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1 Introduction

We introduce deterministic dynamic optimization problems and three methods for solving

them.

Deterministic dynamic programming deals with finding deterministic sequences which

verify some given conditions and which maximize (or minimise) a given intertemporal cri-

terium.

1.1 Deterministic and optimal sequences

Consider the time set T = {0, 1, . . . , t, . . . , T} where T can be finite or T = ∞. We denote

the value of variable at time t, by xt. That is xt is a mapping x : T→ R.

The timing of the variables differ: if xt can be measured at instant t we call it a state

variable, if ut takes values in period t, which takes place between instants t and t + 1 we

call it a control variable.

Usually, stock variables (both prices and quantities) refer to instants and flow variables

(prices and quantities) refer to periods.

A dynamic model is characterised by the fact that sequences have some form of in-

tertemporal time-interaction. We distinguish intratemporal from intertemporal relations.

Intratemporal, or period, relations take place within a single period and intertemporal rela-

tions involve trajectories.

A trajectory or path for state variables starting at t = 0 with the horizon t = T is denoted

by x = {x0, x1, . . . , xT}. We denote the trajectory starting at t > 0 by xt = {xt, xt+1, . . . , xT}

and the trajectory up until time tx = {x0, x1, . . . , xt}.

We consider two types of problems:

1. calculus of variations problems: feature sequences of state variables and evaluate these
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sequences by an intertemporal objective function directly

J(x) =
T−1∑
t=0

F (t, xt, xt+1)

2. optimal control problems: feature sequences of state and control variables, which are

related by a sequence of intratemporal relations

xt+1 = g(xt, ut, t) (1)

and evaluate these sequences by an intertemporal objective function over sequences

(x, u)

J(x, u) =
T−1∑
t=0

f(t, xt, ut)

From equation (1) and the value of the state xt at some points in time we could also determine

an intertemporal relation1.

In a deterministic dynamic model there is full information over the state xt or the path

xt for any t > s if we consider information at time s.

In general we have some conditions over the value of the state at time t = 0, x0 and

we may have other restrictions as well. The set of all trajectories x verifying some given

conditions is denoted by X . In optimal control problems the restrictions may involve both

state and control sequence, x and u. In this case we denote the domain of all trajectories by

D

Usually X , or D, have infinite number of elements. Deterministic dynamic optimisation

problems consist in finding the optimal sequences x? ∈ X (or (x?, u?) ∈ D).

1.2 Some history

The calculus of variations problem is very old: Dido’s problem, brachistochrone problem

(Galileo), catenary problem and has been solved in some versions by Euler and Lagrange

1In economics the concept of sustainability is associated to meeting those types of intertemporal relations.
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(XVII century) (see Liberzon (2012). The solution of the optimal control problem is due to

Pontryagin et al. (1962). The dynamic programming method for solving the optimal control

problem has been first presented by Bellman (1957).

1.3 Types of problems studied next

The problems we will study involve maximizing an intertemporal objective function (which

is mathematically a functional) subject to some restrictions:

1. the simplest calculus of variations problem: we want to find a path {xt}Tt=0, where

T , and both the initial and the terminal values of the state variable are known, x0 = φ0

and xT = φT , such that it maximizes the functional
∑T−1

t=0 F (xt+1, xt, t). Formally, the

problem is: find a trajectory for the state of the system, {x∗t}Tt=0, that solves the

problem

max
{xt}Tt=0

T−1∑
t=0

F (xt+1, xt, t), s.t. x0 = φ0, xT = φT

where φ0, φT and T are given;

2. calculus of variations problem with a free endpoint: this is similar to the

previous problem with the difference that the terminal state xT is free. Formally:

max
{xt}Tt=0

T−1∑
t=0

F (xt+1, xt, t), s.t. x0 = φ0, xT free

where φ0 and T are given;

3. the optimal control problem with given terminal state: we assume there are

two types of variables, control and state variables, represented by u and x which are

related by the difference equation xt+1 = g(xt, ut). We assume that the initial and

the terminal values of the state variable are known x0 = φ0 and xT = φT and we

want to find an optimal trajectory joining those two states such that the functional



Paulo Brito Mathematical Economics, 2013/14 4

∑T−1
t=0 F (ut, xt, t) is maximized by choosing an optimal path for the control.

Formally, the problem is: find a trajectories for the control and the state of the system,

{u∗t}T−1t=0 and {x∗t}Tt=0, which solve the problem

max
{ut}Tt=0

T−1∑
t=0

F (ut, xt, t), s.t. xt+1 = g(xt, ut), t = 0, . . . T − 1, x0 = φ0, xT = φT

where φ0, φT and T are given;

4. the optimal control problem with free terminal state: find a trajectories for the

control and the state of the system, {u∗t}T−1t=0 and {x∗t}Tt=0, which solve the problem

max
{ut}Tt=0

T−1∑
t=0

F (ut, xt, t), s.t. xt+1 = g(xt, ut), t = 0, . . . T − 1, x0 = φ0, xT = φT

where φ0 and T are given.

5. in macroeconomics the infinite time discounted optimal control problem is the

most common: find a trajectories for the control and the state of the system, {u∗t}∞t=0

and {x∗t}∞t=0, which solve the problem

max
{ut}∞t=0

T−1∑
t=0

βtF (ut, xt), s.t. xt+1 = g(xt, ut), t = 0, . . .∞, x0 = φ0,

where β ∈ (0, 1) is a discount factor and φ0 is given. The terminal condition

limt→ η
txt ≥ 0 is also frequently introduced, where 0 < η < 1.

There are three methods for finding the solutions: (1) calculus of variations, for the first

two problems, which is the reason why they are called calculus of variations problems, and

(2) maximum principle of Pontriyagin and (3) dynamic programming, which can be used for

all the five types of problems.

1.4 Some economic applications

The cake eating problem : let Wt be the size of a cake at instant t. If we eat Ct in period

t, the size of the cake at instant t + 1 will be Wt+1 = Wt − Ct. We assume we know that
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the cake will last up until instant T . We evaluate the bites in the case by the intertemporal

utility function featuring impatience, positive but decreasing marginal utility

T−1∑
t=0

βtu(Ct)

If the initial size of the cake is φ0 and we want to consume it all until the end of period

T − 1 what will be the best eating strategy ?

The consumption-investment problem : let Wt be the financial wealth of a consumer

at instant t. The intratemporal budget constraint in period t is

Wt+1 = Yt + (1 + r)Wt − Ct, t = 0, 1, . . . , T − 1

where Yt is the labour income in period t and r is the asset rate of return. The consumer has

financial wealth W0 initially. The consumer wants to determine the optimal consumption

and wealth sequences {Ct}T−1t=0 and {Wt}Tt=0 that maximises his intertemporal utility function

T−1∑
t=0

βtu(Ct)

where T can be finite or infinite.

The AK model growth model: let Kt be the stock of capital of an economy at time

and consider the intratemporal aggregate constraint of the economy in period t

Kt+1 = (1 + A)Kt − Ct

where F (Kt) = AKt is the production function displaying constant marginal returns. Given

the initial capital stock K0 the optimal growth problem consists in finding the trajectory

{Kt}∞t=0 that maximises the intertemporal utility function
∞∑
t=0

βtu(Ct)

subject to a boundedness constraint for capital. The Ramsey (1928) model is a related

model in which the production function displays decreasing marginal returns to capital.
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2 Calculus of Variations

Calculus of variations problems were the first dynamic optimisation problems involving find-

ing trajectories that maximize functionals given some restrictions. A functional is a function

of functions, roughly. There are several types of problems. We will consider finite horizon

(known terminal state and free terminal state) and infinite horizon problems.

2.1 The simplest problem

The simplest calculus of variations problem consists in finding a sequence that maxi-

mizes or minimizes a functional over the set of all trajectories x ≡ {xt}Tt=0, given initial and

a terminal value for the state variable, x0 and xT .

Assume that F (x
′
, x) is continuous and differentiable in (x

′
, x). The simplest problem

of the calculus of variations is to find one (or more) optimal trajectory that maximizes the

value functional

max
x

T−1∑
t=0

F (xt+1, xt, t) (2)

where the function F (.) is called objective function

subject to x0 = φ0 and xT = φT (3)

where φ0 and φT are given.

Observe that the the upper limit of the sum should be consistent with the horizon of the

problem T . In equation (2) the value functional is

V ({x}) =
T−1∑
t=0

F (xt+1, xt, t)

= F (x1, x0, 0) + F (x2, x1, 1) + . . .+ F (xt, xt−1, t− 1) + F (xt+1, xt, t) + . . .

. . .+ F (xT , xT−1, T − 1)

because xT is the terminal value of the state variable.
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We denote the solution of the calculus of variations problem by {x∗t}Tt=0.

The optimal value functional is a number

V ∗ ≡ V (x∗) =
T−1∑
t=0

F (x∗t+1, x
∗
t , t) = max

x

T−1∑
t=0

F (xt+1, xt, t).

Proposition 1. (First order necessary condition for optimality)

Let {x∗t}Tt=0 be a solution for the problem defined by equations (2) and (3). Then it verifies

the Euler-Lagrange condition

∂F (x∗t , x
∗
t−1, t− 1)

∂xt
+
∂F (x∗t+1, x

∗
t , t)

∂xt
= 0, t = 1, 2, . . . , T − 1 (4)

and the initial and the terminal conditionsx
∗
0 = φ0, t = 0

x∗T = φT , t = T.

Proof. Assume that we know the optimal solution x∗ = {x∗t}Tt=0. Therefore, we also know

the optimal value functional V (x∗) =
∑T−1

t=0 F (x∗t+1, x
∗
t , t). Consider an alternative candidate

path as a solution of the problem, {xt}T−1t=0 such that xt = x∗t +εt. In order to be admissible, it

has to verify the restrictions of the problem. Then, we may choose εt 6= 0 for t = 1, . . . , T −1

and ε0 = εT = 0. That is, the alternative candidate solution has the same initial and

terminal values as the optimal solution, although following a different path. In this case the

value function is

V (x) =
T−1∑
t=0

F (x∗t+1 + εt+1, x
∗
t + εt, t).

where ε0 = εT = 0. The variation of the value functional introduced by the perturbation

{ε}T−1t=1 is

V (x)− V (x∗) =
T−1∑
t=0

F (x∗t+1 + εt+1, x
∗
t + εt, t)− F (x∗t+1, x

∗
t , t).
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If F (.) is differentiable, we can use a first order Taylor approximation, evaluated along the

trajectory {x∗t}Tt=0,

V (x)− V (x∗) =
∂F (x∗0, x

∗
1, 0)

∂x0
(x0 − x∗0) +

(
∂F (x∗0, x

∗
1, 0)

∂x1
+
∂F (x∗2, x

∗
1, 1)

∂x1

)
(x1 − x∗1) + . . .

. . .+

(
∂F (x∗T−1, x

∗
T−2, T − 2)

∂x∗T−1
+
∂F (x∗T , x

∗
T−1, T − 1)

∂xT−1

)
(xT−1 − x∗T−1) +

+
∂F (x∗T , x

∗
T−1, T − 1)

∂xT
(xT − x∗T ) =

=

(
∂F (x∗0, x

∗
1, 0)

∂x1
+
∂F (x∗2, x

∗
1, 1)

∂x1

)
ε1 + . . .

. . .+

(
∂F (x∗T−1, x

∗
T−2, T − 2)

∂x∗T−1
+
∂F (x∗T , x

∗
T−1, T − 1)

∂xT−1

)
εT−1

because xt − x∗t = εt and ε0 = εT = 0 Then

V (x)− V (x∗) =
T−1∑
t=1

(
∂F (x∗t , x

∗
t−1, t− 1)

∂xt
+
∂F (x∗t+1, x

∗
t , t)

∂xt

)
εt. (5)

If {xt}T−1t=0 is an optimal solution then V (x)− V (x∗) = 0, which holds if (4) is verified.

Interpretation: equation (4) is an intratemporal arbitrage condition for period t. The

optimal sequence has the property that at every period marginal benefits (from increasing

one unit of xt ) are equal to the marginal costs (from sacrificing one unit of xt+1):

Observations

• equation (4) is a non-linear difference equation of the second order: if we sety1,t = xt

y2,t = xt+1 = y1,t+1.

then the Euler Lagrange equation can be written as a planar equation in yt = (y1,t, y2,t)y1,t+1 = y2,t

∂
∂y2,t

F (y2,t, y1,t, t− 1) + ∂
∂y2t

F (y2,t+1, y2,t, t) = 0
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• if we have a minimum problem we have just to consider the symmetric of the value

function

min
y

T−1∑
t=0

F (yt+1, yt, t) = max
y

T−1∑
t=0

−F (yt+1, yt, t)

• If F (x, y) is concave then the necessary conditions are also sufficient.

Example 1: Let F (xt+1, xt) = −(xt+1−xt/2−2)2, the terminal time T = 4, and the state

constraints x0 = x4 = 1. Solve the calculus of variations problem.

Solution: If we apply the Euler-Lagrange equation we get a second order difference

equation which is verified by the optimal solution

∂

∂xt

[
−
(
xt −

xt−1
2
− 2
)2]

+
∂

∂xt

[
−
(
xt+1 −

xt
2
− 2
)2]

= 0,

evaluated along {x∗t}4t=0.

Then, we get

−2x∗t + x∗t−1 + 4 + x∗t+1 −
x∗t
2
− 2 = 0

If we introduce a time-shift, we get the equivalent Euler equation

x∗t+2 =
5

2
x∗t+1 − x∗t − 2, t = 0, . . . , T − 2

which together with the initial condition and the terminal conditions constitutes a mixed

initial-terminal value problem,
x∗t+2 = 5

2
x∗t+1 − x∗t − 2, t = 0, . . . , 2

x0 = 1

x4 = 1.

(6)

In order to solve problem (6) we follow the method:

1. First, solve the Euler equation, whose solution is a function of two unknown constants

(k1 and k2 next)
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2. Second, we determine the two constants (k1, k2) by using the initial and terminal

conditions.

First step: solving the Euler equation Next, we apply two methods for solving the

Euler equation: (1) by direct methods, using equation (60) in the Appendix, or (2) solve it

generally by transforming it to a first order difference equation system.

Method 1: applying the solution for the second order difference equation (60)

Applying the results we derived for the second order difference equations we get:

xt = 4 +

(
−1

3
2t +

4

3

(
1

2

)t)
(k1 − 4) +

(
2

3
2t − 2

3

(
1

2

)t)
(k2 − 4). (7)

Method 2: general solution for the second order difference equation We follow

the method:

1. First, we transform the second order equation into a planar equation by using the

transformation y1,t = xt, y2,t = xt+1. The solution will be a known function of two

arbitrary constants, that is y1,t = ϕt(k1, k2).

2. Second, we apply the transformation back the transformation xt = y1,t = ϕt(k1, k2)

which is function of two constants (k1, k2)

The equivalent planar system in y1,t and y2,t isy1,t+1 = y2,t

y2,t+1 = 5
2
y2,t − y1,t − 2
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which is equivalent to a planar system of type yt+1 = Ayt + B where

yt =

y1,t
y2,t

 , A =

 0 1

−1 5/2

 , B =

 0

−2

 .

The solution of the planar system is yt = y + PΛtP−1(k−y) where y = (I−A)−1B that is

y =

4

4

 .

and

Λ =

2 0

0 1/2

 , P =

1/2 2

1 1

 , P−1 =

−2/3 4/3

2/3 −1/3

 .

Then y1,t
y2,t

 =

4

4

+

1
2
2t 2

(
1
2

)t
2t

(
1
2

)t
−2

3
(k1 − 4) + 4

3
(k2 − 4)

2
3
(k1 − 4)− 1

3
(k2 − 4)


If we substitute in the equation for xt = y1,t and take the first element we have, again, the

general solution of the Euler equation (7).

Second step: particular solution In order to determine the (particular) solution of the

CV problem we take the general solution of the Euler equation (7), and determine k1 and

k2 by solving the system xt|t=0 = 1 and xt|t=4 = 1:

4 + 1× (k1 − 4) + 0× (k2 − 4) = 1 (8)

4 +

(
−1

3
24 +

4

3

(
1

2

)4
)

(k1 − 4) +

(
2

3
24 − 2

3

(
1

2

)4
)

(k2 − 4) = 1 (9)

Then we get k1 = 1 and k2 = 38/17. If we substitute in the solution for xt, we get

x∗t = 4− 3

17
2t − 48

17
(1/2)t

Therefore, the solution for the calculus of variations problem is the sequence

x∗ = {x∗}4t=0 =

{
1,

38

17
,
44

17
,
38

17
, 1

}
.
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Example 2: The cake eating problem Assume that there is a cake whose size at the

beginning of period t is denoted by Wt and there is a muncher who wants to eat it until the

beginning of period T . The initial size of the cake is W0 = φ and, off course, WT = 0 and the

eater takes bites of size Ct at period t. The eater evaluates the utility of its bites through a

logarithmic utility function and has a psychological discount factor 0 < β < 1. What is the

optimal eating strategy ?

Formally, the problem is to find the optimal paths C∗ = {C∗t }T−1t=0 and W ∗ = {W ∗
t }Tt=0

that solve the problem

max
{C}

T∑
t=0

βt ln(Ct), subject to Wt+1 = Wt − Ct, W0 = φ, WT = 0. (10)

This problem can be transformed into the calculus of variations problem, because Ct =

Wt −Wt+1,

max
W

T∑
t=0

βt ln(Wt −Wt+1), subject to W0 = φ, WT = 0.

The Euler-Lagrange condition is:

− βt−1

W ∗
t−1 −W ∗

t

+
βt

W ∗
t −W ∗

t+1

= 0.

Then, the first order conditions are:
W ∗
t+2 = (1 + β)W ∗

t+1 − βW ∗
t , t = 0, . . . T − 2

W0 = φ

WT = 0

In the appendix we find the solution of this linear scone order difference equation (see

equation (56))

W ∗
t =

1

1− β
(
−βk1 + k2 + (k1 − k2)βt

)
, t = 0, 1 . . . , T (11)
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Figure 1: Solution to the cake eating problem with T = 10, φ0 = 1, φT = 0 and β = 1/1.03

which depends on two arbitrary constants, k1 and k2. We can evaluate them by using the

initial and terminal conditionsW
∗
0 = 1

1−β (−βk1 + k2 + (k1 − k2)) = φ

W ∗
T = −βk1 + k2 + (k1 − k2)βT = 0.

Solving this linear system for k1 and k2, we get:

k1 = φ, k2 =
β − βT

1− βT
φ

Therefore, the solution for the cake-eating problem {C∗}, {W ∗} is generated by

W ∗
t =

(
βt − βT

1− βT

)
φ, t = 0, 1, . . . T (12)

and, as C∗t = W ∗
t −W ∗

t+1

C∗t =

(
1− β

1− βT

)
βtφ, t = 0, 1, . . . T − 1. (13)
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2.2 Free terminal state problem

Now let us consider the problem

max
x

T−1∑
t=0

F (xt+1, xt, t)

subject to x0 = φ0 and xT free (14)

where φ0 and T are given.

Proposition 2. (Necessary condition for optimality for the free end point problem)

Let {x∗t}Tt=0 be a solution for the problem defined by equations (2) and (14). Then it verifies

the Euler-Lagrange condition

∂F (x∗t , x
∗
t−1, t− 1)

∂xt
+
∂F (x∗t+1, x

∗
t , t)

∂xt
= 0, t = 1, 2, . . . , T − 1 (15)

and the initial and the transversality conditions

x∗0 = φ0, t = 0

∂F (x∗T , x
∗
T−1, T − 1)

∂xT
= 0, t = T. (16)

Proof. Again we assume that we know x∗ = {x∗t}Tt=0 and V (x∗), and we use the same method

as in the proof for the simplest problem. However, instead of equation (5) the variation

introduced by the perturbation {εt}Tt=0is

V (x)− V (x∗) =
T−2∑
t=1

(
∂F (x∗t , x

∗
t−1, t− 1)

∂xt
+
∂F (x∗t+1, x

∗
t , t)

∂xt

)
εt +

∂F (x∗T , x
∗
T−1, T − 1)

∂xT
εT

because xT = x∗T + εT and εT 6= 0 because the terminal state is not given. Then V (x) −

V (x∗) = 0 if and only if the Euler and the transversality (16) conditions are verified.
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Condition (16) is called the transversality condition. Its meaning is the following: if

the terminal state of the system is free, it would be optimal if there is no gain in changing

the solution trajectory as regards the horizon of the program. If
∂F (x∗T ,x

∗
T−1,T−1)
∂xT

> 0 then we

could improve the solution by increasing x∗T (remember that the utiity functional is additive

along time) and if
∂F (x∗T ,x

∗
T−1,T−1)
∂xT

< 0 we have an non-optimal terminal state by excess.

Example 1 (bis) Consider Example 1 and take the same objective function and initial

state but assume instead that x4 is free. In this case we have the terminal condition associated

to the optimal terminal state,

2x∗4 − x∗3 − 4 = 0.

If we substitute the values of x4 and x3, from equation (7), we get the equivalent condi-

tion −32 + 8k1 + 16k2 = 0. This condition together with the initial condition, equation

equation (8), allow us to determine the constants k1 and k2 as k1 = 1 and k2 = 5/2. If

we substitute in the general solution, equation (7), we get xt = 4 − 3(1/2)t. Therefore,

the solution for the problem is {1, 5/2, 13/4, 29/8, 61/16}, which is different from the path

{1, 38/17, 44/17, 38/17, 1} that we have determined for the fixed terminal state problem. �

However, in free endpoint problems we need sometimes an additional terminal condition

in order to have a meaningful solution. To convince oneself, consider the following problem.

Cake eating problem with free terminal size . Consider the previous cake eating

example where T is known but assume instead that WT is free. The first order conditions

from proposition (18) are
Wt+2 = (1 + β)Wt+1 − βWt, t = 0, 1, . . . , T − 2

W0 = φ

βT−1

WT−WT−1
= 0.
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If we substitute the solution of the Euler-Lagrange condition, equation (11), the transver-

sality condition becomes

βT−1

WT −WT−1
=

βT−1

βT − βT−1
1− β
k1 − k2

=
1

k1 − k2

which can only be zero if k2 − k1 = ∞. If we look at the transversality condition, the last

condition only holds if WT −WT−1 =∞, which does not make sense. �

The former problem is mispecified: the way we posed it it does not have a solution for

bounded values of the cake.

One way to solve this, and which is very important in applications to economics is to

introduce a terminal constraint.

2.3 Free terminal state problem with a terminal constraint

Consider the problem

max
{x}

T−1∑
t=0

F (xt+1, xt, t)

subject to x0 = φ0 and xT ≥ φT (17)

where φ0, φT and T are given.

Proposition 3. (Necessary condition for optimality for the free end point problem with

terminal constraints)

Let {x∗t}Tt=0 be a solution for the problem defined by equations (2) and (17). Then it verifies

the Euler-Lagrange condition

∂F (x∗t , x
∗
t−1, t− 1)

∂xt
+
∂F (x∗t+1, x

∗
t , t)

∂xt
= 0, t = 1, 2, . . . , T − 1 (18)

and the initial and the transversality conditionx
∗
0 = φ0, t = 0

∂F (x∗T ,x
∗
T−1,T−1)
∂x∗T

(φT − x∗T ) = 0, t = T.
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Proof. Now we write V ({x}) as a Lagrangian

V ({x}) =
T−1∑
t=0

F (xt+1, xt, t) + λ(φT − xT )

where λ is a Lagrange multiplier. Using again the variational method with ε0 = 0 and

εT 6= 0 the different between the perturbed candidate solution and the solution becomes

V (x)− V (x∗) =
T−2∑
t=1

(
∂F (x∗t , x

∗
t−1, t− 1)

∂xt
+
∂F (x∗t+1, x

∗
t , t)

∂xt

)
εt +

+
∂F (x∗T , x

∗
T−1, T − 1)

∂xT
εT + λ(φT − x∗T − εT )

From the Kuhn-Tucker conditions, we have the conditions, regarding the terminal state,

∂F (x∗T , x
∗
T−1, T − 1)

∂xT
− λ = 0, λ(φT − x∗T ) = 0.

The cake eating problem again Now, if we introduce the terminal condition WT ≥ 0,

the first order conditions are
W ∗
t+2 = (1 + β)W ∗

t+1 − βWt, t = 0, 1, . . . , T − 2

W ∗
0 = φ

βT−1W ∗T
W ∗T−W

∗
T−1

= 0.

If T is finite, the last condition only holds if W ∗
T = 0, which means that it is optimal to eat

all the cake in finite time. The solution is, thus formally, but not conceptually, the same as

in the fixed endpoint case.

2.4 Infinite horizon problems

The most common problems in macroeconomics is the discounted infinite horizon problem.

We consider two problems, without or with terminal conditions.
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No terminal condition

max
x

∞∑
t=0

βtF (xt+1, xt) (19)

where, 0 < β < 1, x0 = φ0 where φ0 is given.

Proposition 4. (Necessary condition for optimality for the infinite horizon problem)

Let {x∗t}∞t=0 be a solution for the problem defined by equation (19). Then it verifies the

Euler-Lagrange condition

∂F (x∗t , x
∗
t−1)

∂xt
+ β

∂F (xt+1, xt)

∂xt
= 0, t = 0, 1, . . .

and x
∗
0 = x0,

limt→∞ β
t−1 ∂F (x∗t ,x

∗
t−1)

∂xt
= 0,

Proof We can see this problem as a particular case of the free terminal state problem

when T =∞. Therefore the first order conditions were already derived. �

With terminal conditions If we assume that limt→∞ xt = 0 then the transversality

condition becomes

lim
t→∞

βt
∂F (x∗t , x

∗
t−1)

∂xt
x∗t = 0.

Exercise: the discounted infinite horizon cake eating problem The solution of the

Euler-Lagrange condition was already derived as

W ∗
t =

1

1− β
(
−βk1 + k2 + (k1 − k2)βt

)
, t = 0, 1 . . . ,∞

If we substitute in the transversality condition for the infinite horizon problem without

terminal conditions, we get

lim
t→∞

βt−1
∂ ln(W ∗

t−1 −W ∗
t )

∂Wt

= lim
t→∞

βt−1(W ∗
t −W ∗

t−1)
−1 = lim

t→∞

βt−1

βt − βt−1
1− β
k1 − k2

=
1

k2 − k1
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which again ill-specified because the last equation is only equal to zero if k2 − k1 =∞.

If we consider the infinite horizon problem with a terminal constraint limt→∞ xt ≥ 0 and

substitute, in the transversality condition for the infinite horizon problem without terminal

conditions, we get

lim
t→∞

βt−1
∂ ln(Wt−1 −Wt)

∂Wt

Wt = lim
t→∞

W ∗
t

k1 − k2
=

−βk1 + k2
(1− β)(k2 − k1)

because limt→∞ β
t = 0 as 0 < β < 1. The transversality condition holds if and only if

k2 = βk1. If we substitute in the solution for Wt, we get

W ∗
t =

k1(1− β)

1− β
βt = k1β

t, t = 0, 1 . . . ,∞.

The solution verifie the initial condition W0 = φ0 if and only if k1 = φ0. Therefore the

solution for the infinite horizon problem is {W ∗
t }∞t=0 where

W ∗
t = φ0β

t.

Figure 2: Solution for the cake eating problem with T =∞, β = 1/1.03 and φ0 = 1
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3 Optimal Control and the Pontriyagin’s principle

The optimal control problem is a generalization of the calculus of variations problem. It

involves two variables, the control and the state variables and consists in maximizing a

functional over functions of the state and control variables subject to a difference equation

over the state variable, which characterizes the system we want to control. Usually the initial

state is known and there could exist or not additional terminal conditions over the state.

The trajectory (or orbit) of the state variable, x ≡ {xt}Tt=0, characterizes the state of a

system, and the control variable path u ≡ {ut}Tt=0 allows us to control its evolution.

3.1 The simplest problem

Let T be finite. The simplest optimal control problem consist in finding the optimal paths

({u∗}, {x∗}) such that the value functional is maximized by choosing an optimal control,

max
{u}

T−1∑
t=0

f(xt, ut, t), (20)

subject to the constraints of the problem
xt+1 = g(xt, ut, t) t = 0, 1, . . . , T − 1

x0 = φ0 t = 0

xT = φT t = T

(21)

where φ0, φT and T are given.

We assume that certain conditions hold: (1) differentiability of f ; (2) concavity of g and

f ; (3) regularity 2

Define the Hamiltonian function

Ht = H(ψt, xt, ut, t) = f(xt, ut, t) + ψtg(xt, ut, t)

2That is, existence of sequences of x = {x1, x2, ..., xT } and of u = {u1, u2, ..., uT } satisfying xt+1 =

∂g
∂x (x0

t , u
0
t )xt + g(x0

t , ut)− g(x0
t , u

0
t ).



Paulo Brito Mathematical Economics, 2013/14 21

where ψt is called the co-state variable and {ψ} = {ψt}T−1t=0 is the co-state variable path.

The maximized Hamiltonian

H∗t (ψt, x
∗
t ) = max

u
Ht(ψt, xt, ut)

is obtained by substituting in Ht the optimal control, u∗t = u∗(xt, ψt).

Proposition 5. (Maximum principle)

If x∗ and u∗ are solutions of the optimal control problem (20)-(21) and if the former differ-

entiability and regularity conditions hold, then there is a sequence {ψ} = {ψt}T−1t=0 such that

the following conditions hold

∂H∗t
∂ut

= 0, t = 0, 1, . . . , T − 1 (22)

ψt =
∂H∗t+1

∂xt+1

, t = 0, . . . , T − 1 (23)

x∗t+1 = g(x∗t , u
∗
t , t) (24)

x∗T = φT (25)

x∗0 = φ0 (26)

Proof. Assume that we know the solution (u∗, x∗) for the problem. Then the optimal value

of value functional is V ∗ = V (x∗) =
∑T−1

t=0 f(x∗t , u
∗
t , t).

Consider the Lagrangean

L =
T−1∑
t=0

f(xt, ut, t) + ψt(g(xt, ut, t)− xt+1)

=
T−1∑
t=0

Ht(ψt, xt, ut, t)− ψtxt+1

where Hamiltonian function is

Ht = H(ψt, xt, ut, t) ≡ f(xt, ut, t) + ψt(g(xt, ut, t). (27)
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Define

Gt = G(xt+1, xt, ut, ψt, t) ≡ H(ψt, , xt, ut, t)− ψtxt+1.

Then

L =
T−1∑
t=0

G(xt+1, xt, ut, ψt, t)

If we introduce again a variation as regards the solution {u∗, x∗}Tt=0 , xt = x∗t +εxt , ut = u∗t +εut

and form the variation in the value function and apply a first order Taylor approximation,

as in the calculus of variations problem,

L− V ∗ =
T−1∑
t=1

(
∂Gt−1

∂xt
+
∂Gt

∂xt

)
εxt +

T−1∑
t=0

∂Gt

∂ut
εut +

T−1∑
t=0

∂Gt

∂ψt
εψt .

Then, get the optimality conditions

∂Gt

∂ut
= 0, t = 0, 1, . . . , T − 1

∂Gt

∂ψt
= 0, t = 0, 1, . . . , T − 1

∂Gt−1

∂xt
+
∂Gt

∂xt
= 0, t = 1, . . . , T − 1

where all the variables are evaluated at the optimal path.

Evaluating these expressions for the same time period t = 0, . . . , T − 1, we get

∂Gt

∂ut
=

∂Ht

∂ut
=
∂f(x∗t , u

∗
t , t)

∂u
+ ψt

∂g(x∗t , u
∗
t , t)

∂u
= 0,

∂Gt

∂ψt
=

∂Ht

∂ψt
− xt+1 = g(x∗t , u

∗
t , t)− xt+1 = 0,

which is an admissibility condition

∂Gt

∂xt+1

+
∂Gt+1

∂xt+1

=
∂(Ht − ψtxt+1)

∂xt+1

+
∂Ht+1

∂xt+1

= −ψt +
∂f(x∗t+1, u

∗
t+1, t+ 1)

∂x
+ ψt+1

∂g(x∗t+1, u
∗
t+1, t+ 1)

∂x
= 0.

Then, setting the expressions to zero, we get, equivalently, equations (22)-(26)
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This is a version of the Pontriyagin’s maximum principle. The first order conditions

define a mixed initial-terminal value problem involving a planar difference equation.

If ∂2Ht/∂u
2
t 6= 0 then we can use the inverse function theorem on the static optimality

condition
∂H∗t
∂ut

=
∂f(x∗t , u

∗
t , t)

∂ut
+ ψt

∂g(x∗t , u
∗
t , t)

∂ut
= 0

to get the optimal control as a function of the state and the co-state variables as

u∗t = h(x∗t , ψt, t)

if we substitute in equations (23) and (24) we get a non-linear planar ode in (ψ, x), called

the canonical system,ψt =
∂H∗t+1

∂xt+1
(x∗t+1, h(x∗t+1, ψt+1, t+ 1), t+ 1), ψt+1, t+ 1)

x∗t+1 = g(x∗t , h(x∗t , ψt, t), t)

(28)

where

∂H∗t+1

∂xt+1

=
∂f(x∗t+1, h(x∗t+1, ψt+1, t+ 1), t+ 1)

∂xt+1

+ ψt+1

∂g(x∗t+1, h(x∗t+1, ψt+1, t+ 1), t+ 1)

∂xt+1

The first order conditions, according to the Pontriyagin principle, are then constituted by

the canonical system (29) plus the initial and the terminal conditions (25) and (26).

Alternatively, if the relationship between u and ψ is monotonic, we could solve condition

∂H∗t /∂ut = 0 for ψt to get

ψt = qt(u
∗
t , x
∗
t , t) = −

∂f(x∗t ,u
∗
t ,t)

∂ut
∂g(x∗t ,u

∗
t ,t)

∂ut

and we would get an equivalent (implicit or explicit) canonical system in (u, x)qt(u
∗
t , x
∗
t , t) =

∂H∗t+1

∂xt+1
(x∗t+1, u

∗
t+1, qt+1(u

∗
t+1, x

∗
t+1, t+ 1), t+ 1)

x∗t+1 = g(x∗t , u
∗
t , t)

(29)

which is an useful representation if we could isolate ut+1, which is the case in the next

example.
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Exercise: cake eating Consider again problem (10) and solve it using the maximum

principle of Pontriyagin. The present value Hamiltonian is

Ht = βt ln(Ct) + ψt(Wt − Ct)

and from first order conditions from the maximum principle

∂H∗t
∂Ct

= βt(C∗t )−1 − ψt = 0, t = 0, 1, . . . , T − 1

ψt =
∂H∗t+1

∂Wt+1
= ψt+1, t = 0, . . . , T − 1

W ∗
t+1 = W ∗

t − C∗t , t = 0, . . . , T − 1

W ∗
T = 0

W ∗
0 = φ.

From the first two equations we get an equation over C, C∗t+1β
t = βt+1C∗t , which is sometimes

called the Euler equation. This equation together with the admissibility conditions, lead to

the canonical dynamic system

C∗t+1 = βC∗t

W ∗
t+1 = W ∗

t − C∗t , t = 0, . . . , T − 1

W ∗
T = 0

W ∗
0 = φ.

There are two methods to solve this mixed initial-terminal value problem: recursively or

jointly.

First method: we can solve the problem recursively. First,we solve the Euler equation

to get

Ct = k1β
t.

Then the second equation becomes

Wt+1 = Wt − k1βt
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which has solution

Wt = k2 − k1
t−1∑
s=0

βs = k2 − k1
1− βt

1− β
.

In order to determine the arbitrary constants, we consider again the initial and terminal

conditions W0 = φ and WT = 0 and get

k1 =
1− β

1− βT
φ, k2 = φ

and if we substitute in the expressions for C∗t and W ∗
t we get the same result as in the

calculus of variations problem, equations (13)-(12).

Second method: we can solve the canonical system as a planar difference equation

system. The first two equations have the form yt+1 = Ayt where

A =

 β 0

−1 1


which has eigenvalues λ1 = 1 and λ2 = β and the associated eigenvector matrix is

P =

 0 1− β

1 1

 .

The solution of the planar equation is of type yt = PΛtP−1k C∗t

W ∗
t

 =
1

1− β

 0 1− β

1 1

 1 0

0 βt

 −1 1− β

1 0

 k1

k2

 =

=

 k1β
t

k2 − k1 1−β
t

1−β

 .

3.2 Free terminal state
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Again, let T be finite. This is a slight modification of the simplest optimal control

problem which has the objective functional (20) subject toxt+1 = g(xt, ut, t) t = 0, 1, . . . , T − 1

x0 = φ0 t = 0

(30)

where φ0 is given.

The Hamiltonian is the same as in the former problem and the first order necessary

conditions for optimality are:

Proposition 6. (Maximum principle)

If {x∗}Tt=0 and {u∗}Tt=0 are solutions of the optimal control problem (20)-(30) and if the

former assumptions on f and g hold, then there is a sequence {ψ} = {ψt}T−1t=0 such that for

t = 0, 1, ..., T − 1

∂H∗t
∂ut

= 0, t = 0, 1, . . . , T − 1 (31)

ψt =
∂H∗t+1

∂xt+1

, t = 0, . . . , T − 1 (32)

x∗t+1 = g(x∗t , u
∗
t , t) (33)

x∗0 = φ0 (34)

ψT−1 = 0 (35)

Proof. The proof is similar to the previous case, but now we have for t = T

∂GT−1

∂xT
= ψT−1 = 0.

3.3 Free terminal state with terminal constraint
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Again let T be finite and assume that the terminal value for the state variable is non-

negative. This is another slight modification of the simplest e simplest optimal control

problem which has the objective functional (20) subject to
xt+1 = g(xt, ut, t) t = 0, 1, . . . , T − 1

x0 = φ0 t = 0

xT ≥ 0 t = T

(36)

where φ0 is given.

The Hamiltonian is the same as in the former problem and the first order necessary

conditions for optimality are

Proposition 7. (Maximum principle)

If {x∗}Tt=0 and {u∗}Tt=0 are solutions of the optimal control problem (20)-(36) and if the

former conditions hold, then there is a sequence ψ = {ψt}T−1t=0 such that for t = 0, 1, ..., T − 1

satisfying equations (31)-(34) and

ψT−1x
∗
T = 0 (37)

The cake eating problem Using the previous result, the necessary conditions according

to the Pontryiagin’s maximum principle are

Ct = βt/ψt

ψt = ψt+1

Wt+1 = Wt − Ct

W0 = φ0

ψT−1 = 0
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This is equivalent to the problem involving the canonical planar difference equation system

Ct+1 = βCt

Wt+1 = Wt − Ct

W0 = φ0

βT−1

CT−1
= 0

whose general solution was already found. The terminal condition becomes

βT−1

CT−1
=

βT−1

βT−1k1
=

1

k1

which can only be zero if k1 =∞, which does not make sense.

If we solve instead the problem with the terminal condition WT ≥ 0, then the transver-

sality condition is

ψT−1WT = βT−1
WT

CT−1
= 0

If we substitute the general solutions for Ct and Wt we get

βT−1
WT

CT−1
=

1

1− β

[
−k1 + (1− β)k2

k1
+
k1
k1
βT
]

which is equal to zero if and only if

k2 = k1
1− βT

1− β
.

We still have one unknown k1. In order to determine it, we substitute in the expression for

Wt

Wt = k1
βt − βT

1− β
,

evaluate it at t = 0, and use the initial condition W0 = φ and get

k1 =
1− β

1− βT
φ.

Therefore, the solution for the problem is the same as we got before, equations (13)-(12).
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3.4 The discounted infinite horizon problem

The discounted infinite horizon optimal control problem consist on finding (u∗, x∗) such that

max
u

∞∑
t=0

βtf(xt, ut), 0 < β < 1 (38)

subject to xt+1 = g(xt, ut) t = 0, 1, . . .

x0 = φ0 t = 0

(39)

where φ0 is given.

Observe that the functions f(.) and g(.) are now autonomous, in the sense that time does

not enter directly as an argument, but there is a discount factor βt which weights the value

of f(.) along time.

The discounted Hamiltonian is

ht = h(xt, ηt, ut) ≡ f(ut, yt) + ηtg(yt, ut) (40)

where ηt is the discounted co-state variable.

It is obtained from the current value Hamiltonian as follows:

Ht = βtf(ut, xt) + ψtg(xt, ut)

= βt (f(ut, yt) + ηtg(yt, ut))

≡ βtht

where the co-state variable (η) relates with the actualized co-state variable (ψ) as ψt =

βtηt. The Hamiltonian ht is independent of time in discounted autonomous optimal control

problems. The maximized current value Hamiltonian is

h∗t = max
u

ht(xt, ηt, ut).
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Proposition 8. (Maximum principle)

If x∗ = {x∗}∞t=0 and {u∗}∞t=0 is a solution of the optimal control problem (38)-(39) and if the

former regularity and continuity conditions hold, then there is a sequence {η} = {ηt}∞t=0 such

that the optimal paths verify

∂h∗t
∂ut

= 0, t = 0, 1, . . . ,∞ (41)

ηt = β
∂h∗t+1

∂xt+1

, t = 0, . . . ,∞ (42)

x∗t+1 = g(x∗t , u
∗
t , t) (43)

lim
t→∞

βtηt = 0 (44)

x∗0 = φ0 (45)

Proof. Exercise.

Again, if we have the terminal condition

lim
t→∞

xt ≥ 0

the transversality condition is

lim
t→∞

βtηtx
∗
t = 0 (46)

instead of (44).

The necessary first-order conditions are again represented by the system of difference

equations. If ∂2ht/∂u
2
t 6= 0 then we can use the inverse function theorem on the static

optimality condition
∂h∗t
∂ut

=
∂f(x∗t , u

∗
t , t)

∂ut
+ ηt

∂g(x∗t , u
∗
t , t)

∂ut
= 0

to get the optimal control as a function of the state and the co-state variables as

u∗t = h(x∗t , ηt)
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if we substitute in equations (42) and (43) we get a non-linear autonomous planar difference

equation in (η, x) (or (u, x), if the relationship between u and η is monotonic)ηt = β
(
∂f(x∗t+1,h(x

∗
t+1,ηt+1))

∂xt+1
+ ηt+1

∂g(x∗t+1,h(x
∗
t+1,ηt+1))

∂xt+1

)
x∗t+1 = g(x∗t , h(x∗t , ηt))

plus the initial and the transversality conditions (44) and (45) or (46).

Exercise: the cake eating problem with an infinite horizon The discounted Hamil-

tonian is

ht = ln (Ct) + ηt(Wt − Ct)

and the f.o.c are 

Ct = 1/ηt

ηt = βηt+1

Wt+1 = Wt − Ct

W0 = φ0

limt→∞ β
tηtWt = 0

This is equivalent to the planar difference equation problem

Ct+1 = βCt

Wt+1 = Wt − Ct

W0 = φ0

limt→∞ β
t Wt

Ct
= 0

If we substitute the solutions for Ct and Wt in the transversality condition, we get

lim
t→∞

βt
Wt

Ct
= lim

t→∞

−k1 + (1− β)k2 + k1β
t

(1− β)k1
=
−k1 + (1− β)k2

(1− β)k1
= 0
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if and only if k1 = (1−β)k2. Using the same method we used before, we finally reach again

the optimal solution

C∗t = (1− β)φβt, W ∗
t = φβt, t = 0, 1, . . . ,∞.

Exercise: the consumption-savings problem with an infinite horizon Assume that

a consumer has an initial stock of financial wealth given by φ > 0 and gets a financial return

if s/he has savings. The intratemporal budget constraint is

Wt+1 = (1 + r)Wt − Ct, t = 0, 1, . . .

where r > 0 is the constant rate of return. Assume s/he has the intertemporal utility

functional

J(C) =
∞∑
t=0

βt ln (Ct), 0 < β =
1

1 + ρ
< 1, ρ > 0

and that the non-Ponzi game condition holds: limt→∞Wt ≥ 0. What are the optimal

sequences for consumption and the stock of financial wealth ?

We next solve the problem by using the Pontriyagin’s maximum principle. The discounted

Hamiltonian is

ht = ln (Ct) + ηt ((1 + r)Wt − Ct)

where ηt is the discounted co-state variable. The f.o.c. are

Ct = 1/ηt

ηt = β(1 + r)ηt+1

Wt+1 = (1 + r)Wt − Ct

W0 = φ0

limt→∞ β
tηtWt = 0
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which is equivalent to 

Ct+1 = βCt

Wt+1 = Wt − Ct

W0 = φ0

limt→∞ β
t Wt

Ct
= 0

If we define and use the first two and the last equation

zt ≡
Wt

Ct

we get a boundary value problemzt+1 = 1
β

(
zt − 1

1+r

)
limt→∞ β

tzt = 0.

The difference equation for zt has the general solution 3

zt =

(
k − 1

(1 + r)(1− β)

)
β−t +

1

(1 + r)(1− β)
.

We can determine the arbitrary constant k by using the transversality condition:

lim
t→∞

βtzt = lim
t→∞

βt
[(

k − 1

(1 + r)(1− β)

)
β−t +

1

(1 + r)(1− β)

]
= k − 1

(1 + r)(1− β)
+ lim

t→∞
βt
(

1

(1 + r)(1− β)

)
=

= k − 1

(1 + r)(1− β)
= 0

which is equal to zero if and only if

k =
1

(1 + r)(1− β)
.

3The difference equation is of type xt+1 = axt + b, where a 6= 1 and has solution

xt =

(
k − b

1− a

)
at +

b

1− a

where k is an arbitrary constant.
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Then, zt = 1/ ((1 + r)(1− β)) is a constant. Therefore, as Ct = Wt/zt the average and

marginal propensity to consume out of wealth is also constant, and

C∗t = (1 + r)(1− β)Wt.

If we substitute in the intratemporal budget constraint and use the initial conditionW
∗
t+1 = (1 + r)W ∗

t − C∗t

W ∗
0 = φ

we can determine explicitly the optimal stock of wealth for every instant

W ∗
t = φ (β(1 + r))t =

(
1 + r

1 + ρ

)t
, t = 0, 1, . . . ,∞

and

C∗t = (1 + r)(1− β)

(
1 + r

1 + ρ

)t
, t = 0, 1, . . . ,∞.

We readily see that the solution depends crucially upon the relationship between the rate

of return on financial assets, r and the rate of time preference ρ:

1. if r > ρ then limt→∞W
∗
t = ∞: if the consumer is more patient than the market s/he

optimally tends to have an abounded level of wealth asymptotically;

2. if r = ρ then limt→∞W
∗
t = φ: if the consumer is as patient as the market it is optimal

to keep the level of financial wealth constant. Therefore: C∗t = rWt = rφ;

3. if r < ρ then limt→∞W
∗
t = 0: if the consumer is less patient than the market s/he

optimally tends to end up with zero net wealth asymptotically.

The next figures illustrate the three cases
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Figure 3: Phase diagram for the case in which φ > r

Figure 4: Phase diagram for the case in which φ = r
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Figure 5: Phase diagram for the case in which φ < r

Observe that although s/he may have an infinite level of wealth and consumption, asymp-

totically, the optimal value of the problem is bounded

J∗ =
∞∑
t=0

βt ln (C∗t =

=
∞∑
t=0

βt ln
(
(1 + r)(1− β) (β(1 + r))t ,

)
=

=
∞∑
t=0

βt ln ((1 + r)(1− β)) +
∞∑
t=0

βt ln
(
(β(1 + r))t

)
=

=
1

1− β
ln ((1 + r)(1− β)) + ln (β(1 + r))

∞∑
t=0

tβt =

=
1

1− β
ln ((1 + r)(1− β)) +

β

(1− β)2
ln (β(1 + r))

then

J∗ =
1

1− β
ln
([

(1 + r)(1− β)1−βββ
]1/(1−β)

φ
)

which is always bounded.
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4 Optimal control and the dynamic programming prin-

ciple

Consider the discounted finite horizon optimal control problem which consists in finding

(u∗, x∗) such that

max
u

T∑
t=0

βtf(xt, ut), 0 < β < 1 (47)

subject to xt+1 = g(xt, ut) t = 0, 1, . . . , T − 1

x0 = φ0 t = 0

(48)

where φ0 is given.

The principle of dynamic programming allows for an alternative method of solution.

According to the Principle of the dynamic programming (Bellman (1957)) an op-

timal trajectory has the following property: in the beginning of any period, take as given

values of the state variable and of the control variables, and choose the control variables

optimally for the rest of period. Apply this methods for every period.

4.1 The finite horizon problem

We start by the finite horizon problem, i.e. T finite.

Proposition 9. Consider problem (47)-(48) with T finite. Then given an optimal solution

the problem (x∗, u∗) satisfies the Hamilton-Jacobi-Bellman equation

VT−t(xt) = max
ut
{f(xt, ut) + βVT−t−1(xt+1)} , t = 0, . . . , T − 1. (49)
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Proof. Define value function at time τ

VT−τ (xτ ) =
T∑
t=τ

βt−τf(u∗t , x
∗
t ) = max

{ut}Tt=τ

T∑
t=τ

βt−τf(ut, xt)

Then, for time τ = 0 we have

VT (x0) = max
{ut}Tt=0

T∑
t=0

βtf(ut, xt) =

= max
{ut}Tt=0

(
f(x0, u0) + βf(x1, u1) + β2f(x2, u2) + . . .

)
=

= max
{ut}Tt=0

(
f(x0, u0) + β

T∑
t=1

βt−1f(xt, ut)

)
=

= max
u0

(
f(x0, u0) + β max

{ut}Tt=1

T∑
t=1

βt−1f(xt, ut)

)
by the principle of dynamic programming. Then

VT (x0) = max
u0
{f(x0, u0) + βVT−1(x1)}

We can apply the same idea for the value function for any time 0 ≤ t ≤ T to get the equation

(49) which holds for feasible solutions, i.e., verifying xt+1 = g(xt, ut) and given x0.

Intuition: we transform the maximization of a functional into a recursive two-period

problem. We solve the control problem by solving the HJB equation. To do this we have to

find {VT , . . . , V0}, through the recursion

Vt+1(x) = max
u
{f(x, u) + βVt(g(x, u))} (50)

Exercise: cake eating In order to solve the cake eating problem by using dynamic pro-

gramming we have to determine a particular version of the Hamilton-Jacobi-Bellman equa-

tion (49). In this case, we get

VT−t(Wt) = max
Ct
{ ln(Ct) + βVT−t−1(Wt+1)} , t = 0, 1, . . . , T − 1,
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To solve it, we should take into account the restriction Wt+1 = Wt − Ct and the initial and

terminal conditions.

We get the optimal policy function for consumption by deriving the right hand side for

Ct and setting it to zero

∂

∂Ct
{ ln(Ct) + βVT−t−1(Wt+1)} = 0

From this, we get the optimal policy function for consumption

C∗t =
(
βV

′

T−t−1(Wt+1)
)−1

= Ct(Wt+1).

Then the HJB equation becomes

VT−t(Wt) = ln(Ct(Wt+1)) + βVT−t−1(Wt+1), t = 0, 1, . . . , T − 1 (51)

which is a partial difference equation.

In order to solve it we make the conjecture that the solution is of the type

VT−t(Wt) = AT−t +

(
1− βT−t

1− β

)
ln(Wt), t = 0, 1, . . . , T − 1

where AT−t is arbitrary. We apply the method of the undetermined coefficients in order to

determine AT−t.

With that trial function we have

C∗t =
(
βV

′

T−t−1(Wt+1)
)−1

=

(
1− β

β(1− βT−t−1)

)
Wt+1, t = 0, 1, . . . , T − 1

which implies. As the optimal cake size evolves according to Wt+1 = Wt − C∗t then

Wt+1 =

(
β − βT−t

1− βT−t

)
Wt. (52)

which implies

C∗t =

(
1− β

1− βT−t

)
Wt, t = 0, 1, . . . , T − 1.
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This is the same optimal policy for consumption as the one we got when we solve the problem

by the calculus of variations technique. If we substitute back into the equation (51) we get

an equivalent HJB equation

AT−t +

(
1− βT−t

1− β

)
lnWt =

= ln

(
1− β

1− βT−t

)
+ lnWt + β

{
AT−t−1 +

(
1− βT−t−1

1− β

)[
ln

(
β − βT−t

1− βT−t

)
+ lnWt

]}
As the terms in lnWt cancel out, this indicates (partially) that our conjecture was right.

Then, the HJB equation reduces to the difference equation on At, the unknown term:

AT−t = βAT−t−1 + ln

(
1− β

1− βT−t

)
+

(
β − βT−t

1− β

)
ln

(
β − βT−t

1− βT−t

)
which can be written as a non-homogeneous difference equation, after some algebra,

AT−t = βAT−t−1 + zT−t (53)

where

zT−t ≡ ln

( 1− β
1− βT−t

) 1−βT−t
1−β

(
β − βT−t

1− β

)β−βT−t
1−β


In order to solve equation (53), we perform the change of coordinates τ = T − t and oberve

that AT−T = A0 = 0 because the terminal value of the cake should be zero. Then, operating

by recursion, we have

Aτ = βAτ−1 + zτ =

= β (βAτ−2 + zτ−1) + zτ = β2Aτ−2 + zτ + βzτ−1 =

= . . .

= βτA0 + zτ + βzτ−1 + . . .+ βτz0

=
τ∑
s=0

βszτ−s.
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Then

AT−t =
T−t∑
s=0

βs ln

( 1− β
1− βT−t−s

) 1−βT−t−s
1−β

(
β − βT−t−s

1− β

)β−βT−t−s
1−β

 .

If we use terminal condition A0 = 0, then the solution of the HJB equation is, finally,

VT−t(Wt) = ln

T−t∏
s=0

(
1− β

1− βT−t−s

)βs−βT−t
1−β

(
β − βT−t−s

1− β

)βs+1−βT−t
1−β

+

+

(
1− βT−t

1− β

)
ln(Wt), t = 0, 1, . . . , T − 1 (54)

We already determined the optimal policy for consumption (we really do not need to deter-

mine the term AT−t if we only need to determine the optimal consumption)

C∗t =

(
1− β

1− βT−t

)
Wt =

(
1− β

1− βT

)
βtφ, t = 0, 1, . . . , T − 1,

because, in equation (52) we get

Wt = β

(
1− βT−t

1− βT−(t−1)

)
Wt−1 =

= β

(
1− βT−t

1− βT−(t−1)

)
β

(
1− βT−(t−1)

1− βT−(t−2)

)
Wt−2 = β2

(
1− βT−t

1− βT−(t−2)

)
Wt−2 =

= . . .

= βt
(

1− βT−t

1− βT

)
W0

and W0 = φ.

4.2 The infinite horizon problem

For the infinite horizon discounted optimal control problem, the limit function V = limj→∞ Vj

is independent of j so the Hamilton Jacobi Bellman equation becomes

V (x) = max
u
{f(x, u) + βV [g(x, u)]} = max

u
H(x, u)
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Properties of the value function: it usually hard to get the properties of V (.). In

general continuity is assured but not differentiability (this is a subject for advanced courses

on DP, see Stokey and Lucas (1989)).

If some regularity conditions hold, we may determine the optimal control through the

optimality condition
∂H(x, u)

∂u
= 0

if H(.) is C2 then we get the policy function

u∗ = h(x)

which gives an optimal rule for changing the optimal control, given the state of the economy.

If we can determine (or prove that there exists such a relationship) then we say that our

problem is recursive.

In this case the HJB equation becomes a non-linear functional equation

V (x) = f(x, h(x)) + βV [g(x, h(x))].

Solving the HJB: means finding the value function V (x). Methods: analytical (in some

cases exact) and mostly numerical (value function iteration).

Exercise: the cake eating problem with infinite horizon Now the HJB equation is

V (W ) = max
C

{
ln (C) + βV (W̃ )

}
,

where W̃ = W − C. We say we solve the problem if we can find the unknown function

V (W ).

In order to do this, first, we find the policy function C∗ = C(W ), from the optimality

condition
∂ {ln (C) + βV (W − C)}

∂C
=

1

C
− βV ′(W − C) = 0.
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Then

C∗ =
1

βV ′(W − (C))
,

which, if V is differentiable, yields C∗ = C(W )).

Then W̃ = W − C ′(W ) = W̃ (W ) and the HJB becomes a functional equation

V (W ) = ln (C∗(W )) + βV [W̃ (W )].

Next, we try to solve the HJB equation by introducing a trial solution

V (W ) = a+ b ln(W )

where the coefficients a and b are unknown, but we try to find them by using the method

of the undetermined coefficients.

First, observe that

C =
1

1 + bβ
W

W̃ =
bβ

1 + bβ
W

Substituting in the HJB equation, we get

a+ b ln (W ) = ln (W )− ln (1 + bβ) + β

(
a+ b ln

(
bβ

1 + bβ

)
+ b ln (W )

)
,

which is equivalent to

(b(1− β)− 1) ln (W ) = a(β − 1)− ln (1 + bβ) + βb ln

(
bβ

1 + bβ

)
.

We can eliminate the coefficients of ln(W ) if we set

b =
1

1− β
.

Then the HJB equation becomes

0 = a(β − 1)− ln

(
1

1− β

)
+

β

1− β
ln (β)
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then

a = ln (1− β) +
β

1− β
ln (β).

Then the value function is

V (W ) =
1

1− β
ln (χW ), where χ ≡

(
ββ(1− β)1−β

)1/(1−β)
.

and C∗ = (1− β)W , that is

C∗t = (1− β)Wt,

which yields the optimal cake size dynamics as

W ∗
t+1 = Wt − C∗t = βW ∗

t

which has the solution, again, W ∗
t = φβt.

5 Bibliographic references

(Ljungqvist and Sargent, 2004, ch. 3, 4) (de la Fuente, 2000, ch. 12, 13)
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A Second order linear difference equations

A.1 Autonomous problem

Consider the homogeneous linear second order difference equation

xt+2 = a1xt+1 + a0xt, (55)

where a0 and a1 are real constants and a0 6= 0.

The solution is

xt =

(
λ1 − a1
λ1 − λ2

λt1 +
a1 − λ2
λ1 − λ2

λt2

)
k1 −

(λ1 − a1)(λ2 − a1)
a0(λ1 − λ2)

(
λt1 − λt2

)
k2 (56)

where k1 and k2 are arbitrary constants and

λ1 =
a1
2
−
[(a1

2

)2
+ a0

]1/2
(57)

λ2 =
a1
2

+

[(a1
2

)2
+ a0

]1/2
(58)

Proof: We can transform equation (55) into an equivalent linear planar difference equation

of the first order, If we set y1,t ≡ xt and y2,t ≡ xt+1, and observe that y1,t+1 = y2,t and equation

(55) can be written as y2,t+1 = a0y1,t + a1y2,t.

Setting

yt ≡

y1,t
y2,t

 , A ≡

 0 1

a0 a1


we have, equivalently the autonomous first order system

yt+1 = Ayt,

which has the unique solution

yt = PΛtP−1k
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where P and Λ are the eigenvector and Jordan form associated to A, k = (k1, k2)
> is a

vector of arbitrary constants.

The eigenvalue matrix is

Λ =

λ1 0

0 λ2


and, because a0 6= 0 implies that there are no zero eigenvalues,

P =

(λ1 − a1)/a0 (λ2 − a1)/a0
1 1

 .

As xt = y1,t then we get equation (56).

A.2 Non-autonomous problem

Now consider the homogeneous linear second order difference equation

xt+2 = a1xt+1 + a0xt + b (59)

where a0, a1 and b are real constants and a0 6= 0.

Case: 1− a1 − a0 6= 0 If 1− a1 − a0 6= 0 the general solution is

xt = x̄+

(
λ1 − a1
λ1 − λ2

λt1 +
a1 − λ2
λ1 − λ2

λt2

)
(k1 − x̄)− (λ1 − a1)(λ2 − a1)

a0(λ1 − λ2)
(
λt1 − λt2

)
(k2 − x̄) (60)

where

x̄ =
b

1− a0 − a1
is the steady state of equation (59).

Proof: If we define zt ≡ xt − x̄ then we get an equivalent system yt+1 − ȳ = A(yt − ȳ),

where ȳ = (x̄, x̄)> which has solution yt − ȳ = PΛtP−1(k− ȳ).
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Case: 1− a1 − a0 = 0 If 1− a1 − a0 = 0 then the general solution of equation (59)

xt = k1 + k2(a0 − 1)t + b

(
(2− a0)t− b

(a0 − 2)2

)
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