Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

13 de Dezembro de 2013

Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias:

- 1. Uma moeda imperfeita é lançada três vezes ao ar.
- 2. Duas bolas são retiradas de uma urna contendo duas bolas azuis e duas vermelhas.
- 3. Uma moeda imperfeita é lançada repetidamente ao ar até ocorrer a primeira cara.

Exercício 2. Seja (Ω, \mathcal{F}, P) um espaço de probabilidade e A_1, A_2, A_3, \ldots acontecimentos de \mathcal{F} tais que $P(A_n) = 1$ para todo $n = 1, 2, 3, \ldots$ Mostre que $P(\bigcap_{n=1}^{\infty} A_n) = 1$.

Exercício 3. Uma moeda perfeita é lançada repetidamente ao ar. Calcule a probabilidade de no n-ésimo lançamento ocorrer:

- 1. Uma cara pela primeira vez.
- 2. O número de caras e coroas observadas até ao momento ser igual.
- 3. Exactamente duas coroas terem sido observadas consecutivamente.
- 4. Pelo menos duas caras terem sido observadas até ao momento.

Exercício 4. Mostre que a probabilidade de um e um só dos acontecimentos A e B ocorrer é

$$P(A) + P(B) - 2P(A \cap B)$$

Exercício 5 (*). Uma moeda imperfeita é lançada repetidamente ao ar. A probabilidade de ocorrer cara em cada lançamento é p. Seja p_n a probabilidade de até ao n-ésimo lançamento terem ocorrido um número par de caras. Mostre que $p_0 = 1$ e $p_n = p(1 - p_{n-1}) + (1 - p)p_{n-1}$ se $n \ge 1$. Determine p_n .

Exercício 6 (*). No século XVIII o conde de Buffon colocou o seguinte problema: uma agulha de comprimento l cm é lançada aleatoriamente numa folha de papel de linhas espaçadas entre si d cm. Qual é a probabilidade de a agulha intersectar uma linha.

Exercício 7. Considere o espaço de probabilidade ([0, 1], \mathcal{B} , m) e a variável aleatória $X(\omega) = \min(\omega, 1 - \omega)$. Determine F_X .

Exercício 8. Suponha que um comboio parte aleatoriamente do Porto entre as 8h e as 10h da manhã com destino a Lisboa, que fica a 300km de distância. Suponha também que o comboio viaja a uma velocidade constante de 100km/h.

- 1. Determine a variável aleatória que descreve a distância entre o comboio e Lisboa às 12h.
- 2. Calcule a distribuição de probabilidade dessa variável aleatória e a respectiva função de distribuição.

Exercício 9. Seja X uma variável aleatória e F_X a sua função de distribuição. Mostre que:

- 1. $P(a < X \le b) = F_X(b) F_X(a)$.
- 2. $P(a \le X \le b) = F_X(b) F_X(a^-)$.
- 3. $P(a < X < b) = F_X(b^-) F_X(a)$.
- 4. $P(a \le X < b) = F_X(b^-) F_X(a^-)$.

Exercício 10. Seja X uma variável aleatória com função de distribuição

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x}{2} & 0 \le x \le 2 \\ 1 & x > 2 \end{cases}$$

e seja $Y = X^2$. Calcule:

1.
$$P(\frac{1}{2} \le X \le \frac{3}{2})$$
.

- 2. P(X < 2Y).
- 3. a função de distribuição de $Z = \sqrt{X}$.

Exercício 11. Uma variável aleatória X tem função de distribuição de probabilidade F_X . Determine a função de distribuição de Y = aX + b onde $a, b \in \mathbb{R}$.

Exercício 12. Quais das seguintes funções são funções de distribuição de probabilidade? Para cada caso, determine a respectiva função de densidade de probabilidade.

1.
$$F(x) = \begin{cases} 1 - e^{-x^2} & x \ge 0, \\ 0 & \text{caso contrário.} \end{cases}$$

2.
$$F(x) = \begin{cases} e^{-1/x} & x > 0, \\ 0 & \text{caso contrário.} \end{cases}$$

3.
$$F(x) = e^x/(e^x + e^{-x}), x \in \mathbb{R}$$
.

Exercício 13. Quais das seguintes funções são funções de densidade de probabilidade? Encontre c e respectiva função de distribuição de probabilidade.

1.
$$f(x) = \begin{cases} \frac{c}{x^d} & x > 1, \\ 0 & \text{caso contrário.} \end{cases}$$

2.
$$f(x) = ce^x(1 + e^x)^{-2}, x \in \mathbb{R}$$
.

Exercício 14. Sejam X e Y variáveis aleatórias e $\alpha, \beta \in \mathbb{R}$. Mostre que $E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y)$.

Exercício 15. Seja X uma variável aleatória. Mostre que $V(X) = E(X^2) - (E(X))^2$.

Exercício 16. Uma variável aleatória $X: \Omega \to \mathbb{R}$ segue uma distribuição de *Poisson* se $X(\Omega) = \{0, 1, 2, \ldots\}$ e

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

onde $\lambda > 0$. Calcule E(X).

Exercício 17 (*). Seja X uma variável aleatória que segue uma distribuição Gaussiana com valor esperado μ e desvio padrão σ . Mostre que,

1. Para todo $n \in \mathbb{N}$,

$$E((X - \mu)^n) = \begin{cases} \sigma^n(n-1)(n-3)\cdots 1 & \text{se } n \text{ \'e par} \\ 0 & \text{caso contr\'ario} \end{cases}$$

2.
$$E(e^{tX}) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}, \quad t \in \mathbb{R}.$$

Exercício 18. Seja (Ω, \mathcal{F}, P) um espaço de probabilidade e B um acontecimento. Mostre que $(B, \mathcal{F}_B, P(\cdot|B))$ é um espaço de probabilidade, onde $\mathcal{F}_B = \{A \cap B \colon A \in \mathcal{F}\}\ e\ P(A|B) = \frac{P(A \cap B)}{P(B)}$.

Exercício 19. Mostre que,

$$P(A \cup B \cup C) = 1 - P(A^{c}|B^{c} \cap C^{c})P(B^{c}|C^{c})P(C^{c})$$

Exercício 20. Mostre que dois acontecimentos são independentes see as σ -álgebras geradas por esses acontecimentos são independentes.

Exercício 21. Seja (X_1, X_2) um vector aleatório bidimensional com a seguinte função de distribuição

$$F(x_1, x_2) = (1 - e^{-x_1})(1 - e^{-x_2}), \quad x_1, x_2 > 0.$$

Determine:

- 1. $P(1 < X_1 < 2, 1 < X_2 < 3)$
- 2. A função de densidade de probabilidade conjunta $f(x_1, x_2)$.
- 3. $Cov(X_1, X_2)$

Exercício 22 (*). Sejam X e Y duas variáveis aleatórias independentes e absolutamente contínuas. Mostre que

$$f_{X+Y}(z) = \int_{\mathbb{R}} f_X(x) f_Y(z-x) dm(x).$$

Exercício 23. Sejam $X, Y \in Z$ variáveis aleatórias independentes com distribuição de probabilidade uniforme no intervalo [0,1]. Determine a função de densidade conjunta de $XY \in Z^2$. Mostre que $P(XY < Z^2) = \frac{5}{9}$.

Exercício 24. Sejam X e Y duas variáveis aleatórias independentes com distribuição de probabilidade uniforme no intervalo [0,1]. Sejam $U = \min\{X,Y\}$ e $V = \max\{X,Y\}$. Calcule E(U) e Cov(U,V).

Exercício 25 (*). Sejam X e Y duas variáveis aleatórias independentes com segundo momento finito. Quando é que as variáveis aleatórias X + Y e XY são não correlacionadas, ou seja, covariância nula.

Exercício 26. Mostre que $Cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2)$.

Exercício 27. Mostre que $\sigma(X)$ é uma σ -álgebra e que a função X é mensurável no espaço mensurável $(\Omega, \sigma(X))$.

Exercício 28. Considere uma variável aleatória X que toma dois valores distintos $a, b \in \mathbb{R}$. Calcule $\sigma(X)$.

Exercício 29. Mostre que a σ -álgebra $\sigma(X)$ é a menor das σ -álgebras de partes de Ω que tornam X uma função mensurável.

Exercício 30. Mostre que $E(X|\Omega) = E(X)$.

Exercício 31. Sejam X e Y variáveis aleatórias e suponha que Y é discreta. Mostre que E(X|Y) = E(X) se $Y(\omega) = c$ para todo $\omega \in \Omega$.

Exercício 32. Mostre que se $\mathcal{G} = \{\emptyset, \Omega\}$ então $E(X|\mathcal{G}) = E(X)$ P-q.c.

Exercício 33 (*). Sejam X e Y duas variáveis aleatórias discretas, isto é, $X(\Omega) = \{x_1, x_2, \ldots\}$ e $Y(\Omega) = \{y_1, y_2, \ldots\}$ onde $P(Y = y_j) > 0, j = 1, 2, \ldots$ Mostre que

$$E(X|Y = y_j) = \sum_{i=1}^{\infty} x_i f_{X|Y}(x_i, y_j),$$

onde $f_{X|Y}(x_i, y_i)$ é a massa de probabilidade condicionada,

$$f_{X|Y}(x_i, y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_i)}.$$

Exercício 34. Uma empresa produz diariamente N componentes electrónicas, onde N é uma variável aleatória que segue uma distribuição de Poisson com parâmetro $\lambda > 0$. Cada componente pode ter um defeito, independentemente das restantes, com probabilidade p. Seja D o número diário de componentes electrónicas com defeito. Calcule E(D|N), E(D) e E(N|D).

Exercício 35. Seja ($[0,1[,\mathcal{B}([0,1[),P)$ o espaço de probabilidade onde P é a medida de Lebesgue restrita ao intervalo [0,1[e $X,Y:[0,1[\to\mathbb{R}$ as variáveis aleatórias,

$$X(\omega) = 2\omega^2$$
 e $Y(\omega) = \begin{cases} 2\omega & 0 \le \omega < \frac{1}{2} \\ 2 - 2\omega & \frac{1}{2} \le \omega < 1 \end{cases}$.

Determine E(X|Y).

Exercício 36 (*). Um ponto X é escolhido uniformemente ao acaso da superfície de uma esfera de raio 1. Sejam Θ e Φ a longitude e latitude do ponto X. Determine a função de densidade condicional de Θ dado Φ .

Exercício 37. Sejam X e Y variáveis aleatórias com função de densidade conjunta

$$f_{X,Y}(x,y) = cx(y-x)e^{-y}, \quad 0 \le x \le y < \infty.$$

- 1. Encontre o valor da constante c.
- 2. Mostre que

$$f_{X|Y}(x,y) = 6x(y-x)y^{-3}, \quad 0 \le x \le y,$$

 $f_{Y|X}(x,y) = (y-x)e^{x-y}, \quad 0 \le x \le y < \infty.$

3. Determine E(X|Y) e E(Y|X).

Exercício 38. Seja X_n , n = 1, 2, ... uma martingala relativamente a uma filtração \mathcal{F}_n . Mostre que X_n é uma martingala relativamente à filtração canónica $\sigma(X_1, ..., X_n)$.

Exercício 39. Numa folha de papel quadriculado com quadrículas de ℓ cm de lado, um jogador lança aleatoriamente uma moeda perfeita de diâmetro d cm onde $d < \ell$. O jogador ganha 1 euro se a moeda não intersectar as linhas da folha. Caso contrário, perde β euros. Após n jogadas independentes entre si, denote-se por S_n o ganho acumulado. Determine β tal que o jogo é justo.

Exercício 40. Seja S_n o passeio aleatório simétrico,

$$S_n = X_1 + \dots + X_n$$

onde X_1, X_2, \dots é uma sucessão de variáveis aleatórias IID tal que $P(X_n = 1) = P(X_n = -1) = 1/2$. Mostre que

$$Z_n = S_n^2 - n$$

é uma martingala relativamente à filtração canónica $\sigma(X_1,\ldots,X_n)$.

Exercício 41. Seja $S_n = X_1 + \ldots + X_n$ o passeio aleatório simétrico definido no exercício anterior. Mostre que

$$Z_n = (-1)^n \cos(\pi S_n)$$

é uma martingala relativamente à filtração canónica $\sigma(X_1,\ldots,X_n)$.

Exercício 42. Mostre que $\{\tau = n\} \in \mathcal{F}_n$ sse $\{\tau \leq n\} \in \mathcal{F}_n$.

Exercício 43. Seja $(X_n)_{n\geq 1}$ uma sucessão de variáveis aleatórias adaptada a uma filtração \mathcal{F}_n e seja $B\subset\mathbb{R}$ um Boreliano. Mostre que o tempo de primeira entrada de X_n em B,

$$\tau(\omega) = \min \left\{ n \in \mathbb{N} \colon X_n(\omega) \in B \right\} ,$$

é um tempo de paragem relativamente a \mathcal{F}_n .

Exercício 44. Sejam X_1, X_2, \ldots variáveis aleatórias IID tais que $X_n \in \{-1, 1\}$ com probabilidade $P(X_i = 1) = p$ e $P(X_i = -1) = q$ onde $p \neq q$. Considere o passeio aleatório,

$$S_n = X_1 + X_2 + \ldots + X_n,$$

e o tempo de paragem

$$\tau = \min \{ n \ge 1 : S_n \in \{-a, b\} \}$$
,

onde a, b > 0. Mostre que:

1. A sucessão $Z_n=(q/p)^{S_n}, n=1,2,\ldots$ é uma martingala relativamente à filtração $\sigma(X_1,\ldots,X_n)$.

2.

$$P(S_{\tau} = b) = \frac{1 - (q/p)^{-a}}{(q/p)^{b} - (q/p)^{-a}}$$

Exercício 45. Seja (Ω, \mathcal{F}, P) um espaço de probabilidade. Uma variável aleatória $\xi: \Omega \to \{0, 1, 2, \ldots\}$ tem uma distribuição de Poisson com valor esperado $\mu > 0$ se

$$P(\xi = k) = \frac{\mu^k}{k!} e^{-\mu}, \quad k = 0, 1, 2, \dots$$

Seja $X_0 = 0$ e

$$X_n = X_{n-1} + \xi_n - 1$$
, $n = 1, 2, \dots$

onde $(\xi_n)_{n\geq 1}$ é uma sucessão de variáveis aleatórias IID que seguem uma distribuição de Poisson com valor esperado $\mu > 0$.

1. Determine os valores de μ para os quais a sucessão $(X_n)_{n\geq 1}$ é uma martingala, submartingala ou supermartingala relativamente à filtração canónica $\mathcal{F}_n = \sigma(\xi_1, \ldots, \xi_n)$.

- 2. Suponha que $\mu > 1$. Mostre que:
 - (a) Existe um único $\rho \in]0,1[$ tal que $E(\rho^{\xi}) = \rho$.
 - (b) A sucessão ρ^{X_n} é uma martingala relativamente a \mathcal{F}_n e converge P-q.c.

Exercício 46. Seja $S_n = X_1 + X_2 + \ldots + X_n$ o passeio aleatório onde $X_n \in \{-1,1\}$ é uma sucessão de variáveis aleatórias IID tais que $P(X_n=1)=P(X_n=-1)=\frac{1}{2},\ n=1,2,\ldots$ Supondo que $k\in\mathbb{N}$:

- 1. Mostre que $Z_n = (-1)^n \cos(\pi(S_n + k))$ é uma martingala relativamente à filtração $\sigma(X_1, \ldots, X_n)$.
- 2. Calcule $E((-1)^{\tau})$ onde τ é o tempo de paragem

$$\tau = \min \{ n \ge 1 : |S_n| = k \}$$
.

Exercício 47. Sejam X_1, X_2, \ldots variáveis aleatórias IID tais que $X_n \in \{-1, 1\}$ para todo $n = 1, 2, \ldots$ Considere o tempo de paragem

$$\tau = \min\{n \ge 1 : X_1 + \dots + X_n = 1\}.$$

Determine $E(\tau)$.

Exercício 48 (*). Sejam (Ω, \mathcal{F}, P) um espaço de probabilidade, $(\mathcal{F}_n)_{n\geq 1}$ uma filtração e τ um tempo de paragem relativamente a \mathcal{F}_n tal que para algum $k \in \mathbb{N}$ e algum $\epsilon > 0$,

$$P(\tau \le n + k \mid \mathcal{F}_n) > \epsilon, \quad \forall n = 1, 2, 3, \dots$$

Mostre que $\tau < \infty$ *P*-q.c.

Exercício 49. Mostre que um processo estocástico $\{X_t : t \in T\}$ tal que $X_0 = 0$ tem incrementos estacionários see para todo $t \geq s$ tal que $t - s \in T$ as variáveis aleatórias $X_t - X_s$ e X_{t-s} são identicamente distribuídas.

Exercício 50. Seja $X = \{X_t : t \in T\}$ um processo estocástico com incrementos independentes e estacionários tal que $X_0 = 0$ e $E(X_t^2) < \infty$ para todo $t \in T$. Mostre que existe uma constante positiva σ tal que

$$Var(X_t - X_s) = \sigma^2 |t - s|.$$

Exercício 51. Seja $W = \{W_t : t \ge 0\}$ um processo de Wiener. Mostre que

1.
$$E(e^{W_t}) = e^{t/2}$$
 para todo $t \ge 0$.

2. se
$$c > 0$$
 então

$$\left\{ \frac{W_{c^2t}}{c} \colon t \ge 0 \right\}$$

é também um processo de Wiener.

Exercício 52. Mostre que um processo de Wiener é estacionário em média, mas não tem covariâncias estacionárias.

Exercício 53 (*). Seja $W = \{W_t : t \ge 0\}$ um processo de Wiener. Mostre que dados $0 \le s < t$ e A Boreliano de \mathbb{R} então,

$$P(W_t \in A|W_s = w) = \int_A p_{t-s}(x-w)dx,$$

onde
$$p_t(x) = \frac{1}{\sqrt{2\pi t}} e^{\frac{-x^2}{2t}}$$
.