Week 11: Chap. 8 - Extremes and concavities, Chap. 9 - Integrals and areas

1 Direct applications

1.1. Book:
8.6: 4, 5;
8.7: 5, 6.
1.2. Let $f(x)=x^{3}-4 x^{2}+4 x+12$.
a) Determine the stationary points of f.
b) Determine the extreme points of f using the second derivative.
c) Find out if the extreme points are local or global.
1.3. Let $f: I \rightarrow \mathbb{R}$ such that $f(x)=\sin \left(x^{2}\right)$, with $I=[-\sqrt{\pi}, \sqrt{\pi}]$.
a) Determine the stationary points of f.
b) Determine the extreme points of f using the second derivative.
c) Find out if the extreme points are local or global.
1.4. Let $f(x)=x^{4}, g(x)=-x^{4}$ and $h(x)=x^{3}$.
a) Determine the stationary points of each function.
b) Using the derivatives of order 2 or higher, determine if those points are minima, maxima or inflection points.
c) Determine the concavities of each function.
1.5. Is an inflection point always a stationary point?

2 Definitions and proofs

2.1. State the definition of increasing and decreasing functions.
2.2. State the definition of stationary point.
2.3. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ have a second derivative continuous on I, and a an interior point of I.
a) State the definition of inflection point of f.
b) Prove that if a is an inflection point of f, then $f^{\prime \prime}(a)=0$.

3 Problems and modelling

3.1. A faulty freezer operates between $-3^{\circ} \mathrm{C}$ and $+2^{\circ} \mathrm{C}$, and it has an energy consumption that varies with the temperature t as: $t^{3}+\frac{3}{2} t^{2}-6 t+10$.
a) Determine the temperatures for which the energy consumption is maximum and minimum.
b) Does the function energy consumption have an inflection point?
3.2. Let $f(x)=\left\{\begin{array}{rr}(x+2)^{2}, & x<-1 \\ |x|, & -1 \leq x \leq+1 \\ e^{-x+1}, & x>+1\end{array}\right.$.
a) What is the domain of f ?
b) Discuss the continuity and differentiability of f in its domain.
c) Determine the stationaty points of f.
d) Determine the extreme points of f, indicating if local or global.
e) Determine the extreme points of f in $[-4,-1]$.
3.3. Consider $f(x)=x \sin x$.
a) Find the Taylor polynomial of second degree of f around 0 .
b) The function f has a unique stationary point in $]-1,1[$. Determine it.
c) Classify this stationary point using the second derivative.
d) Is there any extreme points of f in $]-1,1[$?

4 Additional exercises

4.1. Let f be the function and I the interval in exercise 1.3 . Show that f has at least two inflection points in I.
4.2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $a \in \mathbb{R}$ such that $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$. Prove that a is a local maximum of f.
4.3. Book:
8.6: 1, 3, 6;
8.7: 2 to 4 .

5 Direct applications

5.1. Compute the following anti-derivatives:
a) $\int x^{2} d x$
b) $\int \sqrt{x} d x$
c) $\int e^{x} d x$
d) $\int \cos y d y$
e) $\int \frac{x^{5}}{5} d x$
e) $\int \frac{1}{2} d t$.
f) $\int \frac{1}{2 \sqrt{x}} d x$
g) $\int \frac{1}{2} d x$
h) $\int x^{4} d t$
i) $\int\left(\sin u+x^{2}\right) d x$
j) $\int\left(\sin u+x^{2}\right) d u$
k) $\int e^{7 u} d x$
5.2. Compute the anti-derivative $F(x)=\int f(x) d x$:
a) such that $F(2)=0$, for $f(x)=x^{4}$;
b) such that $F(0)=1$, for $f(x)=e^{x}$;
c) such that $F(1)=\pi$, for $f(x)=x^{-1}$;
d) such that $F(0)=e$, for $f(x)=x^{3}-4 x^{2}+4 x+12$;
e) such that $F(1)=0$, for $f(x)=\left(1-x^{2}\right)^{-\frac{1}{2}}$.
5.3. Compute the following integrals:
a) $\int_{0}^{2} x^{3} d x$
b) $\int_{1}^{0}(-\sqrt{x}) d x$
c) $\int_{0}^{\ln 1} e^{-t} d t$
d) $\int_{-\pi}^{\pi} \cos y d y$
e) $\int_{0}^{1} \frac{1}{1+x^{2}} d x$
f) $\int_{-1}^{1}\left(6 x^{5}+\frac{1}{3} x^{2}-2 x+7\right) d x$
g) $\int_{2}^{3}\left(\sin u+x^{\frac{1}{3}}\right) d x$
h) $\int_{e}^{7 e} e^{7 u} d x$
i) $\int_{a}^{b} 1 d t$.
5.4. Find the area between the graph of f and the x-axis for:
a) $f(x)=x^{2}$ and $x \in[0,2]$
b) $f(x)=-x^{2}$ and $x \in[0,2]$
c) $f(t)=e^{-t}$ and $t \in[1,5]$
d) $f(x)=-\sqrt{\sqrt{x}}$ and $x \in[0,1]$
e) $f(x)=\frac{-x^{4}-2 x^{2}}{x}$ and $x \in[-1,1]$

6 Definitions and proofs

6.1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function on \mathbb{R}, and $a, b, \lambda \in \mathbb{R}$ constants. Show that:
a) $\int_{a}^{b} \lambda f(x) d x=\lambda \int_{a}^{b} f(x) d x$.
b) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$.
c) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, with $a \leq c \leq b$.
6.2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be an odd continuous function, and $k \in \mathbb{R}$.
a) Prove that $\int_{-k}^{k} f(x) d x=0$.
b) Interpret geometrically the previous result.
6.3. Let $a, b \in \mathbb{R}$ such that $a<b$, and $d(a, b)$ the distance between these two points.
a) Show that $d(a, b)=\int_{a}^{b} d x$.
b) Interpret geometrically the previous result.

7 Problems and modelling

7.1. An oil well has an extraction rate (measured in barrels by unit of time) that varies with time t according to: $10 e^{-2 t}$.
a) What is the amount of oil extracted from the well at time $t=50$?
b) Solve the same problem for the rate 2^{-t}.
7.2. Let $f(x)=x^{3}-4 x^{2}+4 x$. Compute the area between the graph of f and the x-axis for $x \in[-1,2]$.

8 Additional exercises

8.1. Book:
9.1: 1 to 9 ;
9.2: 1 to 6,8 .

