of f, indicating if local or global.
- e) Determine the extreme points of f in [-4, -1].
- **3.3.** Consider $f(x) = x \sin x$.
- a) Find the Taylor polynomial of second degree of f around 0.
- b) The function f has a unique stationary point in]-1,1[. Determine it.
- c) Classify this stationary point using the second derivative.
- d) Is there any extreme points of f in]-1,1[?]

4 Additional exercises

- **4.1.** Let f be the function and I the interval in exercise 1.3. Show that f has at least two inflection points in I.
- **4.2.** Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $a \in \mathbb{R}$ such that f'(a) = 0 and f''(a) < 0. Prove that a is a local maximum of f.
- **4.3.** Book:
- **8.6:** 1, 3, 6;
- **8.7:** 2 to 4.

5 Direct applications

5.1. Compute the following anti-derivatives:

a)
$$\int x^2 dx$$
 b) $\int \sqrt{x} dx$ c) $\int e^x dx$ d) $\int \cos y dy$ e) $\int \frac{x^5}{5} dx$ f) $\int \frac{1}{2\sqrt{x}} dx$ g) $\int \frac{1}{2} dx$ h) $\int x^4 dt$ i) $\int (\sin u + x^2) dx$ j) $\int (\sin u + x^2) du$ k) $\int e^{7u} dx$ ℓ) $\int \frac{1}{2} dt$.

- **5.2.** Compute the anti-derivative $F(x) = \int f(x)dx$:
- a) such that F(2) = 0, for $f(x) = x^4$;
- b) such that F(0) = 1, for $f(x) = e^x$;
- c) such that $F(1) = \pi$, for $f(x) = x^{-1}$;
- d) such that F(0) = e, for $f(x) = x^3 4x^2 + 4x + 12$;
- e) such that F(1) = 0, for $f(x) = (1 x^2)^{-\frac{1}{2}}$.

5.3. Compute the following integrals:

a)
$$\int_{0}^{2} x^{3} dx$$

b)
$$\int_{1}^{0} (-\sqrt{x}) dx$$

c)
$$\int_{0}^{\ln 1} e^{-t} dt$$

d)
$$\int_{-\pi}^{\pi} \cos y dy$$

a)
$$\int_{0}^{2} x^{3} dx$$
 b) $\int_{1}^{0} (-\sqrt{x}) dx$ c) $\int_{0}^{\ln 1} e^{-t} dt$ d) $\int_{-\pi}^{\pi} \cos y dy$ e) $\int_{0}^{1} \frac{1}{1+x^{2}} dx$

f)
$$\int_{1}^{1} (6x^5 + \frac{1}{3}x^2 - 2x + 7)dx$$
 g) $\int_{2}^{3} (\sin u + x^{\frac{1}{3}})dx$ h) $\int_{2}^{7e} e^{7u}dx$ i) $\int_{2}^{b} 1dt$.

g)
$$\int_{2}^{3} (\sin u + x^{\frac{1}{3}}) dx$$

h)
$$\int_{e}^{7e} e^{7u} dx$$

i)
$$\int_a^b 1dt$$
.

5.4. Find the area between the graph of f and the x-axis for:

a)
$$f(x) = x^2$$
 and $x \in [0, 2]$

b)
$$f(x) = -x^2$$
 and $x \in [0, 2]$

c)
$$f(t) = e^{-t} \text{ and } t \in [1, 5]$$

d)
$$f(x) = -\sqrt{\sqrt{x}} \text{ and } x \in [0, 1]$$

d)
$$f(x) = -\sqrt{\sqrt{x}}$$
 and $x \in [0, 1]$
e) $f(x) = \frac{-x^4 - 2x^2}{x}$ and $x \in [-1, 1]$

Definitions and proofs

6.1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function on \mathbb{R} , and $a, b, \lambda \in \mathbb{R}$ constants. Show that:

a)
$$\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$$
.

b)
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

c)
$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$
, with $a \le c \le b$.

6.2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be an odd continuous function, and $k \in \mathbb{R}$. a) Prove that $\int_{-k}^{k} f(x) dx = 0$.

a) Prove that
$$\int_{-k}^{k} f(x)dx = 0$$

b) Interpret geometrically the previous result.

6.3. Let $a, b \in \mathbb{R}$ such that a < b, and d(a, b) the distance between these two points.

a) Show that
$$d(a,b) = \int_a^b dx$$
.

b) Interpret geometrically the previous result.

Problems and modelling

7.1. An oil well has an extraction rate (measured in barrels by unit of time) that varies with time t according to: $10e^{-2t}$.

a) What is the amount of oil extracted from the well at time t = 50?

b) Solve the same problem for the rate 2^{-t} .

7.2. Let $f(x) = x^3 - 4x^2 + 4x$. Compute the area between the graph of f and the x-axis for $x \in [-1, 2].$

Additional exercises 8

8.1. Book:

9.2: 1 to 6, 8.