Matemática I

VERSÃO A

Duração da prova: 2 horas

Primeira Parte (15 valores)

As 10 perguntas são de escolha múltipla. Preencha a folha de respostas, assinalando com uma cruz a versão A e indicando uma só resposta. Cada resposta correcta vale 1,5. As respostas erradas são penalizadas.

1. A soma da série $\sum_{n=1}^{\infty} \frac{x^{3n}}{x}$, com $x \neq 0$, é igual a:

a)
$$\frac{x^2}{1-x^3}$$
, se $x \in [-1, 1]$

b)
$$\frac{x}{1-x^2}$$
, se $x \in (-1, 1)$

c)
$$\frac{x^2}{1-x^3}$$
, se $x \in (-1, 1)$

d)
$$\frac{x}{1-x^2}$$
, se $x \in [-1, 1)$

2. Qual é o tempo t (em anos) necessário para que um depósito de 100 euros numa conta de poupança com juros compostos à taxa anual de 10% duplique?

a)
$$t = \frac{\ln 2}{\ln 1, 1}$$
 b) $t = 2 \times 1, 1$ c) $t = \ln 2 - \ln 0, 1$ d) $e^{1,1}$

b)
$$t = 2 \times 1, 1$$

c)
$$t = \ln 2 - \ln 0, 1$$

d)
$$e^{1,1}$$

3. Seja a função $f(x) = \left(\frac{1}{x} - 1\right)^2$. A aproximação de Taylor de segunda ordem de f em torno de x = 1 é:

a)
$$x-1+(x-1)^2$$
 b) $x-1-(x-1)^2$ c) $-(x-1)^2$ d) $(x-1)^2$

b)
$$x-1-(x-1)^2$$

c)
$$-(x-1)^2$$

d)
$$(x-1)^2$$

4. Seja a função $f(x) = be^{\frac{x}{b}-1}$, sendo b uma constante não nula. A elasticidade de f em relação a x é igual a:

b)
$$\frac{x}{b}$$

b)
$$\frac{x}{b}$$
 c) $\frac{x}{b} \text{El}_x f(x)$ d) $x \text{El}_x f(x)$

d)
$$x \text{El}_x f(x)$$

5. Indique o valor correcto de $L = \lim_{x \to 0^+} x^{2x}$:

a) não existe L b)
$$L=0$$
 c) $L=\infty$ d) $L=1$

b)
$$L = 0$$

c)
$$L = \infty$$

d)
$$L=1$$

- **6.** Seja a função $f(x) = 2x + 3x^{\frac{2}{3}}$. Os pontos estacionários de f são:
 - a) $x = \pm 1, x = 0$ b) x = 0
- c) não existem d) x = -1

- 7. O valor do integral definido $\int_0^1 xe^{1-x} dx$ é:
 - a) 2-e b) e-2
- c) *e*
- d) −*e*

- **8.** O integral indefinido $\int x^2 (x^3 + 3)^3 dx$ é igual a:

- a) $\frac{(x^3+3)^4}{12}+k$ b) $\frac{(x^3+3)^4}{4}+k$ c) $\frac{x^2(x^3+3)^4}{12}+k$ d) $\frac{x^3(x^3+3)^4}{12}+k$
- 9. Seja a seguinte matriz:

$$\mathbf{M} = \begin{bmatrix} 0 & 0 & 0 & \delta \\ 0 & \beta & 0 & 0 \\ \alpha & 0 & 0 & 0 \\ 0 & 0 & \gamma & 0 \end{bmatrix}$$

- O determinante da matriz M é igual a:
 - a) $-\alpha\beta\delta\gamma$
- b) 0
- c) $\alpha\beta\delta\gamma$ d) $-\delta$

10. Considere a matriz seguinte:

$$A = \begin{bmatrix} 2 & 2 \\ -1 & 0 \end{bmatrix}$$

Indique a resposta correcta:

$$a) \quad A^{-1} = \begin{bmatrix} 0 & -1 \\ \frac{1}{2} & 1 \end{bmatrix}$$

b)
$$A^{-1} = \begin{bmatrix} 1 & 1 \\ -\frac{1}{2} & 0 \end{bmatrix}$$

$$c) A^{-1} = \begin{bmatrix} \frac{1}{2} & 1\\ -1 & 0 \end{bmatrix}$$

d) A⁻¹ não existe

Segunda Parte (5 valores)

Os cálculos que tiver de efectuar para responder às 3 perguntas seguintes devem ser cuidadosamente justificados. Cotações: 1.a) 0,5; 1.b) 0,75; 1.c) 0,75; 2.a) 0,75; 2.b) 0,75; 3. 1,5.

- 1. Considere a função $f(x) = \ln(x+1)$.
 - a) Calcule f(0) e $f^{(k)}(0)$, com k = 1, 2, 3, 4.
 - b) Escreva a fórmula de Taylor de ordem n em torno de x = 0.
 - c) Use o resultado anterior para mostrar que $\lim_{x\to 0} \frac{\ln(x+1)}{x} = 1$ (não utilize a regra de L'Hôpital).
- 2. Considere o sistema de equações lineares:

$$\begin{cases} x + ay + bz = 1 \\ 2x + 2bz = 3, \text{ com } a, b \in \tilde{\mathbb{N}} \\ x + ay - z = 1 \end{cases}$$

- a) Determine os valores dos parâmetros *a* e *b* que tornam o sistema possível e determinado, possível e indeterminado e impossível.
- b) Resolva o sistema para a = b = -1.
- 3. Calcule a área da região plana, limitada por $f(x) = -x^2 + x + 2$ e pelo eixo dos xx.