
MATEMATICAL ECONOMICS - 2011/2012

GIANLUIGI DEL MAGNO

Contents

Warning 1
1. Introduction 2
2. Scalar ODE’s 2
2.1. Main definitions 3
2.2. Separation of variables 3
2.3. Existence and uniqueness of solutions 4
2.4. Phase portrait 5
2.5. Equilibrium points and their stability 5
2.6. Linear ODE’s 6
3. Scalar DE’s 9
3.1. General form 9
3.2. Stair-step diagram 10
3.3. Stability 10
3.4. Linear maps 11
4. Planar ODE’s 12
4.1. Linear ODE’s 12
4.2. General properties of linear systems 12
4.3. Exponential of a matrix 13
4.4. Exponential of Normal Jordan Forms 13
4.5. Phase portrait 14
4.6. Change of coordinates 15
4.7. Jordan Decomposition Theorem 16
4.8. Stability 17
4.9. Non-homogeneous linear differential equations 18
5. Nonlinear systems 18
6. Extra exercises 19
6.1. Scalar ODE’s 19
6.2. Scalar maps 19
6.3. Planar ODE’s 20

Warning

These notes are in a very preliminary form. Read these notes with
some caution, as they likely to contain several mistakes and typos.
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Corrections are greatly appreciated. Each section of the notes contains
exercises. Some extra exercises can be found in the very last section.

1. Introduction

This part of the course concerns differential equations and difference
equations. These equations are used to model dynamical processes,
e.g., the evolutions of economical quantities changing in time. If the
time is a continuous variable, then the process is modeled by an or-
dinary differential equation (ODE), whereas if the time is a discrete
variable, then the process is modeled by a difference equation (DE).
Sometimes, DE’s are called maps.

Example (Compound interest). If an amount A is compounded annu-
ally at the market interest rate of r, then the payment after t years is
given by

Pt = A(1 + r)t.

Here t is a discrete variable t = 1, 2, . . . . We see that Pt satisfies the
following difference equation:

Pt+1 = (1 + r)Pt.

Now, if the same amount A is compound m times each year, then

Pt = A
(

1 +
r

m

)mt
.

In the limit as m goes to infinity, we have

lim
m→+∞

P (t) = Aert.

If we think of t as a continuous variable, then P (t) is a solution of the
differential equation

dP

dt
(t) = rP (t).

The subject of the differential equations and the difference equation
is extensive. In these lectures, we will be focusing on a part of the
theory of these equations that is called ‘qualitative analysis’. The aim
is to obtain as much as possible information about a system without
looking for explicit solutions.

2. Scalar ODE’s

In this section, we are interested in ordinary differential equations.
Here are some examples of ODE’s:

• dx/dt = −3x+ 4 + e−t,
• d2x/dt+ 4tdx/dt− 3(1− t2) = 0,
• dx/dt+ 3tx = ex.
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2.1. Main definitions. In the following, the symbol x denotes a real-
valued differentiable function x : I → R on an open interval I of
R, whereas the symbol f denotes a real-valued continuous function
f : R → R. We use the notation ẋ(t) to denote dx/dt, the derivative
of x at t. We are interested in equations of the form

(1) ẋ(t) = f(x(t)) for t ∈ I,
where t 7→ x(t) is an unknown function. Equation (1) is called a scalar
autonomous differential equation. The meaning of this terminology is
as follows:

• ‘scalar’ means that x is 1-dimensional (x ∈ R),
• ‘autonomous’ means that f does not depend explicitly on t,
• ‘differential equation’ is an equation involving the derivatives of
x, the function x itself and other given functions.

A function x that satisfies relation (1) is called a solution of the
differential equation (1).

Most of the time, we will be interested in solutions of (1) such that
x(t0) equals a specific value x0 ∈ R for a specific t0 ∈ R. The problem
consisting in finding such a solution is called initial value problem,

(2) ẋ = f(x), x(t0) = x0.

We can always take t0 = 0. The reason is that if x(t) is a solution
of (2), then y(t) = x(t − t0) with t0 ∈ R is the solution such that
y(t0) = x0.

2.2. Separation of variables. To solve problem (2), we can argue as
follows.

If f(x0) = 0, then the function x(t) = x0 for every t ∈ R is the
wanted solution. Now, suppose that f(x0) 6= 0. Since f is continuous,
we have f(x) 6= 0 around x0, and so as long as t is closed to t0, we can
divide both sides of (2) by f(x(t)). Hence,

ẋ(t)

f(x(t))
= 1.

We then integrate both sides of the previous equation from t0 to t,∫ t

t0

ẋ(s)

f(x(s))
ds = t− t0,

and finally use the substitution x = x(s) to compute the integral,
obtaining

(3)

∫ x(t)

x0

dx

f(x)
= t− t0.

The left-hand side of this equation is a monotone function F evaluated
at x(t). If F−1 is the inverse of F , then we see that the solution x(t)
of (3) (for t close to t0) is given by x(t) = F−1(t− t0).
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Figure 1. The solution x(t, x0) on the interval Ix0

2.2.1. Exercises. Solve the following initial value problem using the
method of separation of variables.

(1) ẋ = −x, x(0) = x0.
(2) ẋ = x2, x(0) = x0.
(3) ẋ =

√
x, x(0) = x0 ≥ 0. Is there just one solution for x0 = 0?

2.3. Existence and uniqueness of solutions.

Definition 2.1. The symbol C0 denoted the sets of all continuous func-
tions f : R → R, and the symbol C1 denotes the subset of C0 of all
differentiable functions with continuous derivatives f : R→ R.

As explained at the end of Subsection 2.1, there is no loss of gener-
ality in assuming that t0 = 0. So, unless specified otherwise, t0 = 0
from now on.

Theorem 2.2. (1) Suppose that f ∈ C0. Then for every x0, there
exist an interval (possibly infinite) Ix0 = (ax0 , bx0) containing
t0 = 0 and a solution x : Ix0 → R of the initial value problem
(2).

(2) Suppose that f ∈ C1. Then in addition to (1), we have that the
solution x is unique and differentiable with continuous deriva-
tive.

The largest possible interval Ix0 is called the maximal interval of
existence of the solution.

We will often use the notation x(t, x0) to denote the solution of (2)
with x(0) = x0. In the next lemma, we summarize the main properties
of x(t, x0).

Lemma 2.3. The solution x(t, x0) has the following properties:

(1) x(t, x0) is monotone in t,
(2) x(t, x0) is increasing in x0, i.e, x(t, x0) < x(t, y0) if x0 < y0,
(3) if x(t, x0) is bounded for every t ≥ 0 (t ≤ 0), then bx0 = +∞

(ax0 = −∞) and limt→+∞ x(t, x0) = x̄ (limt→−∞ x(t, x0) = x̄)
with x̄ being an equilibrium point (i.e., f(x̄) = 0).
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2.4. Phase portrait.

Definition 2.4. Let x0 ∈ R, and let x(t, x0) be the solution with initial
condition x0. The set γ(x0) =

⋃
t∈(ax0 ,bx0 )

x(t, x0) is called the orbit of

x0. The collection of the orbits of all points x0 ∈ R is called the phase
portrait of (1).

Some special orbits:

• A point x̄ ∈ R is called an equilibrium point of (1) if f(x̄) = 0.
The constant function x(t) = x̄ is a solution of (1).
• A solution x(t, x0) is called periodic of period T if x(T, x0) = x0.

An equilibrium is a special case of a periodic orbit.

2.4.1. Exercises. Determine the phase portrait of the following differ-
ential equations:

(1) ẋ = x,
(2) ẋ = x− x3,
(3) ẋ = 1 + x,
(4) ẋ = x(1− x),
(5) ẋ = −x+ x3 + λ with λ ∈ R,
(6) ẋ = 1− sinx.

2.5. Equilibrium points and their stability.

Definition 2.5. An equilibrium point x̄ ∈ R of (1) is stable if for
every ε > 0, there exists δ > 0 such that if |x0 − x̄| < δ, then the
solution x(t, x0) of (1) satisfies |x(t, x0)− x̄| < ε for every t ≥ 0.

Definition 2.6. An equilibrium point x̄ ∈ R of (1) is asymptotically
stable if it is stable and there exists r > 0 such that if |x0 − x̄| < r,
then limt→+∞ x(t, x0) = x̄.

Definition 2.7. An equilibrium point x̄ ∈ R of (1) is called unstable
if it is not stable.

The following theorem is a stability criterion for equilibria in terms
of the derivative of f .

Theorem 2.8. Suppose that f ∈ C1 and x̄ ∈ R is an equilibrium point
of (1).

(1) If f ′(x̄) < 0, then x̄ is asymptotically stable.
(2) If f ′(x̄) > 0, then x̄ is unstable.

An equilibrium point x̄ is called hyperbolic if f ′(x̄) 6= 0, and non-
hyperbolic if f ′(x̄) = 0.

Remark 2.9. Note that Theorem 2.8 tells us about the stability of
hyperbolic equilibrium points. There is no simple criterium for deter-
mining the stability of a non-hyperbolic equilibrium point.
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2.5.1. Exercise. Determine the type (hyperbolic or non-hyperbolic) and
the stability of the equilibria in Exercises 2.4.1.

2.6. Linear ODE’s. Consider the linear differential equation

ẋ = ax+ b, a, b ∈ R.

The equation is called linear homogeneous if b = 0, and linear non-
homogeneous if b 6= 0.

To obtain the solution x(t, x0) (i.e, the solution satisfying the initial
condition x(0) = x0), one may argue as follows. If a = 0, then by
integrating, we immediately obtain

x(t, x0) = x0 + bt.

If a 6= 0, then first find the equilibrium x̄ = −b/a. Then define y(t) =
x(t)− x̄. Thus ẏ = ẋ = ax + b = a(x− x̄) = ay. Now, the solution of
ẏ = ay such that y(0) = y0 is given by y(t, y0) = y0e

at, and note that
y0 = x0 − x̄. Finally, x(t, x0) = y(t, y0) + x̄ = (x0 − x̄)eat + x̄, i.e.,

x(t, x0) =

(
x0 +

b

a

)
eat − b

a
.

Examples.

(1) Suppose that a = 0. The next figure depicts the solutions
x(t, 10) for b = 2 (red) and the solution x(t, 20) for b = 0
(blue).

-10 -5 5 10
t

-10

10

20

30
x

(2) Suppose that a = 2 and b = 1. Then x̄ = −1/2 is the
(unique) equilibrium point, and the solutions x(t, 1), x(t,−1)
and x(t,−1/2) are given by
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2.6.1. Exercises.

(1) We assume that p, s, d are C1 functions from R to R, and that
they represent the following quantities
• p(t) = price of some good at time t,
• d(t) = demand at time t,
• s(t) = supply at time t.

These quantities are related by the following equations:

ṗ(t) = α (d(t)− s(t)) , α > 0,(4)

d(t) = A+Bp(t), A > 0, B < 0,(5)

s(t) = C +Dp(t), C < 0, D > 0.(6)

Substituting (5) and (6) in (7), we obtain the linear non-homogeneous
equation

(7) ṗ = α(B −D)p+ α(A− C).

Let a = α(B − D) < 0 and b = α(A − C) > 0. The unique
equilibrium point of this equation is p̄ = −(A − C)/(B − D).
From Subsection 2.6, the solution p(t, p0) with initial condition
p0 is then given by

p(t, p0) = (p0 − p̄) eat − p̄.

Since a < 0, we see that the price p(t) converges to the equilib-
rium point p̄ independently on he initial value p0:

lim
t→+∞

p(t) = −A− C
B − C

.

The same conclusion can be obtained by the Phase Portrait
Analysis. The figure below depicts the graph of α(B − D)p +
α(A−C) for α(B−D) = −2 and α(A−C) = 5. The equilibrium
point p̄ = 2.5 is asymptotically stable.
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(2) Compound interest. If an amount A is compounded annually
at the market interest rate r, then the payment after t years is
given by

Pt = A(1 + r)t.

If the same amount is compound m times each year, then

Pt = A

(
1 +

t

m

)mn
.

In the limit as m goes to infinity, we obtain P (t) = Aert, which
can be seen as the solution of the differential equation

Ṗ (t) = rP (t).

Now, suppose that in addition to the interest rate rP received,
there is a constant rate of deposit d. Write the new differential
equation for P , and find the solution P (t, P0), i.e., the solution
through P0 at time t0 = 0. Determine the phase portrait of the
equation and the stability of its equilibrium point.

(3) A simple continuous price-adjustment demand and supply model
is given by

ṗ(t) = α(d(t)− s(t)), α > 0,

d(t) = A+Bp(t), B < 0,

s(t) = C +Dp(t), D > 0,

where p(t), d(t) and s(t) denotes the price, demand and supply
at time t, respectively. Find and solve the differential equation
for p(t). Determine the phase portrait of the differential equa-
tion and the stability of its equilibrium point. Solve the same
exercise when the demand d(t) depends also on the variation of
p(t), i.e., when d(t) = a+Bp(t) + F ṗ with F 6= 0.

(4) Assume that a population p(t) grows at a constant rate k. This
means that p(t) satisfies the following differential equation:

ṗ(t) = kp(t).
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Find the solution p(t, p0), determine the phase portrait of the
equation and the stability of its equilibrium point.

(5) According to a continuos version of the Harrod-Domar economy
growth model, the relation between the savings S, the income
Y and the investment I is given by

S = sY, I = νẎ , I = S,

where s and ν are constants denoting the average propensity
to save and the coefficient of the investment relationship, re-
spectively. Derive and solve the differential equation for Y (t).
Determine its phase portrait and the stability of its equilibrium
point.

3. Scalar DE’s

Difference equations (DE’s) are the analog of differential equations
when the time is a discrete variable n = 0, 1, . . .. Let f : R → R be a
C1 real-valued function.

3.0.2. Example. The following is an example of a difference equation
arising from a financial problem.

Let pn be the price of some financial assets at time n = 0, 1, 2, . . ..
Suppose that the variation of pn in time is given by the following arbi-
trage condition:

(8) (1 + r)pn = d+ pen+1,

where r > 0 is the rate of return, d > 0 is the dividend, and pen+1 is
the expected price at time n + 1. Suppose also that the agents have
perfect foresight, i.e., they know that the mechanism of price formation
is given by the following relation

(9) pen+1 = pn+1.

We want to determine how pn varies in time.
By combining (8) and (9), we obtain a difference equation for pn

only:
(1 + r)pn = d+ pn+1.

This equation can be written as

pn+1 = F (pn), where F (p) = (1 + r)p+ d.

This is the DE describing the evolution of pn.

3.1. General form. We are interested in DE’s of the form

(10) xn+1 = F (xn),

where F : R→ R is a continuous function, called map.
The solution of Equation (10) with the initial condition x0 is obtained

recursively:
x0, F (x0), F

2(x0), . . . ,
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(a) (b)

Figure 2. (A) xn+1 = 2xn with x0 = 0.2. (B) xn+1 =
xn/2 with x0 = −0.8.

where F n(x0) = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
n times

.

Definition 3.1. The union of all elements x0, F (x0), F
2(x0), . . . is

called the positive orbit of x0, and is denoted by γ+(x0).

Definition 3.2. A point x̄ ∈ R is called a fixed point of the map F if
F (x̄) = x̄.

Remark 3.3. Note that x̄ is a fixed point of F if and only if γ+(x̄) = x̄.

3.2. Stair-step diagram. The stair-step diagram is a geometrical
method for depicting the orbits of a DE. The method is illustrated
in the following examples.

3.2.1. Examples.

(1) xn+1 = 2xn. The orbits of this map can be computed explicitly.
By iterating F , we obtain xn = 2nx0 for x0 ∈ R. The step-stair
diagram for this map is depicted in Fig. 2(A).

(2) xn+1 = xn/2. The orbits of this maps are xn = 2−nx0 for x0 ∈ R
(see Fig. 2(B))

(3) xn+1 = −2xn. The orbits of this maps are xn = (−2)nx0 for
x0 ∈ R (see Fig. 3(A)). Compare these orbits with those of the
previous examples. Note the oscillatory behavior of the orbits
in this example and the next.

(4) xn+1 = −xn/2. The orbits of this maps are xn = (−2)−nx0 for
x0 ∈ R (see Fig. 3(B)).

3.3. Stability. As for equilibrium points of differential equations, we
can define the notions of a stability, instability and asymptotic stability
for fixed points.

Definition 3.4. Let x̄ ∈ R be a fixed of the map F . Then x̄ is called
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(a) (b)

Figure 3. (A) xn+1 = −2xn with x0 = 0.01. (B)
xn+1 = −xn/2 with x0 = 1.

(1) stable if for every ε > 0, there exists δ > 0 such that if |x0−x̄| <
δ, then the orbit xn satisfies |xn − x̄| < ε for every n ≥ 0;

(2) asymptotically stable if it is stable and there exists r > 0 such
that if |x0 − x̄| < r, then the orbit xn satisfies limt→+∞ xn = x̄;

(3) if it is not stable.

The following theorem is a stability criterion in terms of the deriva-
tive of F .

Theorem 3.5. Suppose that F ∈ C1 and x̄ ∈ R is a fixed point of F .

(1) If |F ′(x̄)| < 1, then x̄ is asymptotically stable.
(2) If |F ′(x̄)| > 1, then x̄ is unstable.

A fixed point x̄ is called hyperbolic if |F ′(x̄)| 6= 1, and non-hyperbolic
if |F ′(x̄)| = 1.

Remark 3.6. There is no simple criterium for determining the stabil-
ity of a non-hyperbolic fixed points.

3.3.1. Exercises. Find the fixed points of the map F and determine
their stability. Some of the fixed points are non-hyperbolic, and there-
fore Theorem 3.5 cannot be used. Use instead the stair-step diagram.

(1) F (x) = x+ x2.
(2) F (x) = −x+ 3x2.

3.4. Linear maps. A linear difference equation is an equation of the
form:

(11) xn+1 = axn + b, a, b ∈ R.

The equation is called homogeneous if b = 0, and non-homogeneous if
b 6= 0.

Solutions of these equations can be computed explicitly. Note first
that Equation (11) has a (unique) fixed point x̄ = b/(1−a) if and only
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if a 6= 1. The orbit of (11) is given by

(12) xn =

{
x0 + nb if a = 1,

an(x0 − x̄) + x̄ otherwise.

This includes the case a = 0 for which the orbit consists of the fixed
point x̄ = b.

3.4.1. Exercise. Derive Formula (12). This can be done using a method
similar to that one used to obtain the solutions of linear differential
equations in Subsection 2.6.

4. Planar ODE’s

Let f : R2 → R2 be a function. Also, let I be an interval of R,
and let x : I → R2 be a differentiable function. We are interested in
the solutions of the autonomous (f does not depend explicitly on t)
differential equation

(13) ẋ = f(x), t ∈ I.

4.1. Linear ODE’s. More specifically, we are interested in the case
f(x) = Ax with A being a 2 × 2 matrix with real coefficients and x
being a vector of R2:

(14) ẋ = Ax.

If we write

x =

(
x1
x2

)
, ẋ =

(
ẋ1
ẋ2

)
, A =

(
a11 a12
a21 a22.

)
then Equation (14) takes the form

ẋ1 = a11x1 + a12x2,

ẋ2 = a21x1 + a22x2.

4.2. General properties of linear systems.

(1) Existence and uniqueness: the solution x(t, x0) of Equation (14)
with initial condition x(0) = x0 ∈ R2 exists and its unique.
Moreover, its maximal interval of existence is the entire real
line R.

(2) Superposition Principle: if x and y are two solutions of (14),
then every linear combination c1x + c2y with c1, c2 ∈ R is a
solution as well. This is simple to prove. Let z = c1x + c2y.
Then ż = c1ẋ + c2ẏ. Since x and y are solutions of (14), we
have ż = c1Ax+ c2Ay. But c1Ax+ c2Ay = A(c1x+ c2y) = Az,
and we can conclude that ż = Az, i.e., z is a solution.
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(3) In analogy to the scalar case, the solution of (14) with initial
condition x0 ∈ R2 is given by

x(t, x0) = etAx0, t ∈ R,

where etA is a matrix, which is defined in the next subsection.

4.3. Exponential of a matrix. It is a fact that the series
∑+∞

n=0A
n/n!

converges for every 2× 2 matrix A. This allows us to define the expo-
nential of a matrix as follows.

Definition 4.1. We define

eA =
+∞∑
n=0

1

n!
An.

Of course if A is a matrix and t is a real number, then tA is still a
matrix. The main properties of the matrix etA are the following:

(1) e(s+t)A = esAetA for s, t ∈ R,
(2) detA/dt = AetA = etAA,
(3) if AB = BA (i.e., A and B commute), then et(A+B) = etAetB.

4.3.1. Exercise. Show that if A = ( 0 1
0 0 ) and B = ( 0 0

−1 0 ), then et(A+B) 6=
etAetB.

4.4. Exponential of Normal Jordan Forms.

Definition 4.2. Every matrix having one of the following three forms
is called a Jordan Normal Form,

(i)

(
λ1 0
0 λ2

)
, (ii)

(
λ 1
0 λ

)
, (iii)

(
α β
−β α

)
,

where λ1, λ2, λ, α, β ∈ R and β 6= 0.

We now compute etA when A is a Normal Jordan Form.

Form (i): It follows directly from the definition of etA that

etA =

∑+∞
n=0

(tλ1)
n

n!
0

0
∑+∞

n=0

(tλ2)
n

n!

 =

(
etλ1 0
0 etλ2

)
.

Form (ii): We can write A = I + λN , where I = ( 1 0
0 1 ) and N = ( 0 1

0 0 ).
Since I and N commute, it follows from Property (3) of etA that

etA = eλIetN = eλtetN .

Now, we see that N2 = 0 (i.e., N2 is the matrix with zero entries).
This implies that Nk = 0 for k ≥ 2, and so

etN = I + tN =

(
1 t
0 1

)
.
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Hence,

etA = etλ
(

1 t
0 1

)
=

(
etλ tetλ

0 etλ

)
.

Form (iii): We can write A = αI + βK, where K = ( 0 1
−1 0 ). Since I

and K commute, Property (3) of etA implies that

etA = eαteβtK .

Now, check that K2 = −I and K3 = −K. From this, we get K2n =
(−1)nI and K2n+1 = (−1)nK, and so

etK =
∞∑
n=0

1

(2n)!
(βt)2nK2n +

∞∑
n=0

1

(2n+ 1)!
(βt)2n+1K2n+1

=

(
∞∑
n=0

(−1)n

(2n)!
(βt)2n

)
I +

(
∞∑
n=0

(−1)n

(2n+ 1)!
(βt)2n+1

)
K

= cos(βt)I + sin(βt)K =

(
cos(βt) sin(βt)
− sin(βt) cos(βt)

)
.

Finally,

etA = eαt
(

cos(βt) sin(βt)
− sin(βt) cos(βt)

)
.

4.5. Phase portrait. We now draw the phase portrait of the differ-
ential equation ẋ = Ax when A is one of the Normal Jordan Forms
introduced in Subsection 4.4. Although the phase portrait is the col-
lection of all the orbits of the equation, we do not need to plot all the
of them, but only a few representative ones. Since we know that the
general solution of the equation is x(t, x0) = etAx0 with x(0) = x0, all
that we need to do is to understand the geometry of the transforma-
tion of the plane x0 7→ etAx0, sending the vector x0 into the new vector
etAx0.

Form (i): It is quite easy to understand the geometrical effect of the
transformation etA in this case. Its effect is that of multiplying the first
component of the vector x by etλ1 and the second component of x by
etλ2 . Depending on the sign of λ1 and λ2, the phase portrait is depicted
in Fig. 4 (cases: saddle, sink and source).

Form (ii): The transformation etA can be thought as the compositions
of two transformations: etλx and ( 1 t

0 1 )x. The first transformation
expands or contracts x depending on the sign of λ, whereas the second
transformation ‘slides’ the vector x = (x1, x2) along the horizontal line
y = x2. The overall effect of etA produces the phase portrait (improper
node) depicted in Fig. 5.
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Figure 4. Phase Portraits.

Form (iii): The geometry of etAx is the combination of the expansion or
contraction generated by eαt with the rotation of the plane generated

by the matrix
(

cos(βt) sin(βt)
− sin(βt) cos(βt)

)
(clockwise if β > 0 and counterclockwise

if β < 0). The phase portrait is depicted in Fig. 4 (cases: spiral sink,
spiral source and center).

4.6. Change of coordinates. Suppose that x is a solution of the
differential equation ẋ = Ax. Let P be an invertible real 2× 2 matrix,
and define y = P−1x. Then, y is a solution of the differential equation:

ẏ = P−1ẋ = P−1Ax = P−1APy.

(a) (b)

Figure 5. Improper Node. (A) λ < 0. (B) λ > 0.
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The general solution of this equation is y(t) = etP
−1APy0 for y0 ∈ R2.

This implies that x(t) = PetP
−1APP−1x0, where x0 = Py0 = x(0). But

we know that solution x(t, x0) is given by x(t, x0) = etAx0, and so we
conclude that

etA = PetP
−1APP−1.

Now, suppose that given a real matrix A, we can find an invertible
matrix P such that P−1AP is a Jordan Normal form. So in order
to compute etA, we do not have to compute directly etA, but we can
simply compute PetP

−1APP−1, and we know that from Subsection 4.4
that etP

−1AP is one of the matrices:(
etλ1 0
0 etλ2

)
, etλ

(
1 t
0 1

)
, eαt

(
cos(βt) sin(βt)
− sin(βt) cos(βt)

)
.

4.6.1. Exercise. Consider the linear differential equation

ẋ =

(
5 −4
4 5

)
,

and the change of coordinates y = Px with P = ( 2 1
1 2 ) . Find the

differential equation in the new coordinates y, compute the general
solution for this equation, and finally derive the general solution in the
coordinates x.

4.7. Jordan Decomposition Theorem.

Theorem 4.3. Suppose that A is a real 2×2 matrix. There exists and
invertible real 2 × 2 matrix P such that P−1AP = J , and J is one of
the following matrices:

(i)

(
λ1 0
0 λ2

)
, (ii)

(
λ 1
0 λ

)
, (iii)

(
α β
−β α

)
with λ1, λ2, λ, α, β ∈ R and β 6= 0. The matrix J is called a Normal
Jordan form.

We now explain how to compute the matrix P . The procedure con-
sists of three steps:

Step 1: Find the eigenvalues of A, which are solutions of the charac-
teristic equation:

(15) det(A− λI) = λ2 − tr(A)λ− det(A) = 0,

where tr(A) and det(A) are the trace and determinant of A, respec-
tively. This is a quadratic equation with real coefficients, and so it has
two solutions λ1 and λ2 that can be of one of the following types:

(a): λ1, λ2 real and λ1 6= λ2,
(b): λ1 = λ2 = λ real,
(c): λ1 = α + iβ and λ2 = α − iβ with α, β real and β 6= 0, i.e.,
λ1 and λ2 are complex conjugate.
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Step 2: Find the eigenvectors of A. This can be done for each case
(a), (b) and (c) as follows.

(a): Since λ1 6= λ2, the matrix A is diagonalizable. This means
that A has two linearly independent eigenvectors v1 and v2 cor-
responding to the eigenvalues λ1 and λ2, respectively. These
vectors are non-zero solutions of the equations:

(A− λiI) vi = 0, i = 1, 2.

(b): We have two subcases. The first corresponds to the situation
when A admits two linearly independent eigenvectors v1 and
v2, that is, when two linearly independent vectors v1 and v2 are
solutions of the equation

(16) (A− λI) v = 0.

The second subcase corresponds to the situation when any two
of non-zero solutions of equation (16) are linearly dependent.
In this case, let v1 be a non-zero solution of (16), and let v2 be
any non-zero vector such that

(17) (A− λI) v2 = v1.

The vector v1 is an eigenvector of A, and v2 is called a general-
ized eigenvector of A.

(c): Let v be an eigenvector of A corresponding to the eigenvalue
α + iβ. It turns out that the components of v are complex
numbers. So we can write v = v1 + iv2, where v1 and v2 are
vectors with real components.

Step 3: Let v1 and v2 be the vectors computed for each case in Step
2. Then P = (v1|v2). This means that v1 and v2 are the first column
and the second column of P , respectively. From the construction of
v1 and v2 in Step 2, these vectors are linearly independent (can you
explain why?), and so P is invertible. Finally, the Jordan Normal form
J associated to A is given by J = P−1AP .

4.8. Stability.

Theorem 4.4. Let A be a real 2× 2 matrix. Then the origin (0, 0) is
always an equilibrium point of the equation ẋ = Ax. Furthermore,

(1) if all the eigenvalues of A have negative real parts, then the
origin is asymptotically stable;

(2) if at least one of the eigenvalues of A has positive real part, then
the origin is unstable.

4.8.1. Exercises. Consider the linear differential equation ẋ = Ax. For
each of the cases below, find the matrix P and the Jordan Normal form
J for A. Then sketch the phase portrait of the equation in the new
coordinates y = P−1x, and determine the stability of the equilibrium
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point (0, 0). Finally, compute etA = PetJP−1. How many equilibrium
points does the equation have in exercise iv)?

i)

(
0 1
1 0

)
, ii)

1

2

(
2 1
−1 0

)
, iii)

(
0 −2
8 0

)
, iv)

(
0 0
0 −1

)
4.9. Non-homogeneous linear differential equations. Let A be
an invertible real 2× 2 matrix, and let b a vector of R2. Consider the
linear differential equation

(18) ẋ = Ax+ b.

SinceA is invertible, this equation has a unique equilibrium x̄ = −A−1b.
The solution with initial condition x(0) = x0 is given by

(19) x(t, x0) = x̄+ etA(x0 − x̄), t ∈ R.

4.9.1. Exercise. Check that (19) is the solution of Equation (18) with
initial value x(0) = x0.

5. Nonlinear systems

Suppose that f : R2 → R2 be a C1 function. That is, we assume that
there are two C1 functions f1 and f2 from R2 to R such that f =

(
f1
f2

)
.

The differential of f at x = (x1, x2) ∈ R2 is the matrix

Df(x) =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
.

We are interested in the autonomous differential equation

(20) ẋ = f(x).

Definition 5.1. A point x̄ ∈ R2 is called an equilibrium of (20) if
f(x̄) = 0. An equilibrium point x̄ is called hyperbolic if all the eigen-
values of Df(x̄) have non-zero real part.

Theorem 5.2. The stability criterion for equilibria of linear systems
(Theorem (4.4)) applies to every hyperbolic equilibrium x̄ of (20) with
the matrix A replaced by Df(x̄).

The previous theorem is a corollary of a more general result that
roughly says that the phase portrait of Equation (20) in a neighborhood
of a hyperbolic equilibrium x̄ ‘looks’ like the phase portrait of the linear
differential equation

(21) ẋ = Df(x̄)x.

This equation is called the variational linear variational equation at x̄.
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5.0.2. Exercises. Find the equilibria and determine their stability for
the following planar differential equations:

(1) ẋ1 = 1− x1x2, ẋ2 = x1 − x22,
(2) ẋ1 = 2x1 − x21 − x1x2, ẋ2 = −x2 + x1x2,
(3) ẋ1 = sin(x1 + x2), ẋ2 = ex1 − 1,
(4) ẋ1 = x1 − x31 − x1x2, ẋ2 = 2x2 − x52 − x2x41.

6. Extra exercises

6.1. Scalar ODE’s.

(1) Solve the initial value problem using the method of separation
of variables.

(i) ẋ =
1

x2
, x(0) 6= 0,

(ii) ẋ = x(x− 2), x(0) = x0,

(iii) ẋ =
1

2
√
x
, x(0) = x0 ≥ 0.

(2) For each of the following differential equations find all the equi-
librium points and determine whether they are stable, asymp-
totically stable or unstable. Also, draw the phase portrait.

(i) ẋ = x3 − 3x,

(ii) ẋ = x4 − x2,
(iii) ẋ = cosx,

(iv) ẋ = sin2 x,

(v) ẋ = |1− x2|.

(3) The following differential equations depends on a parameter a.
Plot the phase portrait for a = −1, a = 0 and a = 1.

(i) ẋ = x2 − ax,
(ii) ẋ = x3 − ax.

(4) Solve the following linear non-homogeneous equations

(i) ẋ = 2x+ 3, x(0) = 10,

(ii) ẋ = −x+ 2, x(0) = −10,

(iii) ẋ = 3x+ 10, x(0) = 2.

6.2. Scalar maps.

(1) For each of the following difference equations, draw the stair-
step diagram and plot some iterations. Establish whether the
fixed point is stable, asymptotically stable or unstable. Ex-
plain why. In which of these examples does the system oscillate
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around the fixed point?

(i) 10− 3xn = 2 + xn−1,

(ii) 25− xn+1 = 3 + 4xn−1,

(iii) 45− 2.5xn+1 = 5 + 7.5xn−1.

(2) For the following difference equations, draw the stair-step dia-
gram, and iterates 4 times the initial condition x0 = .4. Deter-
mine whether the fixed points are stable, asymptotically stable
or unstable.

(i) xn+1 = 4xn(1− xn),

(ii) xn+1 = x2n − 2,

(iii) xn+1 = −2

∣∣∣∣x− 1

2

∣∣∣∣+ 1.

6.3. Planar ODE’s.

(1) Sketch the phase portrait of the equation ẋ = Ax for the follow-
ing matrices. Determine the stability of the origin, and compute
the exponential matrix etA.

a)

(
2 0
0 2

)
, b)

(
1
2

0
0 2

)
, c)

(
−2 0
0 2

)
,

d)

(
1
2

1
0 1

2

)
, e)

(
0 −1
1 0

)
, f)

(
−1 0
0 0

)
.

(2) For each of the following linear equations ẋ = Ax
(a) Find the eigenvalues and eigenvectors of A.
(b) Find the matrix P such that J = P−1AP is a Jordan

Normal form.
(c) Compute the exponential matrices etJ and etA.
(d) Find the solution x(t, x0) with initial condition x0.
(e) Sketch the phase portrait for the system ẏ = Jy.
(f) Determine the stability of the origin (0, 0).

a)

(
0 1
1 0

)
, b)

(
1 1
1 0

)
, c)

(
1 1
−1 0

)
,

d)

(
1 1
−1 3

)
, e)

(
1 1
−1 −3

)
, f)

(
1 1
1 −1

)
.

(3) Solve the initial value problem: ẋ1 = −4x2, ẋ2 = x1 with
x1(0) = 0 and x2(0) = −7.

(4) Find all the solutions of the linear non-homogeneous system:
ẋ1 = x2, ẋ2 = 2− x1.
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