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Abstract

In this paper, we inspect well–known population genetics and social
dynamics models. In these models, interacting individuals, while par-
ticipating in a self-organizing process, give rise to the emergence of
complex behaviors and patterns. While one main focus in population
genetics is on the adaptive behavior of a population, social dynamics
is more often concerned with the splitting of a connected array of in-
dividuals into a state of global polarization, that is, the emergence of
speciation. Applying computational and mathematical tools we show
that the way the mechanisms of selection, interaction and replacement
are constrained and combined in the modeling have an important bear-
ing on both adaptation and the emergence of speciation. Differently
(un)constraining the mechanism of individual replacement provides
the conditions required for either speciation or adaptation, since these
features appear as two opposing phenomena, not achieved by one and
the same model. Even though natural selection, operating as an exter-
nal, environmental mechanism, is neither necessary nor sufficient for
the creation of speciation, our modeling exercises highlight the impor-
tant role played by natural selection in the interplay of the evolutionary
and the self–organization modeling methodologies.

©2012 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

There are two important phenomena observed in evolutionary dynamical systems of any kind: Self-organization
and Emergence. Both phenomena are the exclusive result of endogenous interactions of the individual el-
ements of an evolutionary dynamical system. Emergence characterizes the patterns that are situated at a
higher macro level and that arise from interactions taking place at the lower micro level of the system.
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Self-organization, besides departing from the individual micro interactions, implies an increase in order of
the system, being usually associated to the promotion of a specific functionality and to the generation of
patterns. Typically, complex patterns emerge in a system of interacting individuals that participate in a self-
organizing process. Self-organization is more frequently related to the process itself, while emergence is
usually associated to an outcome of the process.

Although less frequently mentioned, the emergence of patterns from self-organizing processes may be
strongly dependent on Locality. Emergence and self-organization are not enough to distinguish between two
important and quite different circumstances: the presence of an influence that impacts the system globally
and, conversely, the absence of any global influence and the lack of information about any global property
of the system. In the latter case, the system itself is the exclusive result of local interactions.

Such a global influence (entity or property) is often associated with the concept of Environment. Note-
worthy, the latter circumstance may be considered a case of the former: when that global entity does not
exist, the environment for each agent is just the set of all the other agents. Conversely, when the global entity
exists, it is considered part of the environment and may have an inhomogeneous impact on the individual
dynamics.

Regardless of the environmental type, economical, ecological and social environments share as a com-
mon feature the fact that the agents operating in these environments usually try to improve some kind of
utility, related either to profit, to food, to reproduction or to comfort and power. A general concept that is
attached to this improvement attempt is the idea of Adaptation.

In the economy, adaptation may be concerned with the development of new products to capture a higher
market share or with the improvement of the production processes to increase profits: that is, innovation. In
ecology, adaptation concerns better ways to achieve security or food intake or reproduction chance and, in
the social context, some of the above economical and biological drives plus a few other less survival-oriented
needs. In all cases, adaptation aims at finding strategies to better deal with the surrounding environment [1].

Natural selection through fitness landscapes or geographic barriers are good examples how global influ-
ences are considered when modeling adaptation in an evolutionary process. On the other hand, adaptation
also operates in many structure generating mechanisms that can be found in both physical and social sciences
but that are built on the exclusive occurrence of local interactions.

In biology, the ultimate domain of evolution and natural selection, we are confronted with tremendous
organic diversity – virtually infinite forms and shapes none of which found twice – but the distribution is
well–structured in a way that allows us to order this diversity and to speak of species, families, orders etc.
A quite illustrative description is given by the evolutionary geneticist Theodusius Dobzhansky ( [2]: p.21):

Suppose that we make a fairly large collection, say some 10,000 specimens, of birds or butter-
flies or flowering plants in a small territory, perhaps 100 square kilometers. No two individuals
will be exactly alike. Let us, however, consider the entire collection. The variations that we find
in size, in color, or in other traits among our specimens do not form continuous distributions.
Instead, arrays of discrete distributions are found. The distributions are separated by gaps, that
is, by the absence of specimens with intermediate characteristics. We soon learn to distinguish
the arrays of specimens to which the vernacular names English sparrow, chickadee, bluejay,
blackbird, cardinal, and the like, are applied.

If we had to make a visual representation of this description of intra– and interspecies variations it would
perhaps look like the multi-modal distribution shown in Figure 1. What we call a species, is in fact some
norm or mean characteristics of a cluster of individuals.

Evolutionary theory is ultimately a theory about the history which led to such a pattern. And if the or-
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Fig. 1 Schematic illustration of organic diversity.

Fig. 2 Illustration of a speciation event. We are grateful to Andreas Dress for providing us this figure.

ganic diversity we observe nowadays evolved in a way that is characterized by some kind of “Tree of Live”,
then there must be events that may lead to the split of a connected set of individuals (protospecies) into (at
least) two sets that are not connected any longer (see Figure 2). In biology, this is called Speciation. As we
will see in this article, though, the generation of such a split with simple but well–known evolutionary mod-
els in which “natural selection impels and directs evolutionary changes” (ibid. p.2) is not straightforward. It
so happens that constraints on the interaction behavior are required.

The phenotype of living beings is not the only domain where patterns of structured diversity as illustrated
in Figure 1 are observed. Phenomena include certain phases of structure formation in physical cosmology,
distribution of cultural behavior, languages and dialects, herd behavior in finance, among others.

Especially for the latter examples in the field of socio-cultural dynamics a variety of models has been
proposed which do not rely on the evolutionary concept of (natural) selection.a

They are rather based on the idea of exclusively Local Interactions (LI) implemented in form of a
system of agents that interact locally according to simple rules like assimilation or conformity. In these
systems, finding strategies to better deal with the surrounding environment (and thus improving fitness) is
not constrained by any global property. It may, however, be constrained by local (individual) rules.

As we shall see later in this paper, constraints on the mechanisms of selection, interaction and replace-
ment and the way they are combined in the modeling of an evolutionary process have an important bearing
on both adaptation and emergence of speciation. Locality operating in each of these mechanisms seems
to be the fundamental modeling principle by which emergence of a multi-modal distribution as shown in

a [3] provide a comprehensive overview over models in this field.
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Figure 1 can be explained. On the basis of these observations about the “modelability”of speciation with
evolutionary and self-organisatory models, we study in this paper the conditions and mechanisms required
for speciation and the emergence of a multi-modal distribution.

In this analysis, we use computational (Section 2) as well as mathematical (Section 3) arguments. Our
models simulate how a population of individuals evolves in time in an abstract attribute space (S) that
represent phenetic traits, attitudes, verbal behavior, etcetera. Modeling agents as points in an attribute space
of this kind is of course a highly artificial abstraction from the complexity and multi–dimensionality of real
agents.

For the purposes of this paper, let us conceptualize an Interaction Event, defining the system evolution
from one time step to the other, by the following three components:

1. selection of agents,

2. application of interaction rules,

3. replacement of agents.

Any interaction event (e.g., mating, communication,...) that takes place in the course of a simulation of the
model consists of the sequential application of these three steps. The reason to dissect the interaction events
in this way is two–fold:

1. we want to look at the dynamical and structural effects of constraints applied to each of the three
components independently,

2. the scheduling of interaction events may have a crucial effect on the model behavior, and with the
distinction between selection and interaction on the one hand, and replacement on the other, we are
able to make this effect explicit.

The way interaction events are scheduled in the implementation of the models is not always given much
importance in existing simulation studies. In the presence of constraints on the selection and interaction
mechanisms, however, the outcome as well as the dynamical properties depend in a crucial way on the
different choices. On the other hand, there are studies that do analyze the differences between synchronous
and asynchronous update (see, for instance, [4, 5]) as well as studies on non–overlapping (NOLG) and
respectively overlapping generations (OLG) in biology and economics (for instance, [6]).

Here we show that especially when the interaction is constrained (as in the case of assortative mating)
there emerges an important qualitative difference between OLG and NOLG models. Namely, speciation is
observed in the former, but not in the latter case, whereas adaptation is favored by the latter and hindered by
the former. However, by the distinction of selection, interaction and replacement we are able to show that in
fact the difference between local and non-local replacement plays the determinant role (and not the distinc-
tion between OLG and NOLG). Even though locality also impacts selection and interaction mechanisms, it
is on the replacement mode where relies the fundamental difference with respect to the conditions required
for either adaptiveness or speciation.

This paper is organized as follows: Section 2 addresses the main issues of both the fitness landscape
and the self-organizing models from a computer simulation framework. In both cases, microscopic imple-
mentation rules are tested against their capability of reproducing adaptiveness and speciation. In Section 3,
the emergence of speciation is analytically shown to be dependent on the choice of different replacement
modes. This is accomplished through a probabilistic description of a minimal model of just three phenetic
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traits where the transition probabilities between traits follow a Markov chain. Section 4 is targeted at pre-
senting concluding remarks and a framework that relates interaction events to the emergence of collective
structures in adaptive and self-organizing complex systems.

2 From adaptive dynamics to cluster formation

2.1 Adaptive walks on fitness landscapes

In biology, and population genetics in particular, adaptive walks on fitness landscapes have been studied
intensively. The main questions addressed by fitness landscapes approaches are related to the possible
structure of the landscapes (e.g., [7]), to how populations climb an adaptive peak in the landscape (e.g., [8]),
and to the circumstances under which a population might wander from one peak to another by crossing
adaptive valleys (e.g. [9]).

One of the best–known models for populations on fitness landscapes is the Wright-Fisher model with
non–overlapping generations (sometimes called Wright-Fisher sampling and shortened in the sequel by WF
model, see [10] and also [11]). Consider a population of N individuals which is said to constitute the
original generation (g = 0). We consider only the case of sexual reproduction in this paper, in which the
genotype of a new–born individual is obtained by the recombination of the genoms of two randomly chosen
parent individuals. As noted above, the choice of two parents and the application of a recombination rule
is referred to as interaction (or mating) event. In the WF model, N such mating events are performed until
a new generation of N individuals is complete. As soon as it is complete, the parent generation is canceled
and the process is repeated taking the new generation as parents. Therefore, in the WF model the population
size is always maintained at N. We will denote the generation number by g = 0,1,2, . . .

We implemented this simple model and performed simulations on different toy fitness landscapes. The
microscopic rules involved into the creation of a new individual, that is, the mating event, are as follows:

1. selection of two individuals with a probability proportional to their fitness,

2. application of recombination and mutation rules,

3. replacement of an agent from the parent generation.

In this toy model, we consider only one phenetic trait (locus) that takes discrete values (from 0 to 99). We
denote the traits of the two chosen parent individuals i and j as xi and x j respectively and model recombina-
tion by taking the average of the two, xnew = (xi +x j)/2. To model mutations we add a random value to xnew.
In the WF model, xnew is stored at an arbitrary place in the children array and one of the main objectives of
this paper is clarify that this has important consequences for the model dynamics.

An adaptive landscape is introduced into the model by assigning a fitness value to each of the 100 traits.
For the first analysis shown in Figure 3, a single–peaked fitness function with a peak at trait 75 is used and
the fitness assigned to trait x is given by

F(x) =
1
15

e−
2

225 (−75+x)2

√
2
π

= N(μ ,σ 2). (1)

We have used the normal distribution with μ = 75 and σ 2 = 7.5 in the construction of the fitness land-
scape (solid line in Figure 3). In the iteration process, individuals are chosen as parents with a probability
proportional to F(x), x being the trait of the respective individual.



6 Sven Banisch, Tanya Araújo/ Discontinuity, Nonlinearity, and Complexity 2(1) (2013) page1–page2

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Fig. 3 WF model approaches an adaptive peak. In the upper row the initial generation (g = 0) and the distribution
after the first (g = 1) and the second (g = 2) iteration are shown from left to right. Bottom row shows, from left to
right, the 5th, 10th and 20th generation (g = 5,10,20).

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Fig. 4 WF model with a two–peaked fitness landscape approaches a single adaptive peak. From top left to bottom
right the initial state (g = 0) and the first five generations are shown (g = 1,2,3,4,5).

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Fig. 5 WF model with a two–peaked fitness landscape and assortative mating approaches a single adaptive peak.
From left to right the first three generations are shown (g = 1,2,3). The initial state is as in Figure 4.
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For the illustrative model realizations in this section, we set N = 500. Initially, the 500 individuals are
distributed in this space according to a normal distribution with mean μ = 50 and σ 2 = 10 (see first image
of Figure 3).

This section is mainly thought as an illustration of the different behaviors and patterns generated by
certain constraints on the interaction mechanism. As the qualitative effects of different assumptions become
evident and comprehensible in single simulations of the model, there is no need for a rigorous statistical
analysis of suites of simulations with varying initial conditions. Moreover, a mathematical analysis of the
model dynamics is presented in the second part of this paper (Section 3).

Figure 3 shows the first few iterations of the WF model. The adaptive peak at around 75 is reached
within only a few iterations. Due to mutations, the population does not become fixed at one specific trait,
but maintains a certain amount of variation. Populations simulated with the WF model are very fast in
reaching an adaptive peak in the fitness landscape.

2.2 Sympatric speciation

Figure 3 shows that the WF model is well–suited to show how a finite population approaches a peak in the
fitness landscape. However, what about speciation? To get a first insight about whether the splitting of the
unimodal initial distribution into a bimodal distribution with two clusters is possible we simulated the model
with a two–peaked fitness landscape. So the difference with respect to the previous simulation is that the
fitness function (solid line) has two adaptive peaks, one centered at 25 and the other at 75. The fitness (that
is, the probability of choosing an individual in state x) is defined by a mixture of two normal distributions
N(25,7.5) and N(75,7.5):

F(x) =
e−

2
225 (−75+x)2

15
√

2π
+

e−
2

225 (−25+x)2

15
√

2π
. (2)

The first five iterations of that model are shown in Figure 4. The initial distribution is as in the previ-
ous example. We see that multi–modal shapes emerge only in the very first few generations of the model.
Namely, after the first and the second iteration, there are three clusters: two located at the peaks and a third
one with low fitness in between the other two. The latter can be seen as hybrid individuals with strong selec-
tive disadvantages that are obtained by a recombination of individuals from the different peaks. However,
the disappearance of clustering is very fast and after only four iterations all the population concentrates at
one of the peaks. Hence, in the model it is difficult to generate a stable co–existence of species.

The case considered here is the case of speciation in sympatry: no geographic constraints are assumed
to divide the population into reproductive islands or to constrain the mating chances of pairs of individuals
in any other way. A possible explanation why the simulation of sympatric speciation is not possible in the
WF model as described above is provided in the seminal paper on sympatric speciation by [12]. Smith
showed that besides selective forces, it is necessary that the population sizes of the (two) sub–populations
are regulated independently. Because the total population size is usually constant in the WF model (in our
case N = 500), it does not implement an independent regulation of sub–populations.

An issue frequently discussed in the context of sympatric speciation is assortative mating (see, for in-
stance, [13, 14] and references therein). We also simulated the WF model with the additional constraint
that two individuals need to be similar in order to produce offsprings. Two chosen individuals i and j
only produce an individual for the new generation if the their difference is small (here |xi − x j| < 10). The
microscopic rules become:

1. selection of two individuals with a probability proportional to their fitness,

2. application of recombination and mutation rules if the individuals are similar,
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3. replacement of an agent from the parent generation.

In Figure 5 the first three generations obtained by the iteration of this model are shown. The only difference
with respect to the pure random mating case (Figure 4) is that the intermediate cluster does not appear
because the interbreeding of a pair of individuals from either peak is prohibited by the assortativity condition.

2.3 Cluster Formation in Opinion Dynamics

From the point of view of self–organizing systems in opinion or cultural dynamics (e.g. [15, 16]) the result
shown in Figure 5 is somewhat surprising because the introduction of interaction constraints is known to
lead to co–existence of clusters of individuals (assortative mating is often called bounded confidence in
this context). This is even more interesting as the microscopic rules used to model the self–organization in
opinion dynamics are very similar.

1. selection of two individuals, all with equal probability.

2. application of recombination and mutation rules if the individuals are similar.

3. update of one parent agent.

In this scheme, we emphasized differences with respect to the WF model. Notice that mutations, some-
times interpreted as cultural drift, are not always taken into account.

Notice also that this form of replacement where effectively one parent individual is chosen to die to
make place for the new–born is sometimes considered in population genetics (see, for instance, [17, 18]).

In opinion dynamics the initial population is usually distributed according to the uniform distribution.
In general, there are no global influences such as a fitness landscape so that the probability of selection is
equal for all individuals independent of their position in the trait space.

The locally–interacting model (henceforward called LI model) is implemented as a model of overlapping
generations (OLG). That is, the population is updated after each single interaction event (and not after N
events). Notice that this means that the new state of an individual that is updated is from then on taken
into account in the later iterations. Therefore, a single iteration actually means a single interaction event
involving two individuals. Nevertheless, for the sake of comparability with the WF model, we can consider
generations in the LI model by assuming that we pass from one generation to the next (g → g+ 1) after N
iterations (interaction events).

In Figure 6 we show a realization of the simulation for 500 individuals initially distributed uniformly
over the traits from 0 to 99. Update only takes place if the distance between two individuals is smaller
then 10. It becomes clear that initial inhomogeneities are reinforced during the process such that clusters of
individuals are formed. Compared to the WF simulations this process is slow. In Figure 6 we show from
top left to bottom right the original population (g = 0), and the population in the 1st, 10th, 20th, 40th and
100th generation (g = 1,10,20,40,100). From generations 40 to 100 some of the clusters have disappeared
so that only two large sub–populations (and a very small one at around 90) remain. In the long run these
clusters might merge due to mutations (drift). In any case the co–existence of ”reproductively isolated”
sub–populations is rather stable during long periods of the process.

2.4 Overlapping versus Non–overlapping Generations

There seems to be a subtle difference between the LI model and the WF model, with a crucial effect,
however. There are three potential sources of the different behavior:
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Fig. 6 Emergence of clustering in the LI model with assortativity. In the upper row the initial population and the
distribution of the first and the 10th generation are shown from left to right (g = 0,1,10). Bottom row shows, from
left to right, the 20th, 40th and 100th generation (g = 20,40,100).

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Fig. 7 WF model with overlapping generations with flat fitness landscape, assortative mating and uniform initial
population as in Figure 6. From left to right the first three generations (g = 1,2,3) are shown.

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Fig. 8 The self–organization LI model with local update on a peaked fitness landscape. From left to right the initial
population and the first two generations (g = 0,1,2) are shown.
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1. There is uniform fitness in the LI model but a peaked landscape in the WF model.

2. The LI model is implemented as a model of OLG whereas the WF model implements NOLG.

3. In the LI model, the state change of an individual is modeled whereas the creation of a new individual
is considered in the WF model.

The first two cases can be checked easily by implementing the WF model with OLG and looking at
a realization using the same conditions as in Figure 6. This is sometimes referred to as Moran model
( [17, 18]). Two individuals give rise to a new individual which replaces another individual in the current
generation. The first three generations (g = 1,2,3 corresponding to the population after 500, 1000 and 1500
sequential mating events) are shown in Figure 7. The initial population is the same as before (upper left in
Figure 6). The behavior of the model is in drastic contrast to the behavior of the LI scheme. In fact, the
behavior is very similar to the original WF model with NOLG.

We conclude that the qualitative differences between the WF model and the LI model are neither due
to different ways of dealing with generations (OLG versus NOLG) nor to the choices of different fitness
landscapes.

2.5 Local versus non–local replacement

It turns out that in the implementation of the WF model with OLG, a decision must be taken whether the
new individual replaces one of its parents or an arbitrary individual from the generation and that the two
alternatives result in qualitatively different dynamical behaviors. We will call local replacement the case that
the new individual replaces one of its parents and non–local replacement refers to the case that an arbitrary
individual is replaced by the new one. Noteworthy, there is a tendency that models with NOLG implement
a form of non–local replacement because no care is usually taken about the order of individuals such that
a child will in general appear at a position in the population array that is distant from the position of the
parents.

In this way non–local replacement undermines the effects of assortative mating, because an individual
with a trait x can effectively be replaced by an individual with trait y even if |x− y| > 10.

2.6 (Non–)Adaptiveness of local replacement

Earlier we saw that modeling speciation in a model with a fixed population size requires that the update pro-
cess operates with local replacement. However, it turns out that in this case the process looses its adaptive-
ness. Figure 8 shows the first generations (g = 0,1,2) of the self–organization model with local replacement
performed on a fitness landscape with a single peak (compare Figure 3). The population is actually pushed
away from the peak. This is due to the fact that the individuals close to the peak, though frequently chosen,
are not replaced by individuals with low fitness (rarely chosen) so that the proportion of fit individuals does
not increase. To the contrary, mutations tend to drive fittest individuals away from the peak. Hence, the
mode of replacement in these two models with almost the same microscopic rules has a dramatic effect on
the dynamics behavior. Cluster formation (or speciation) and adaptiveness are in the context of these models
two opposing phenomena such that an explanation of the two together is not achieved by one and the same
model.
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3 Probabilistic analysis of a minimal model

The simulations show that there are decisive differences between different implementations of the simulation
models even though the microscopic rules of agent choice and recombination are in fact equal. In particular,
it turned out that the qualitative differences in the model behavior are due to different modes of agent
replacement. This section elaborates these differences for a minimal model where the number of allowed
traits is reduced from 100 to three. The model implements the same mechanisms as before, on this reduced
space with three traits only, excepting mutations. Looking at the rate (probabilities) of transitions from one
trait to the other we derive Markov chains, and the transition structure of these chains inform us about the
dynamic mechanisms which different replacement modes give rise to.

3.1 A minimal model

Consider that there are only three different phenetic traits: the states left (L), right (R) and intermediate (M).
As before, in every interaction event pairs of individuals are chosen and the state of the new individual is
determined by the recombination of the parent states. We do not consider mutations here. In accordance
with the recombination rule in the previous section, whenever two parents are in the same state, the child
will also be in that state: we denote this by LL → L,MM → M and RR → R. If one of the parents is in L
and the other in R recombination will lead to M, that is, LR → M and RL → M. In case L mates with M
we say that recombination leads to M (LM → M) and vice versa if M mates with L it leads to L (ML → L).
Likewise, for matings between M and R–agents, we set RM → M and vice versa MR → R. Notice that in
the case of complete, homogeneous mixing the choice probabilities are symmetric such that choosing two
agents with RM is equally likely as choosing them in reverse order MR.

Associated with each of these nine possible transitions we define an additional probability α to be the
probability that the recombination step is indeed performed once the respective trait combination is chosen.
In the model without trait–dependent mating constraints or fitness differences, all the α are set to one. The
reason for introducing this probability is that we can model assortative mating by setting αLR = αRL = 0.
In that case, a pair of individuals in L and R are assumed to be unable to produce offsprings. Because no
state changes take place in that case, the respective probabilities now contribute to keeping whole population
unchanged.

3.2 Transition rates

We consider a system of N agents and characterize a population by counting the number of agents in the
respective states L,M and R. Let us denote the number of agents in state L by l, the number of M-agents by
m and the number of agent in R by r. After a mating event, the counters l,m,r are either unchanged or one
of them increases while another one decreases by one (ex. l− 1,m+ 1). The latter case simply means that
one new individual (in state M) has replaced another one (in state L). In the case of complete mixing, all the
agents have equal probabilities to be chosen in the iteration process. Therefore, we model the choice of an
individual as a choice from an urn with N balls of three different colors L, M, and R. It is then clear that the
choice of an individual with feature F is f/N (generic F).

In this way, it is possible to derive equations for the probabilities of all the possible changes of l,m and
r from one mating event to the other. Notice that already Moran adopted a similar Markov chain approach
in the analysis of his model in [17]. A careful consideration of the relation between these macro–level
equations and the microscopic simulation model is presented in [19, 20].
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Fig. 9 Possible transitions in terms of the counters l,m,r for local (l.h.s.) and random (r.h.s.) replacement.

Let us denote the probability that m increases while l decreases by one as Pm
l . For the model with local

replacement we use the convention that the agent chosen first is always replaced by the new one. Under
this assumption the event (l,m) → (l− 1,m+ 1) takes place if the states of the agent pair are either (L,R)
or (L,M). The probability that a pair (L,R) is chosen is lr

N2 which we denote as pLR.b For (L,M) we have
pLM = lm

N2 . We integrate into this description the additional constraint αLR (αLM) as the probability that the
respective combination, once chosen, gives indeed rise to a new individual. Then we obtain for probability
Pr[LR → M] = αLR pLR (Pr[LM → M] = αLM pLM). With this definitions we obtain

Pm
l = αLR

lr
N2 + αLM

lm
N2 = αLR pLR + αLM pLM . (3)

Equivalently, for the other non–zero transitions in the local case we find

Pm
r = αRL pRL + αRM pRM,

Pl
m = αML pML,

Pr
m = αMR pMR.

(4)

For the model with non-local (random) replacement we assume that the new–born individual replaces a
randomly chosen agent. The probability that this is an agent in state F is again f/N (generic F). With this
convention we find for the replacement of an L–agent

Pm
l =

l
N

(αLR pLR + αRL pRL

+ αLM pLM + αRM pRM + αMM pMM),

Pr
l =

l
N

(αRR pRR + αMR pMR) .

(5)

For the replacement of an R–agent we have

Pm
r =

r
N

(αLR pLR + αRL pRL

+ αLM pLM + αRM pRM + αMM pMM),

Pl
r =

r
N

(αLL pLL + αML pML) ,

(6)

bNotice that the agent choice is with replacement so that an individual may be chosen twice. This corresponds to self–
fertilization and we allow it to keep the model as simple as possible.
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Fig. 10 Transition structure for local replacement (l.h.s.) and random replacement (r.h.s.) with random mating. In
both cases, there are three absorbing states each corresponding to a homogeneous population.

<
 >

 

<
 >

 

<
 >

<
 >

 

<
 >

<
 >

 

>
 

>

>
 

>
 

<
 

<
 >

 
<

 >
 

<
 >

 
<

 >
 

<
 >

 
<

 >
 

>
 

   >
<

 

<
 

<
 

<
 

<
 

 < <
 

   >

   >

l =
 0

l =
 1

l =
 2

l =
 3

l =
 4

l =
 5

m = 0

m = 1

m = 2

m = 3

m = 4

m = 5

r = 0

r = 1

r = 2

r = 3

r = 4

r = 5

l =
 0

< > < > 

> 

>

> 

< > < >

< > < > < > 

<

< 

< 

<
 >

 

<
 >

 

<
 >

<
 >

 

<
 >

<
 >

 

>
 

>

>
 

>
 

<
 

<
 >

 
<

 >
 

<
 >

 
<

 >
 

<
 >

 
<

 >
 

>
 

   >
<

 

<
 

<
 

<
 

<
 

 <
 

<
 

   >

   >

l =
 0

l =
 1

l =
 2

l =
 3

l =
 4

l =
 5

m = 0

m = 1

m = 2

m = 3

m = 4

m = 5

r = 0

r = 1

r = 2

r = 3

r = 4

r = 5

l =
 0

Fig. 11 Transition structure for local replacement (l.h.s.) and random replacement (r.h.s.) with assortative mating.
Additional absorbing states emerge under local replacement, but not under random replacement as used in the WF
model.

and for replacement of an M–agent

Pl
m =

m
N

(αLL pLL + αML pML) , Pr
m =

m
N

(αRR pRR + αMR pMR) . (7)

For a better orientation we visualize the possible transitions for both replacement modes along with the
conditions for the transitions in Figure 9.
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3.3 Random mating

If all the α are equal to one, the transition Eqs. (3) and (4) and respectively Eqs. (5) to (7) realize all
the transitions shown in Figure 9 with a probability greater than zero. In Figure 10 the complete transition
structure is shown for the model with five agents. Notice that for N = 5 each counter (l,r,m) can take values
in between zero and five and that the triangular structure appears because we have l +m+ r = N.

The larger gray atoms are the absorbing states of the process: they can be reached by a transition, but
once reached, there is no transition leaving them. Therefore they characterize the final configurations of the
process. For both local and non–local replacement the absorbing states are the three corners of the triangle
grid with l = N or m = N or r = N. This means that the process will converge to a population with all
individuals in the same state. The smaller light–blue states indicate the transient atoms and the chances that
the process remains in those atoms decreases exponentially with time (see, for instance, [21]).

3.4 Assortative mating

The situation becomes different if we set αLR = αRL = 0 by which we prohibit mating between L– and
R–agents. This is assortative mating which means, in this simple model with only three traits, that left and
right agents are incompatible and cannot produce offspring. As noted above, the respective probabilities
contribute to the probability that nothing changes as in that cases (l,m,r) → (l,m,r). For both replacement
modes the assortativity condition changes the transition probabilities and we compare the resulting transition
structures in Figure 11.

Most importantly, for the local model, all the probabilities in (3) and (4) become zero if m = 0. Hence,
if there is no intermediate individual left (m = 0) the process will remain where it is even if both l and r
are larger than zero. Assortative mating may therefore lead to the stable co–existence of L– and R–agents.
Under non–local replacement this does not happen because even if certain transitions are canceled there
remain horizontal transitions leading away from the respective two–species configurations. This explains
why speciation cannot be observed in the simulations performed in the first part of this paper.

It so happens that random replacement sets aside the effects of bounded confidence and consequently -
like in the case of undirected genetic drift - leads to the merging of subpopulations. As random interbreeding
contributes to conservative dynamics, random replacement is also an opposing force to speciation. This is
due to the fact that under this replacement mode, a newcomer agent may take the place of a former-distant
one. In so doing, forbidden transitions turn out to be allowed so that the consequences at the macro level
become the same of unbounded confidence.

3.5 Two–peaked fitness landscape

Next, let us discuss an extreme case of a two–peaked fitness function. We consider the case that intermediate
individuals have a zero fitness which we model by prohibiting all matings in which M–agents are involved.
This situation can be obtained by assigning a zero probability to all the respective transitions, that is: αLM =
αML = αMM = αRM = αMR = 0.

From Eq. (4) we see that in the case of local replacement this leads to the strange situation that the
probabilities for all those transitions by which the number of intermediates decreases become zero: Pl

m =
Pr

m = 0. Unless initialized with all agents in L or R, the simulation will converge to the situation where
all individuals are in the intermediate state (M), with zero fitness. This clearly points at a deficiency of
modeling adaptive dynamics with local replacement.

All in all, we can conclude that adaptiveness is favored by non–local replacement while it is difficult
to achieve speciation. As opposed to this, under local replacement speciation becomes a natural result
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of assortative mating, but then the process is not convenient for approaching adaptive peaks in a fitness
landscape.

4 Discussion and concluding remarks

In the context of the models we study in this paper, evolution by natural selection and locally interacting
dynamics do not appear as opposing one another. In fact, the dynamical update rules used in the modeling
of the microscopic interactions follow the same principles.

Let us try to adopt a broader perspective and to figure out a general framework comprising the main
mechanisms leading to the emergence of collective structures in adaptive and self-organizing complex sys-
tems.

Back to the two phenomena underlying the paper research question, we may say that the main conse-
quences to the modelability of either adaptation or speciation are due to the constraints imposed on each of
the above mechanisms of selection, interaction and replacement. Their interplay is summarized in Table 1.

Table 1 General Framework
Mechanisms Emergent Patterns

Selection Interaction Replacement Outcome Example
1 peak random random convergence with Adaptation Figure 3
2 peaks random random convergence with Adaptation Figure 4
1 peak Assortative random convergence with Adaptation Figure 5
random Assortative Local speciation F.6 and F.11(a)
random Assortative random convergence F.7 and F.11(b)
1 peak Assortative Local convergence without Adaptation Figure 8
2 peaks Assortative Local convergence without Adaptation — (Sect.3.5)
random random Local convergence Figure 10(a)
random random random convergence Figure 10(b)

The framework presented in Table 1 schematically shows the consequences of adopting (un)constrained
mechanisms to the emergent outcome of a SO process. It helps to emphasize that the emergence of some
specific patterns may be strongly dependent on the way constraints dictate limitations on the selection, in-
teraction and replacement mechanisms. More specifically, it shows that differently (un)constraining the
replacement mechanism of an SO process provides the conditions required for either speciation (the emer-
gence of multi-modal distributions) or adaptation, since these features appear as two opposing phenomena,
not achieved by one and the same model.

In the same way that random interbreeding leads to conservative dynamics, random replacement is also
an opposing force to speciation since newcomers may take the place of former-distant agents. In so doing,
at the macro level, random replacement sets aside the effect of bounded confidence and - like undirected
genetic drift - may lead to the merging of subpopulation.

Even though we show in this paper that natural selection, operating as an external, environmental mech-
anism, is neither necessary nor sufficient for the creation of clustered populations, we do not want to argue
against natural selection as an important mechanism in the biological domain and a substantive driving force
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in the speciation process. To the contrary, the concept of (natural) selection operating at a global level may
provide us with plausible interpretations of the model results, even in disciplines where such interpretations
are still lacking. In the words of T. Dobzhanski ( [2], p.5-6):

[...] in biology nothing makes sense except in the light of evolution. It is possible to describe
living beings without asking questions about their origins. The descriptions acquire meaning
and coherence, however, only when viewed in the perspective of evolutionary development.
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