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In this article, we calibrate the Vasicek interest rate model under the risk neutral
measure by learning the model parameters using Gaussian processes for machine
learning regression. The calibration is done by maximizing the likelihood of zero
coupon bond log prices, using mean and covariance functions computed analytically,
as well as likelihood derivatives with respect to the parameters. The maximization
method used is the conjugate gradients. The only prices needed for calibration are
zero coupon bond prices and the parameters are directly obtained in the arbitrage
free risk neutral measure.

Keywords Arbitrage free risk neutral measure; Calibration; Gaussian processes
for machine learning; Vasicek interest rate model; Zero coupon bond prices.

Mathematics Subject Classification Primary 91G80; Secondary 91G30, 60G15,
68T05.

1. Introduction

Calibration of interest rate models under the risk neutral measure typically entails
the availability of some derivatives such as swaps, caps or swaptions.

In this article we present an alternative method for calibrating Gaussian models,
namely, the Vasicek interest rate model (Vasicek, 1977), which requires zero coupon
bond prices only.

The presented method has the following features.
• The only prices needed for calibration are zero coupon bond prices.
• All the model parameters are directly obtained in the risk neutral measure.
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Machine Learning Vasicek Model Calibration 777

• The calibration method does not require a discrete model approximation nor
the establishment of an objective measure dynamics.

The method is based on Gaussian processes for Machine Learning, and its main
drawback is his applicability to Gaussian models only.

One key issue in using Gaussian processes for machine learning is to have
enough prior information on the data, in order to specify mean and covariance
functions. Under the Vasicek interest rate model, the risk neutral zero coupon bond
prices follow a log normal distribution, which can easily be transformed into a
Gaussian process by taking the logarithm of the zero coupon prices. The mean and
covariance functions of this Gaussian process can be computed analytically making
it suitable for Gaussian processes for machine learning regression.

2. Vasicek Interest Rate Model

In the Vasicek model, the interest rate follows an Ornstein-Uhlenbeck mean-
reverting process, under the risk neutral measure, defined by the stochastic
differential equation

dr�t� = k��− r�t��dt + � dW�t�� (1)

where k is the mean reversion velocity, � is the mean interest rate level, � is the
volatility, and W�t� the Wiener process, and k and � are positive.

Let s ≤ t. The solution of Eq. (1) is (Brigo and Mercurio, 2006)

r�t� = r�s�e−k�t−s� + ��1− e−k�t−s��+ �e−kt
∫ t

s
ekudW�u�� (2)

The interest rate r�t�, conditioned on �s, is normally distributed with mean

E �r�t� ��s� = r�s�e−k�t−s� + �
(
1− e−k�t−s�

)
(3)

and variance

Var �r�t� ��s� =
�2

2k

(
1− e−2k�t−s�

)
�

Zero coupon bonds are interest rate derivatives, therefore, their market prices
are observed in the risk neutral measure. The Vasicek model has affine term
structure, which means that the T maturity zero coupon bond prices p�t� T�,
observed in the risk neutral measure, are given by (Björk, 2004):

p�t� T� = eA�t�T�−B�t�T�r�t�� (4)

where

A�t� T� =
(
�− �2

2k2

)
�B�t� T�− T + t�− �2

4k
B�t� T�

and

B�t� T� = 1
k
�1− e−k�T−t���
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778 Sousa et al.

Equation (4) shows that the zero coupon bond prices p�t� T� are log normal and
consequently log�p�t� T�� are normal.

2.1. Zero Coupon Bond Log Prices Mean Function

Since

log�p�t� T�� = A�t� T�− B�t� T�r�t� (5)

the mean function 	�t� T� of log�p�t� T�� is given by

	�t� T� = E �log�p�t� T�� ��s�

= E �A�t� T�− B�t� T�r�t� ��s�

= A�t� T�− B�t� T�E �r�t� ��s� �

Considering the initial instant s = 0, and using Eq. (3) for E�r�t� ��s� we get

	�t� T� = A�t� T�− B�t� T�
(
r0e

−kt + �
(
1− e−kt

))
= 1

4k3
e−kT

(−4
(
ek�−t+T� − 1

)
k2�r0 − ��

− 4ekTk3�T − t��+ 2�ekt − ekT ��2

+ k
(
ekt + ekT �2T − 2t − 1�

)
�2
)
� (6)

where r0 stands for the initial interest rate value, the value of the interest rate r�t�,
at t = 0.

2.2. Zero Coupon Bond Log Prices Covariance Function

The covariance function cov�t1� t2� T� of log�p�t� T�� is given by

cov�t1� t2� T� = E ��log�p�t1� T��− 	�t1� T��

× �log�p�t2� T��− 	�t2� T�� ��s�

= E �log�p�t1� T�� log�p�t2� T�� ��s�− 	�t1� T�	�t2� T�� (7)

Using Eq. (5), the term E �log�p�t1� T�� log�p�t2� T�� ��s�, is given by

E �log�p�t1� T�� log�p�t2� T�� ��s�

= E ��A�t1� T�− B�t1� T�r�t1���A�t2� T�− B�t2� T�r�t2�� ��s�

= A�t1� T�A�t2� T�− A�t1� T�B�t2� T�E �r�t2� ��s�

− B�t1� T�A�t2� T�E �r�t1� ��s�+ B�t1� T�B�t2� T�E �r�t1�r�t2� ��s�

= A�t1� T�A�t2� T�− A�t1� T�B�t2� T�	�t2� T�

− B�t1� T�A�t2� T�	�t1� T�+ B�t1� T�B�t2� T�E �r�t1�r�t2� ��s� � (8)
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Machine Learning Vasicek Model Calibration 779

Using the Vasicek SDE solution Eq. (2), with s = 0, the term E�r�t1�r�t2� ��s�
is given by

E �r�t1�r�t2� ��s�

= E

{(
r0e

−kt1 + �
(
1− e−kt1

)+ �e−kt1

∫ t1

0
ekudW�u�

)

×
(
r0e

−kt2 + �
(
1− e−kt2

)+ �e−kt2

∫ t2

0
ekudW�u�

)}

= r20e
−k�t1+t2� + r0e

−kt1�
(
1− e−kt2

)
+ �

(
1− e−kt1

)
r0e

−kt2 + �2
(
1− e−kt1

) (
1− e−kt2

)
+ �2e−k�t1+t2�E

{∫ t1

0
ekudW�u�

∫ t2

0
ekudW�u�

}
� (9)

In order to compute E
{ ∫ t1

0 ekudW�u�
∫ t2
0 ekudW�u�

}
, we first consider t1 < t2.

In this case, we have

E

{∫ t1

0
ekudW�u�

∫ t2

0
ekudW�u�

}

= E

{(∫ t1

0
ekudW�u�

)(∫ t1

0
ekudW�u�+

∫ t2

t1

ekudW�u�

)}

= E

{(∫ t1

0
ekudW�u�

)2
}
� (10)

In case t2 < t1, we have

E

{∫ t1

0
ekudW�u�

∫ t2

0
ekudW�u�

}

= E

{(∫ t2

0
ekudW�u�+

∫ t1

t2

ekudW�u�

)(∫ t2

0
ekudW�u�

)}

= E

{(∫ t2

0
ekudW�u�

)2
}
� (11)

Given Eqs. (10) and (11), we get

E

{∫ t1

0
ekudW�u�

∫ t2

0
ekudW�u�

}
= E

{(∫ min�t1�t2�

0
ekudW�u�

)2
}
�

Finally, using Itô isometry

E

{∫ t1

0
ekudW�u�

∫ t2

0
ekudW�u�

}
= E

{(∫ min�t1�t2�

0
ekudW�u�

)2
}

=
∫ min�t1�t2�

0
E
{(
eku

)2}
du
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780 Sousa et al.

=
∫ min�t1�t2�

0
e2kudu

= 1
2k

(
e2kmin�t1�t2� − 1

)
� (12)

Using Eqs. (6)–(9) and (12), the covariance function cov�t1� t2� T� of log�p�t� T��
is given by

cov�t1� t2� T� =
1
2k3

e−k�2T+t1+t2�
(
e2kmin�t1�t2� − 1

)
(
ekT − ekt1

) (
ekT − ekt2

)
�2� (13)

3. Gaussian Processes for Machine Learning

The goal of Gaussian processes for machine learning is to find the nonlinear
unknown mapping y = f�x�, from data �X� y�, using Gaussian distributions over
functions1 (Rasmussen and Williams, 2005)

�� ∼ � �	�x�� cov�x1� x2���

The pair �X� y� is the training set. The matrix X collects a set of n vectors x
where the value y = f�x� was observed. The corresponding y values are collected in
vector y.

The set of vectors x
 where the values y
 = f�x
� were not observed, is collected
in matrix X
. The matrix X
 is the test set.

Under the Vasicek interest rate model the zero coupon bonds log prices
log�p�t� T�� are normal

�� ∼ � �	�t� T�� cov�t1� t2� T���

where 	�t� T� is given by Eq. (6) and cov�t1� t2� T� is given by Eq. (13).
Since T , the bond maturity, is a bond feature, in this case the mapping we are

interested in is the scalar mapping

y = f�t��

where y stands for the zero coupon bonds log prices. This reduces the training set
to the pair of vectors �t� y�, and the test set to vector t�.

Since the process is Gaussian (Rasmussen and Williams, 2005),[
y
y


]
∼ �

([
�
�


]
�

[
K K


KT

 K



])

and

p�y
 � t
� t� y� ∼ �
(
�
 + KT


 K
−1�y − ���K

 − KT


 K
−1K


)
�

1See Rasmussen (2004) for a short introduction to the Gaussian distributions over
functions framework.
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Machine Learning Vasicek Model Calibration 781

where � and �
 are mean vectors of train and test sets, K is the train set covariance
matrix, K
 the train-test covariance matrix, and K

 the test set covariance matrix.

The conditional distribution

p�y
 � t
� t� y�

corresponds to the posterior process on the data

��� ∼ � �m��t�� cov��t1� t2���

where

m��t� = m�t�+ KT
t�tK

−1�y − 	� (14)

and

cov��t1� t2� = cov�t1� t2�− KT
t�t1

K−1Kt�t2
� (15)

where Kt�t is a correlation vector between every training instant and t.
Equation (14) is the regression function while Eq. (15) is the regression

confidence. Equations (14) and (15) are the central equations of Gaussian processes
for machine learning regression.

In order to learn the model parameters � = �r0� k� �� �� from data, the
likelihood of the training data given the parameters (closed form) (Rasmussen, 2004)

L = log p�y � t� ��

= −1
2
log �K� − 1

2
�y − ��T K−1 �y − ��− n

2
log�2��

is maximized, based on the derivatives of L with respect to each of the parameters
(closed forms).

Note that, since we want to learn the parameters in the arbitrage free risk
neutral measure, the initial interest rate value r0, is considered a parameter, like k,
�, and �, to be learned from the zero coupon bond log prices.

Denoting each of the parameters in set � by �i, and since



�i

log �K� = tr

(
K−1 K

�i

)

and



�i

K−1 = −K−1 K
�i

K−1

the derivatives L
�i

are given by

L

�i

= −1
2
tr

(
K−1 K

�i

)

+ 1
2
�y − ��T K−1 K

�i

K−1 �y − ��+ �y − ��T K−1 �

�i

�
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782 Sousa et al.

In order to compute the vector of derivatives, �

�i
, and the matrix of derivatives

K
�i

, the derivatives of the mean function 	�t� T� (Eq. 6), and the derivatives of the
covariance function cov�t1� t2� T� (Eq. 13) with respect to the parameters are used,
namely:

	�t� T�

r0
= e−kT − e−kt

k
�

	�t� T�

k
= 1

4k4
e−kT

(
4k3�ek�T−t�t − T��r0 − ��− 6�ekt − ekT ��2

+ 2k�ekT �2t − 2T + 1�+ ekt�t − T − 1���2

+ k2�−4r0 + 4ek�T−t��r0 − ��+ 4�+ ektt�2 − ektT�2�
)
�

	�t� T�

�
= e−kt − e−kT + kt − kT

k
�

	�t� T�

�
=

(
ek�t−T��k+ 2�+ 2kT − 2kt − k− 2

)
�

2k3
�

cov�t1� t2� T�

r0
= 0�

cov�t1� t2� T�

k
= 1

2k4
e−k�t1+t2+2T�

(
ek�t1+t2��3+ 2kT�+ e2kT �3+ k�t1+ t2��

− ek�t1+T��3+ k�t2+ T��− ek�t2+T��3+ k�t1+ T��

+ ek�t1+2min�t1�t2�+T��3+ k�t2− 2min�t1� t2�+ T��

+ ek�t2+2min�t1�t2�+T��3+ k�t1− 2min�t1� t2�+ T��

+ ek�t1+t2+2min�t1�t2���−3+ 2k�min�t1� t2�− T��

+ e2k�min�t1�t2�+T��−3− k�t1+ t2− 2min�t1� t2���
)
�2�

cov�t1� t2� T�

�
= 0�

cov�t1� t2� T�

�
= 1

k3
e−k�t1+t2+2T�

(
ekT − ekt1

) (
ekT − ekt2

)
× (

e2kmin�t1�t2� − 1
)
��

4. Simulation Results

In order to test the proposed calibration method, we used Eqs. (2) and (5), with
fixed parameters values, to simulate 1,000 sequences of zero coupon bond log prices.

The parameters values used were: initial interest rate r0 = 0�5; mean interest rate
level � = 0�1; mean reversion velocity k = 2; and volatility � = 0�2.

We considered the zero coupon bond maturity of one year, T = 1, and
simulated one year daily prices sequences by considering 260 prices per sequence
(5 working days prices per week, 52 weeks per year).

Figure 1 illustrates a simulated sequence of zero coupon bond log prices, as well
as the mean and variance functions.
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Machine Learning Vasicek Model Calibration 783

Figure 1. Zero coupon bond log prices simulated sequence (solid black), mean (dashed
black), and two standard deviations interval (light gray).

We applied the calibration procedure by maximizing the likelihood of each
one of the zero coupon bond log prices sequences, using Wolfram Mathematica
7 (Wolfram Research, 2009) conjugate gradients implementation with default
configuration parameters.

Figure 2 illustrates the 50 bins parameters histograms obtained from the 1,000
calibrations performed, and Table 1 shows the corresponding mean, standard
deviation and 95% confidence intervals.

Figure 2. Learned parameters 50 bins histograms.
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784 Sousa et al.

Table 1
Parameters r0, k, �, and �, 1000 calibrations mean, standard deviation and 95%

confidence interval

Parameter Value Mean Std. Dev. 95% CI

r0 0.5 0.527 0.482 −0�418 to 1.472
k 2.0 2.098 0.855 0.419 to 3.776
� 0.1 0.083 0.443 −0�786 to 0.952
� 0.2 0.203 0.039 0.126 to 0.280

As it can be observed, all parameters 95% confidence intervals contain the fixed
parameter value used. Despite this fact, results in Table 1 also show that while
the 1,000 calibrations sample mean estimations, given by the parameters means
showed in third column of Table 1, are quite accurate, the confidence intervals for
each individual calibration are quite large. Therefore calibration with the proposed
method should include as much zero coupon bond prices sequences as possible. Care
should be taken when calibrating the model with just one price sequence, because
the estimation errors can be quite large.

5. Calibration to Real Data

In real life there are only a few zero coupon bonds and their great majority is
traded over the counter (OTC). Those bonds are traded between two market players
instead of openly being traded in an exchange and data is scarce. Zero coupon
bond prices can also be implicitly extracted from the prices of other fixed income
products, but in this case the prices would be theoretical and dependent on the
assumptions underlying the term structure fitting.

We had, thus, two choices: either use actual market data on one of the few zero
coupon bonds actually traded on the market and rely on OTC quotes, or use the
price on other fixed income products and extract from those theoretical zero coupon
bond prices. We chose the first approach. At the time we looked for data there was a
two-year maturity zero coupon in the OTC market live for approximately one year.
We took this bond and used a quote service that delivers market prices aggregated
from different dealers responsible for trading (market makers) this particular bond.

Table 2 shows the parameters learned and standard deviations obtained from
the square root of the diagonal of the inverse Fisher information matrix, as a
measure of the calibration errors. Figure 3 illustrates the corresponding mean and
variance functions, along with the log prices sequence itself. It should be noted that
the learned parameters along with Eqs. (14) and (15) allow the plot in Fig. 3 of
the learned mean and the learned two standard deviations interval, not only in the

Table 2
Learned parameters r0, k, �, and �, for a real, two-year maturity, zero coupon

bond, calibrated with approximately one year of available prices

r0 k � �

Learned 0.212 2.925 0.025 0.195
Std. Dev. 0.110 1.897 0.022 0.119
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Machine Learning Vasicek Model Calibration 785

Figure 3. Real, two-year maturity, zero coupon bond log prices sequence (solid black),
learned mean (dashed black), and learned two standard deviations interval (light gray).

time interval where there are available prices, but for the all t between the initial
time t = 0 and maturity t = T .

As it can be observed in Fig. 3, the mean and variance functions adjust quite
well to the particular price sequence used. However, the large standard deviations
obtained do confirm that the errors in the learned parameters can be quite large
when calibrating with just one price sequence.

6. Conclusions

In this article we presented a calibration procedure of the Vasicek interest rate
model under the risk neutral measure by learning the model parameters using
Gaussian processes for machine learning regression with zero coupon bond log
prices mean and covariance functions computed analytically.

Compared with other calibration procedures, in this one all the parameters
are obtained in the arbitrage free risk neutral measure and the only prices needed
for calibration are zero coupon bond prices. On the other hand, this calibration
procedure makes no discrete model approximation and makes no simplifications
that possibly allow arbitrage opportunities, as it happens when calibrating using
interest rate trees (Brigo and Mercurio, 2006). It also does not require the
establishment of an objective measure dynamics for the interest rate, as it happens
when applying the classical maximum likelihood estimation directly to the interest
rate (Brigo and Mercurio, 2006).
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