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1 Introduction

We introduce deterministic dynamic optimization problems and three methods for solving
them.

Deterministic dynamic programming deals with finding deterministic sequences which
verify some given conditions and which maximize (or minimise) a given intertemporal cri-

terium.

1.1 Deterministic and optimal sequences

Consider the time set T = {0,1,...,¢,...,T} where T can be finite or T' = co. We denote
the value of variable at time ¢, by z;. That is x; is a mapping z : T — R.

The timing of the variables differ: if x; can be measured at instant ¢ we call it a state
variable, if u; takes values in period ¢, which takes place between instants ¢t and ¢t + 1 we
call it a control variable.

Usually, stock variables (both prices and quantities) refer to instants and flow variables
(prices and quantities) refer to periods.

A dynamic model is characterised by the fact that sequences have some form of in-
tertemporal time-interaction. We distinguish intratemporal from intertemporal relations.
Intratemporal, or period, relations take place within a single period and intertemporal rela-
tions involve trajectories.

A trajectory or path for state variables starting at ¢t = 0 with the horizon ¢t = T is denoted
by x = {xg, x1,...,x7}. We denote the trajectory starting at ¢ > 0 by z* = {x;, 411,..., 27}
and the trajectory up until time ‘z = {xg, 1, ..., 2}

We consider two types of problems:

1. calculus of variations problems: feature sequences of state variables and evaluate these
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sequences by an intertemporal objective function directly
T-1
J(x) = Z F(t, x4, x441)
t=0

2. optimal control problems: feature sequences of state and control variables, which are

related by a sequence of intratemporal relations

Ty = g(2e, ug, 1) (1)

and evaluate these sequences by an intertemporal objective function over sequences

(,u)

h

J(x,u) = ft, g, uy)

t

Il
o

From equation (/1)) and the value of the state x; at some points in time we could also determine
an intertemporal relation['}

In a deterministic dynamic model there is full information over the state z; or the path
x! for any t > s if we consider information at time s.

In general we have some conditions over the value of the state at time t = 0, xy and
we may have other restrictions as well. The set of all trajectories = verifying some given
conditions is denoted by X. In optimal control problems the restrictions may involve both
state and control sequence, x and u. In this case we denote the domain of all trajectories by
D

Usually X, or D, have infinite number of elements. Deterministic dynamic optimisation

problems consist in finding the optimal sequences z* € X' (or (z*,u*) € D).

1.2 Some history

The calculus of variations problem is very old: Dido’s problem, brachistochrone problem

(Galileo), catenary problem and has been solved in some versions by Euler and Lagrange

'Tn economics the concept of sustainability is associated to meeting those types of intertemporal relations.
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(XVII century) (see [Liberzon, (2012). The solution of the optimal control problem is due to
Pontryagin et al|(1962). The dynamic programming method for solving the optimal control
problem has been first presented by Bellman (1957)).

1.3 Types of problems studied next

The problems we will study involve maximizing an intertemporal objective function (which

is mathematically a functional) subject to some restrictions:

1. the simplest calculus of variations problem: we want to find a path {z;}._,, where
T, and both the initial and the terminal values of the state variable are known, z¢y = ¢q
and x7 = ¢r, such that it maximizes the functional ZtT;Ol F (x4, x,t). Formally, the
problem is: find a trajectory for the state of the system, {z;}]_,, that solves the

problem
T-1

max F(x41, 74, ), 8.t w9 = ¢o, T1 = ¢r
{xt}?:o t:[)

where ¢g, ¢ and T are given,;

2. calculus of variations problem with a free endpoint: this is similar to the
previous problem with the difference that the terminal state xr is free. Formally:
T-1
max F(xyq,m,t), s.t. kg = ¢g, v free

{It }’{:O tzo

where ¢y and T" are given;

3. the optimal control problem with given terminal state: we assume there are
two types of variables, control and state variables, represented by u and x which are
related by the difference equation x;1 = g(x,u;). We assume that the initial and
the terminal values of the state variable are known xy = ¢y and z7 = ¢ and we

want to find an optimal trajectory joining those two states such that the functional
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tT:_Ol F(uy, x,t) is maximized by choosing an optimal path for the control.
Formally, the problem is: find a trajectories for the control and the state of the system,

{w S and {z7}L,, which solve the problem
-1

{m}aTX F(ug, x4, 1), sit. v = g(ag,ue), t=0,...T — 1, g = ¢, o7 = Or
“tii=0 4—o

where ¢g, ¢r and T are given,;

4. the optimal control problem with free terminal state: find a trajectories for the

control and the state of the system, {u}} ' and {z}}~,, which solve the problem
T-1

{m}aTX ZF(ut,xt,t), stz =g, w), t=0,...T =1, xg = ¢o, o1 = ¢r
“ti=0 t—o

where ¢y and T" are given.

5. in macroeconomics the infinite time discounted optimal control problem is the
most common: find a trajectories for the control and the state of the system, {u;}{2,

and {z;}°,, which solve the problem
-1
max ZﬂtF(ut, ), st T = g(w,up), t =0,...00, 2o = Pp,

(), £
where 5 € (0,1) is a discount factor and ¢ is given. The terminal condition

lim;_, n'z; > 0 is also frequently introduced, where 0 < 1 < 1.

There are three methods for finding the solutions: (1) calculus of variations, for the first
two problems, which is the reason why they are called calculus of variations problems, and
(2) maximum principle of Pontriyagin and (3) dynamic programming, which can be used for

all the five types of problems.

1.4 Some economic applications

The cake eating problem : let W, be the size of a cake at instant ¢. If we eat C; in period

t, the size of the cake at instant ¢t + 1 will be W, = W, — C;. We assume we know that
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the cake will last up until instant 7. We evaluate the bites in the case by the intertemporal

utility function featuring impatience, positive but decreasing marginal utility
T-1
>_ Al
t=0

If the initial size of the cake is ¢g and we want to consume it all until the end of period

T — 1 what will be the best eating strategy 7

The consumption-investment problem : let WW; be the financial wealth of a consumer

at instant . The intratemporal budget constraint in period ¢ is
Wi =Y+ 1 +r)W,—Cy, t=0,1,...,T -1

where Y; is the labour income in period ¢ and r is the asset rate of return. The consumer has
financial wealth W, initially. The consumer wants to determine the optimal consumption

and wealth sequences {C;}7 " and {W;}’, that maximises his intertemporal utility function

T-1

Z Bu(Ch)

t=0
where 71" can be finite or infinite.

The AK model growth model: let K; be the stock of capital of an economy at time

and consider the intratemporal aggregate constraint of the economy in period ¢
K= (1+A)K, —C,

where F'(K;) = AK, is the production function displaying constant marginal returns. Given
the initial capital stock K the optimal growth problem consists in finding the trajectory

{K:}{2, that maximises the intertemporal utility function

Z Bu(Cr)

subject to a boundedness constraint for capital. The [Ramsey| (1928) model is a related

model in which the production function displays decreasing marginal returns to capital.



Paulo Brito Mathematical Economics, 2013/1) 6

2 Calculus of Variations

Calculus of variations problems were the first dynamic optimisation problems involving find-
ing trajectories that maximize functionals given some restrictions. A functional is a function
of functions, roughly. There are several types of problems. We will consider finite horizon

(known terminal state and free terminal state) and infinite horizon problems.

2.1 The simplest problem

The simplest calculus of variations problem consists in finding a sequence that maxi-
mizes or minimizes a functional over the set of all trajectories x = {x;},, given initial and
a terminal value for the state variable, xq and z7p.

Assume that F(2',z) is continuous and differentiable in (z’,2). The simplest problem
of the calculus of variations is to find one (or more) optimal trajectory that maximizes the
value functional

T-1

max Z F(zy11, 24, 1) (2)
=0

where the function F(.) is called objective function
subject to g = ¢¢ and xr = ¢r (3)

where ¢y and ¢ are given.
Observe that the the upper limit of the sum should be consistent with the horizon of the
problem T'. In equation the value functional is

T
V({x}) = F(xp11, 24, 1)
t—0
= F(x1,20,0) + F(zo, 21, 1)+ ...+ F(ay, x41,t — 1) + F(x441, 24, t) + . ..

)_l

..—|—F(SCT,.’L'T,1,T— 1)

because xr is the terminal value of the state variable.
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We denote the solution of the calculus of variations problem by {x}}L .

The optimal value functional is a number

T—1 -1
VIS V(@) = Y P el 1) = max > Fleg, o).
t=0 t=0

Proposition 1. (First order necessary condition for optimality)
Let {x;}I_, be a solution for the problem defined by equations (@ and (@ Then it verifies

the Euler-Lagrange condition

aF(l’fﬁLpt - 1) aF(:C:Jrlax:at)
+ _
8$t axt

and the initial and the terminal conditions

$SZ¢0, t:O

ZL‘?:QST, t="1T.

Proof. Assume that we know the optimal solution z* = {z}}_,. Therefore, we also know

the optimal value functional V (z*) = 27 ' F(x} 11,27, t). Consider an alternative candidate

path as a solution of the problem, {z,}.-' such that z; = x}+¢,. In order to be admissible, it
has to verify the restrictions of the problem. Then, we may choose ¢, # 0 fort =1,...,T—1
and g = e = 0. That is, the alternative candidate solution has the same initial and
terminal values as the optimal solution, although following a different path. In this case the
value function is

T-1

V(z) = Z:F(:JU;;rl + €11, Ty + €y ).
=0

where ¢g = e = 0. The variation of the value functional introduced by the perturbation

{e} 5 is

b

Viz) = V(z") = F(xi, + e, af +et) — Foy,, o), t).

-
Il
o
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If F(.) is differentiable, we can use a first order Taylor approximation, evaluated along the

trajectory {z}},,

. OF (x},z7,0 . OF (z},x7,0 OF (x5, 27,1 .
V() —V(z*) = —(80%1 )(xo—xo)—ir( (80m11 )—l— (82:511 ))(m—ml)—i—...

<8F($}_1,x}_2,T —2) n OF (zh, ok, T —

) (orea ) +

oxh._, Oxr_y
OF (xh, ah_y, T — 1) .
TNy -
OF (x§, 27,0 OF (x5, 27,1
— (x07m1a ) + (x27x17 ) 14 ...
8x1 81:1
(8F($*T—1a Tr_o, T =2)  OF(zp, a7, T - 1))
+ " + ET—-1

because z; — x; = ¢, and ¢g = e = 0 Then

T-1
. OF (x},xy (,t—1 OF (x7, ,, 27, t
Vi) = Vi) :Z( "o 2 o ))gt' )

t=1

If {z;}1, is an optimal solution then V() — V(2*) = 0, which holds if (4)) is verified. O

Interpretation: equation (4]) is an intratemporal arbitrage condition for period t. The
optimal sequence has the property that at every period marginal benefits (from increasing

one unit of x; ) are equal to the marginal costs (from sacrificing one unit of x;,1):
Observations
e equation is a non-linear difference equation of the second order: if we set
Yie = Ty

Y2t = Ti+1 = Y1,t+1-

then the Euler Lagrange equation can be written as a planar equation in y; = (Y14, Ya¢)

Y141 = Y2t

8y82,tF(y27t’ ylvt’t - 1) + %F(ylt-i-la Yot t) =0
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e if we have a minimum problem we have just to consider the symmetric of the value

function
-1 T—1

myin Z F(yt+17 Yi, t) = m;xx Z _F(yt-i-la Y, t)
t=0 t=0

e If F(x,y) is concave then the necessary conditions are also sufficient.

Example 1: Let F(x;1,7¢) = — (2441 — 2¢/2 — 2)?, the terminal time T' = 4, and the state
constraints xo = x4 = 1. Solve the calculus of variations problem.
Solution: If we apply the Euler-Lagrange equation we get a second order difference

equation which is verified by the optimal solution

2L 9]0

evaluated along {x}}1 ;.

Then, we get

x*
2wyt +4+ 3 — Et —2=0
If we introduce a time-shift, we get the equivalent Euler equation

* _ * * _ o
Tyo=zT;—x —2,t=0,...,T =2

2
which together with the initial condition and the terminal conditions constitutes a mixed

initial-terminal value problem,

(

xIHngIH—xI—Z, t=0,...,2
.T4:1.

\

In order to solve problem @ we follow the method:

1. First, solve the Euler equation, whose solution is a function of two unknown constants

(k1 and ko next)
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2. Second, we determine the two constants (ki,ks) by using the initial and terminal

conditions.

First step: solving the Euler equation Next, we apply two methods for solving the
Euler equation: (1) by direct methods, using equation in the Appendix, or (2) solve it

generally by transforming it to a first order difference equation system.

Method 1: applying the solution for the second order difference equation ((60)

Applying the results we derived for the second order difference equations we get:
(e (Y Y (22 (Y (7)
e 37 T3\2 ! 37 3 \2 2

Method 2: general solution for the second order difference equation We follow

the method:

1. First, we transform the second order equation into a planar equation by using the
transformation y;; = ¢, Y2+ = x4+1. The solution will be a known function of two

arbitrary constants, that is y;; = (K1, k2).

2. Second, we apply the transformation back the transformation z; = y1+ = (k1 k)

which is function of two constants (k1 k2)

The equivalent planar system in y;, and ya; is

Y1t+1 = Y2t

_ 5
Y2041 = Y24 — Y10 — 2
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which is equivalent to a planar system of type y;+1 = Ay; + B where

0 1 0
Yt = th 3 A = ) B =
Yot -1 5/2 —2

The solution of the planar system is y; =y + PA'P~!(k —y) where y = (I — A)~'B that is

(4
y:
4
and
2 0 1/2 2 L [-2/3 43
0 1/2) 1 1) 2/3 —1/3
Then
yie) (4 N 120 2(5)"\ [ 2k —4) + d(ky — 4)
Yot 4 2t (L) 2(ky —4) — L(ky — 4)

If we substitute in the equation for x; = y;; and take the first element we have, again, the

general solution of the Euler equation (|7)).

Second step: particular solution In order to determine the (particular) solution of the
CV problem we take the general solution of the Euler equation , and determine k; and

ks by solving the system x;|;—o = 1 and x;|—4 = 1:

A+1x(ky—4)+0x (kp—4) = 1 (8)

4+ (—%24 + % (%)4> (ky —4) + @24 — ; (%)4) (ko —4) = 1 (9)

Then we get k; = 1 and ky = 38/17. If we substitute in the solution for x;, we get

* 3 t 48 t
7 =4- =2 - =(1/2)

Therefore, the solution for the calculus of variations problem is the sequence

N . 38 44 38
z :{Qf }?:O: {171_771_771_771}-
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Example 2: The cake eating problem Assume that there is a cake whose size at the
beginning of period ¢ is denoted by W; and there is a muncher who wants to eat it until the
beginning of period 7. The initial size of the cake is Wy = ¢ and, off course, W = 0 and the
eater takes bites of size Cy at period t. The eater evaluates the utility of its bites through a
logarithmic utility function and has a psychological discount factor 0 < g < 1. What is the
optimal eating strategy 7

Formally, the problem is to find the optimal paths C* = {C;} ' and W* = {W;}L,
that solve the problem

T
I?gfctz;ﬁt In(C}), subject to Wiy =Wy — Cy, Wy = ¢, W =0. (10)

This problem can be transformed into the calculus of variations problem, because C; =

Wi — Wi,
T

t _ : — —
mﬁxgﬁ In(W; — Wi41), subject to Wy = ¢, Wy = 0.

The Euler-Lagrange condition is:

Bt—l Bt

- + — 0.
Wt*—l - Wt* VVif)k - Wtﬂ-l

Then, the first order conditions are:

;

Wio=0+B8)Wi, =W, t=0,...T =2
Wo=¢

Wr =0

\

In the appendix we find the solution of this linear scone order difference equation (see

equation ({56)))

Wt*:ﬁ(—ﬁkl—l—b—l—(lﬁ—b)ﬁt),t:O,l...,T (11)
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0 Cake size
° i i i
e
0.6kE-
. N N
= e
. :
(] S e
N N e
‘ i i i
005 5 ] 6 8 0
t

Figure 1: Solution to the cake eating problem with 7= 10, ¢9 = 1, ¢7 = 0 and § = 1/1.03

which depends on two arbitrary constants, k1 and k. We can evaluate them by using the

initial and terminal conditions

Wg = ﬁ(_ﬁkl +ky+ (k1 — ko)) = ¢

Wi = —Bki + ko + (k1 — k)BT = 0.

Solving this linear system for k; and ks, we get:

_ _B=pT
k1_¢7 k2_1_/BT¢
Therefore, the solution for the cake-eating problem {C*}, {WW*} is generated by
* Bt _ BT

and, as Cf = Wy — Wy,

* 1_6 t _ _
Ct_<ﬁ>ﬁgb,t_0,1,...T 1 (13)
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2.2 Free terminal state problem

Now let us consider the problem

T-1

Hlan Z F(ItJrl, T, t)
t=0

subject to zg = ¢g and xr free (14)

where ¢y and T' are given.

Proposition 2. (Necessary condition for optimality for the free end point problem)
Let {x}}L, be a solution for the problem defined by equations (@ and . Then it verifies

the FEuler-Lagrange condition

aF(xZ‘,l';pt - 1) + aF(eraIfaf)

=0, t=1,2,...,T -1 15
Oxy Oxy ’ Y (15)

and the initial and the transversality conditions

ZL‘S = qbo,t:()
OF (zh,ah 1, T — 1)

895T

= 0, t="T. (16)

Proof. Again we assume that we know z* = {x}}L_, and V(z*), and we use the same method
as in the proof for the simplest problem. However, instead of equation the variation

introduced by the perturbation {g;}7_,is

T—2
OF (xf, xf ,,t—1 OF (x* 1 OF (z, ah_, T — 1
( (x7, 271, ) (zi, 77, )) , (x7, 274 >€T

v -vie) =3 (P

=1 a,I'T

because xp = zk + er and er # 0 because the terminal state is not given. Then V(x) —

V(2*) = 0 if and only if the Euler and the transversality conditions are verified. O



Paulo Brito Mathematical Economics, 2013/1) 15

Condition ([16)) is called the transversality condition. Its meaning is the following: if

the terminal state of the system is free, it would be optimal if there is no gain in changing
OF (zhx%_ |, T—1)

3 > 0 then we
T

the solution trajectory as regards the horizon of the program. If

could improve the solution by increasing x% (remember that the utiity functional is additive
OF (a3, T—1)

3 < 0 we have an non-optimal terminal state by excess.
T

along time) and if

Example 1 (bis) Consider Example 1 and take the same objective function and initial
state but assume instead that x4 is free. In this case we have the terminal condition associated

to the optimal terminal state,

20 — x5 —4=0.

If we substitute the values of x; and x3, from equation (7)), we get the equivalent condi-
tion —32 + 8k; + 16ks = 0. This condition together with the initial condition, equation
equation , allow us to determine the constants k; and ky as k; = 1 and ky = 5/2. If
we substitute in the general solution, equation (7)), we get z; = 4 — 3(1/2)". Therefore,
the solution for the problem is {1,5/2,13/4,29/8,61/16}, which is different from the path
{1,38/17,44/17,38/17,1} that we have determined for the fixed terminal state problem. O

However, in free endpoint problems we need sometimes an additional terminal condition

in order to have a meaningful solution. To convince oneself, consider the following problem.

Cake eating problem with free terminal size . Consider the previous cake eating
example where T' is known but assume instead that Wr is free. The first order conditions

from proposition are

(

Wt+2:(1+ﬁ)Wt+1_ﬁWt7 t:07177T_2

Wo=1¢

5T—1
\ Wr—Wr_, -
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If we substitute the solution of the Euler-Lagrange condition, equation , the transver-

sality condition becomes

ﬂTfl B /BTfl 1— 6 B 1
Wr —Wr_y B BT — BT ky — ko B ky — ko

which can only be zero if ky — k1 = co. If we look at the transversality condition, the last
condition only holds if Wy — Wp_; = oo, which does not make sense. ]
The former problem is mispecified: the way we posed it it does not have a solution for
bounded values of the cake.
One way to solve this, and which is very important in applications to economics is to

introduce a terminal constraint.

2.3 Free terminal state problem with a terminal constraint

Consider the problem

T-1
max » F(xyq,x,t)
=
subject to g = ¢g and xr > ¢r (17)

where ¢g, ¢r and T are given.

Proposition 3. (Necessary condition for optimality for the free end point problem with
terminal constraints)

Let {z;}I_, be a solution for the problem defined by equations (@ and . Then it verifies
the FEuler-Lagrange condition

aF(x;‘,k>$rfl7t - 1) 8F(Iz{+1,$:,t)
+
8[Et afL't

=0, t=1,2,...,.T—1 (18)
and the initial and the transversality condition

$8:¢0, t:O

OF (z#,xk._,, T—1) *
LT (4 a5) =0, t=T.
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Proof. Now we write V ({z}) as a Lagrangian

T-1

V({x}) = F(zes, o0, t) + Nor — 27)

t=0

where A is a Lagrange multiplier. Using again the variational method with ¢, = 0 and

er # 0 the different between the perturbed candidate solution and the solution becomes

T—2
OF (xr. o . t—1 OF (r* * ¢t
V(z) = V(") = Z( it 1) | OF (i, oi, >)gt+

=1 ﬁxt 8xt
OF (z%, ah_,, T — 1 .
fE T T2 N — - o)
X

From the Kuhn-Tucker conditions, we have the conditions, regarding the terminal state,
OF (xp, xp_, T — 1)

8ZL’T

—A=0, M¢r —27) = 0.

]

The cake eating problem again Now, if we introduce the terminal condition Wp > 0,

the first order conditions are
(

;;2:(1_'_5) t))ii-l_/BWtjt:[):l)"')T_Q

Wg=0o

BT*IW%

— =0.
\ Wr—Wr_4

If T' is finite, the last condition only holds if W} = 0, which means that it is optimal to eat
all the cake in finite time. The solution is, thus formally, but not conceptually, the same as

in the fixed endpoint case.

2.4 Infinite horizon problems

The most common problems in macroeconomics is the discounted infinite horizon problem.

We consider two problems, without or with terminal conditions.
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No terminal condition
max Z B F (441, 74) (19)
t=0
where, 0 < 5 < 1, g = ¢9 where ¢q is given.

Proposition 4. (Necessary condition for optimality for the infinite horizon problem)
Let {x}}2y be a solution for the problem defined by equation (19). Then it verifies the

Euler-Lagrange condition

8F($:’x:—1) +
@xt (93,}

and

*
Ty = Zo,

: _OF (a} 2}
hmt—>oo ﬁt 1 (xatg:’t ) 07
Proof We can see this problem as a particular case of the free terminal state problem

when 7" = oo. Therefore the first order conditions were already derived. 0

With terminal conditions If we assume that lim; ,. x; = 0 then the transversality

condition becomes

F
lim ﬁta

t—o00 axt t

Exercise: the discounted infinite horizon cake eating problem The solution of the

Euler-Lagrange condition was already derived as

1
Wt*:m(—6k1+k2+(k51_k2>ﬁt)7 t=0,1...,00

If we substitute in the transversality condition for the infinite horizon problem without

terminal conditions, we get

On(Wr, —Wy) BT t—1 11/ ¥ V=1 _ 1: gt 1-8 1
e W, S e I e e kT Rk
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which again ill-specified because the last equation is only equal to zero if ky — k; = o0.
If we consider the infinite horizon problem with a terminal constraint lim;_,., z; > 0 and
substitute, in the transversality condition for the infinite horizon problem without terminal

conditions, we get

. _ 81n(Wt,1 — Wt> . W —ﬁkl + kg
1 t—1 W _ l t —
dim 5 aw, T e — ke (1= ) (ks — k)

because lim;_,o, f° = 0 as 0 < 8 < 1. The transversality condition holds if and only if

ko = Bky. If we substitute in the solution for W;, we get

e )
i

The solution verifie the initial condition W = ¢q if and only if £y = ¢y. Therefore the

ﬁt:klﬁt, t:O,l,OO

solution for the infinite horizon problem is {W;}$2, where

* t
Wy = ¢of.
10 Cak?51ze
.
1 I v
0'00 50 100 150 200

Figure 2: Solution for the cake eating problem with 7' = oo, § = 1/1.03 and ¢y = 1
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3 Optimal Control and the Pontriyagin’s principle

The optimal control problem is a generalization of the calculus of variations problem. It
involves two variables, the control and the state variables and consists in maximizing a
functional over functions of the state and control variables subject to a difference equation
over the state variable, which characterizes the system we want to control. Usually the initial
state is known and there could exist or not additional terminal conditions over the state.
The trajectory (or orbit) of the state variable, x = {x;}L,, characterizes the state of a

system, and the control variable path u = {u;}._, allows us to control its evolution.

3.1 The simplest problem

Let T be finite. The simplest optimal control problem consist in finding the optimal paths

({uw*}, {x*}) such that the value functional is maximized by choosing an optimal control,
T-1

max flag, ug, t), 20

EOMICRT 20

subject to the constraints of the problem

(

1 = gz, u, t) t=0,1,...,T—1

To = qbo t=20 (21)

xT:(ZST t="1T

\
where ¢g, ¢r and T are given.

We assume that certain conditions hold: (1) differentiability of f; (2) concavity of g and
f; (3) regularityE]

Define the Hamiltonian function

Ht = H(wtwrta Ut,t) = f(xta ut7t> + ¢tg(xt7ut7t)

2That is, existence of sequences of * = {x1,2s,...,27} and of T = {Tuy,Us,...,ur} satisfying Ty =

%(x(t)/ug)ft + g(xg7ﬂt) - g(xgvll’g)
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where 1), is called the co-state variable and {1} = {1,}.' is the co-state variable path.

The maximized Hamiltonian

HY (1, 7) = masx Hy(ty, 31, )

is obtained by substituting in H; the optimal control, u; = u*(z¢, V).

Proposition 5. (Mazimum principle)
If x* and u* are solutions of the optimal control problem @— and if the former differ-
entiability and regularity conditions hold, then there is a sequence {1} = {1, }1_4" such that

the following conditions hold

OH?
= 0,t=0,1 T-1 22
aut ; y Ly ; ( )

OH;,,

= —— . t=0,...,T—-1 23
wt a$t+1 ) 3 ) ( )
x:—i-l = 9(33:, Uf, t) (24)
Ty = ¢r (25)

Proof. Assume that we know the solution (u*,z*) for the problem. Then the optimal value
of value functional is V* = V(z*) = ZtT;OI flar, uf,t).

Consider the Lagrangean

S

-1

L = g, u, t) + (g, ue, t) — T441)
0
—1

= Ht(¢t7xt7utat) — Ve Teq1

Gl

~
i
o

where Hamiltonian function is

Ht = H(wta T, ut7t) = f(xt’uht) + 1/}t<g(xt’ut7 t)' (27)
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Define
Gy = G(Beg1, T, up, Y, t) = H (W, T, g, t) — Yyigr.

Then

S
L

L= G(xp1, e, u, Y, t)

t

Il
o

If we introduce again a variation as regards the solution {u*, x*}T | ; = x} +€7, uy = uj +¢€!
and form the variation in the value function and apply a first order Taylor approximation,
as in the calculus of variations problem,

T-1
LN~ (G 3G, 9, , 52 0k
L=V _Z<3xt 8xt>€t+zaut Z

t=1

Then, get the optimality conditions

Gt _ o t—01,.. T—1

3ut

0G,

0, t=0,1,...,T—1

Oy

0G,—1  0G

—=0,t=1,...,T—1

oxy +8xt ’ Y

where all the variables are evaluated at the optimal path.

Evaluating these expressions for the same time period t =0,...,T — 1, we get
8C;t aHt af@fa”l‘i) ag(@a“fi)
= - LD g,
ouy ouy ou ou
0G, OH,;

x|k
= __mt—‘rl:g(xt?utat)_'rt—f—l:07

Oy 0,

which is an admissibility condition

oG, i 8Gt+1 _ a(Ht —wtxm) + aHt—i—l
afft+1 axt+1 8It+1 85Et+1

8f(x;€k+1a U’r—f—l: t+ 1)
= T ox

dg(x; ,ul ,t+1
+ Y1 90 G;H ) =0

Then, setting the expressions to zero, we get, equivalently, equations — O
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This is a version of the Pontriyagin’s maximum principle. The first order conditions
define a mixed initial-terminal value problem involving a planar difference equation.
If 9*H,;/0u? # 0 then we can use the inverse function theorem on the static optimality

condition
OH; _ 0f(ri,ui,t) | Dgluiui,t)
= + Uy
Ouy Ouy Ouy

to get the optimal control as a function of the state and the co-state variables as

=0

U: = h(l':, wh t)

if we substitute in equations and we get a non-linear planar ode in (¢, x), called
the canonical system,

OHY * *
¢t = Wtj_rll(xﬂrla h(‘rt+17¢t+lat+ 1)7t+ 1)7wt+17t+ 1)

x:—l—l = g(x:jkv h(ZE:, wta t)7 t)

(28)

where
OH} .y Of(xipy, W@y, Yeyr,t +1), 6+ 1) 09wy q, h(xy y, Ve, t + 1), 64+ 1)
= + Yy
8xt+1 8xt+1 axi&—i—l

The first order conditions, according to the Pontriyagin principle, are then constituted by

the canonical system plus the initial and the terminal conditions and .

Alternatively, if the relationship between u and v is monotonic, we could solve condition

OH;/Ou, = 0 for ¢, to get
Of (zfuit)

_ * * __L
Ve = q(u, 7 1) =~ gotrarn

Out

and we would get an equivalent (implicit or explicit) canonical system in (u, x)

oH;
* % _ t+1 * * * *
q(uy, o7, 1) = 55 (T ufy, Qe (W, o8, t 1), 64 1)

(29)
x:—f—l = 9(5177;, u;tkvt)
which is an useful representation if we could isolate w;1, which is the case in the next

example.
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Exercise: cake eating Consider again problem and solve it using the maximum

principle of Pontriyagin. The present value Hamiltonian is
Ht = ﬁt lIl(Ct) + wt(Wt - Ct)

and from first order conditions from the maximum principle

(

L = BHCH) T =ty =0,t=0,1,...,T—1

OHf
¢t: Wit :¢t+17 t:Oa7T_1

L =Wr—Cr t=0,...,T—1

Wi =0

Wp = ¢.

\

From the first two equations we get an equation over C, Cy, ;5" = f'*1C}, which is sometimes
called the Euler equation. This equation together with the admissibility conditions, lead to

the canonical dynamic system

/

= BCY

Wi, =Wy —Cr, t=0,....,T—1

\WJ = ¢.
There are two methods to solve this mixed initial-terminal value problem: recursively or
jointly.

First method: we can solve the problem recursively. First,we solve the Euler equation

to get
Cy = ki f3".

Then the second equation becomes

Wi = Wy — ki1 8t
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which has solution -

1_ t
Wt:kQ—klzﬁszkz—kll_é.
s=0

In order to determine the arbitrary constants, we consider again the initial and terminal

conditions Wy = ¢ and Wy = 0 and get

1-p

=TT

¢, k= ¢

and if we substitute in the expressions for C} and W} we get the same result as in the
calculus of variations problem, equations (13)-(12)).
Second method: we can solve the canonical system as a planar difference equation

system. The first two equations have the form y;,; = Ay; where

g 0
-1 1

A:

which has eigenvalues A\; = 1 and Ay = 3 and the associated eigenvector matrix is

0 1-8
11

P =

The solution of the planar equation is of type y, = PA'P 'k

;1 [o01-8 10 1 1-8 ko)
Wy 1=\ 1 1 0 g 1 0 ks
k18
k‘z—k‘lll__%t

3.2 Free terminal state
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Again, let T" be finite. This is a slight modification of the simplest optimal control
problem which has the objective functional subject to

I't_;'_l:g(f['t,ut,t) tZO,l,,T—l

To = ¢o t=20

where ¢q is given.
The Hamiltonian is the same as in the former problem and the first order necessary

conditions for optimality are:

Proposition 6. (Mazimum principle)
If {a*}YL, and {u*}L, are solutions of the optimal control problem (20)-(30) and if the
former assumptions on f and g hold, then there is a sequence {1} = {1} =} such that for

t=0,1,...,T—1

OH;
= 0,t=0,1 T-—1 31

aut ’ ) ’ ( )

OH},,

= —— t=0,...,T—-1 32

¢t a$t+1 ) 3 9 ( )
Ti = g(xpu,t) (33)
Yro1 = 0 (35)

Proof. The proof is similar to the previous case, but now we have for t =T

3.3 Free terminal state with terminal constraint
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Again let T' be finite and assume that the terminal value for the state variable is non-
negative. This is another slight modification of the simplest e simplest optimal control

problem which has the objective functional subject to

;

i1 = g(xg,u, t) t=0,1,...., T —1

\
where ¢ is given.
The Hamiltonian is the same as in the former problem and the first order necessary

conditions for optimality are

Proposition 7. (Mazimum principle)
If {o*}y and {u*}L, are solutions of the optimal control problem (20))-(36) and if the
former conditions hold, then there is a sequence v = {z/Jt}tT:_Ol such that fort =0,1,....,T —1

satisfying equations - and
walz’_f[‘ =0 (37)

The cake eating problem Using the previous result, the necessary conditions according

to the Pontryiagin’s maximum principle are

;

Cy = B/

U = Pi

S Wiy =W, — Cy
Wo = ¢o

\wal =0
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This is equivalent to the problem involving the canonical planar difference equation system

Cip1 = pC;
Wt+1 =W, - Ct
Wo = 9o
6T_1 _

\ C1—1

whose general solution was already found. The terminal condition becomes

BTfl BTfl 1
Cr_y - BTtk - k_l

which can only be zero if k; = oo, which does not make sense.
If we solve instead the problem with the terminal condition Wy > 0, then the transver-

sality condition is

W
Y A Wr = ﬁT lo—T =0
T-1
If we substitute the general solutions for C}; and W, we get
r-1 Wr _ 1 —k1+ (1 = B)ks N EBT
Cra 1-p k1 k1

which is equal to zero if and only if

1-p37

1-8"°

We still have one unknown k. In order to determine it, we substitute in the expression for

Wi

ko = ky

pt=p"
W, =k
t 1 1— 6 9
evaluate it at ¢ = 0, and use the initial condition Wy = ¢ and get
1-p
ki = —0¢.

Therefore, the solution for the problem is the same as we got before, equations —.
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3.4 The discounted infinite horizon problem

The discounted infinite horizon optimal control problem consist on finding (u*, z*) such that

max Y B f(z,u), 0< B <1 (38)
t=0

subject to
T = gz, ) t=0,1,...
To = ¢o t=0
where ¢ is given.
Observe that the functions f(.) and g(.) are now autonomous, in the sense that time does
not enter directly as an argument, but there is a discount factor 8¢ which weights the value
of f(.) along time.

The discounted Hamiltonian is

he = h(ze, ne,w) = f (g, Ye) + 1009 (e, we) (40)

where 7, is the discounted co-state variable.

It is obtained from the current value Hamiltonian as follows:

Hy = B'f(u, ) + g (e, wp)
= B (f(us, y) + meg(ye, we))
B'hy

where the co-state variable (n) relates with the actualized co-state variable (¢) as ¢, =
B'n;. The Hamiltonian h; is independent of time in discounted autonomous optimal control

problems. The maximized current value Hamiltonian is

hi = max hi (g, ey ug).
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Proposition 8. (Mazimum principle)
If o* = {2 }32, and {u*}2, is a solution of the optimal control problem (38)-(39) and if the
former regularity and continuity conditions hold, then there is a sequence {n} = {m:}:2, such

that the optimal paths verify
oh;

= 0,t=0,1 41
aUt ) Y ) 7OO ( )
n = ﬁ%,tzo,...,oo (42)
3$t+1

x:—&-l = 9@;“;@ (43)
lim By, = 0 (44)

t—o0
Proof. Exercise. O]

Again, if we have the terminal condition

lim x; > 0

t—o0

the transversality condition is

lim S'nxf =0 (46)
t—o0

instead of .

The necessary first-order conditions are again represented by the system of difference
equations. If 9%h;/Ou? # 0 then we can use the inverse function theorem on the static

optimality condition
on; _ 0f(i i) Dol i1
(9ut 8ut ! a'uft

to get the optimal control as a function of the state and the co-state variables as

=0

u: - h(l’:, nt)
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if we substitute in equations and we get a non-linear autonomous planar difference

equation in (n,z) (or (u,x), if the relationship between u and 71 is monotonic)

‘ZH—l’ mt+1:77t+1)) _|_ 3g($§+1:h(xf+1:nt+l))
Oxiy1 Mt+1 Ox¢y1

Ty = g(xy, h(zy,me))

plus the initial and the transversality conditions and or .

Exercise: the cake eating problem with an infinite horizon The discounted Hamil-
tonian is

he = In (Cy) + n,(Wy — Cy)

and the f.o.c are

(Ct =1/m

Ne = B

Wi =W, = Cy
Wo = 9o

\limHoo Bin W, =0

This is equivalent to the planar difference equation problem

e
Wit = Wi — C,
Wo = oo

klimt_>OO Bt% =0

If we substitute the solutions for C; and W, in the transversality condition, we get

W =k (1= Bk + k" k(1= Bk
R (TN T
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if and only if &y = (1 — §)ks. Using the same method we used before, we finally reach again

the optimal solution

Cr=(1-p8)pp", W} =9¢p", t=0,1,...,00.

Exercise: the consumption-savings problem with an infinite horizon Assume that
a consumer has an initial stock of financial wealth given by ¢ > 0 and gets a financial return

if s/he has savings. The intratemporal budget constraint is
Wt+1 = (1+T)Wt—0t, t:(),l,

where r > 0 is the constant rate of return. Assume s/he has the intertemporal utility

functional

- 1
J(C) =) B'In(Cy), 0<5:m<1, p>0

t=0

and that the non-Ponzi game condition holds: lim; .. W; > 0. What are the optimal
sequences for consumption and the stock of financial wealth ?
We next solve the problem by using the Pontriyagin’s maximum principle. The discounted
Hamiltonian is

he =1In (Cy) +n: (1 4+ )Wy — Cy)

where 7, is the discounted co-state variable. The f.o.c. are

;

Ce=1/m,

me = B(1+7)0e

Wi =0Q+rW, -G,
Wo = ¢o

limy o 5t77tWt =0
\
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which is equivalent to

(1 = 50,
Wi =W, =Gy
Wo = ¢o

[ limysec BrEE=0

If we define and use the first two and the last equation

Z:%
t—Ct

we get a boundary value problem

1 1
2o =5 (20— 15)
limt_wo /BtZt = 0.

The difference equation for z; has the general solutionlﬂ

1 B 1
%_(h‘u+mu—m)5 LTSS

We can determine the arbitrary constant k by using the transversality condition:

1 . 1 B
T R ((Hr)(l—ﬁ))‘
1
- k- —
a5 "
which is equal to zero if and only if
1
CCraaa

3The difference equation is of type x;,1 = ax; + b, where a # 1 and has solution

b : b
mt_(k_la)a +17a

where k is an arbitrary constant.

33
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Then, 2z, = 1/((1+7r)(1 — B)) is a constant. Therefore, as C; = W;/z the average and

marginal propensity to consume out of wealth is also constant, and
Cf =1 +7)1=B)W,.
If we substitute in the intratemporal budget constraint and use the initial condition

Wi = (1+r)WF —=Cf
Wg=¢

we can determine explicitly the optimal stock of wealth for every instant

Wy =¢(B(1+r)) = Gi;) L t=0,1,...,00

and

1 t
Cf=(1+r)(1—ﬁ)<1i;> ,t=0,1,...,00.

We readily see that the solution depends crucially upon the relationship between the rate

of return on financial assets, » and the rate of time preference p:

1. if r > p then lim; o W/ = oco: if the consumer is more patient than the market s/he

optimally tends to have an abounded level of wealth asymptotically;

2. if r = p then lim;_,, W} = ¢: if the consumer is as patient as the market it is optimal

to keep the level of financial wealth constant. Therefore: C} = rW,; = r¢;

3. if r < p then lim; ,,, W = 0: if the consumer is less patient than the market s/he

optimally tends to end up with zero net wealth asymptotically.

The next figures illustrate the three cases
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Figure 3: Phase diagram for the case in which ¢ > r
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Figure 5: Phase diagram for the case in which ¢ < r

36

Observe that although s/he may have an infinite level of wealth and consumption, asymp-

totically, the optimal value of the problem is bounded

then

J*

> B (C =
t=0

}:ﬁm«1+ﬂﬂ—6ﬂml+ﬂYJ

Zﬁtln((l—l—r (1-p +Zﬁtln

t=0

1-p
B
7= ([aena - )

which is always bounded.

1+r))t)

In((1+7)(1—p))+m(B(1+r)) Ztﬁt =

5 In(6(1 +7))
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4 Optimal control and the dynamic programming prin-
ciple

Consider the discounted finite horizon optimal control problem which consists in finding

(u*, z*) such that
T
maxZﬁtf(xt,ut), 0<p<1 (47)
=0

subject to
i1 = gz uy) t=0,1,..., 7T —1
(48)
o = ¢0 t=20

where ¢ is given.

The principle of dynamic programming allows for an alternative method of solution.

According to the Principle of the dynamic programming (Bellman| (1957))) an op-
timal trajectory has the following property: in the beginning of any period, take as given
values of the state variable and of the control variables, and choose the control variables

optimally for the rest of period. Apply this methods for every period.
4.1 The finite horizon problem

We start by the finite horizon problem, i.e. T finite.

Proposition 9. Consider problem —@ with T finite. Then given an optimal solution

the problem (z*,u*) satisfies the Hamilton-Jacobi-Bellman equation

Vi_(xy) = max {f(ze,u) + BVr—i—1(z1)}, t=0,..., T — 1. (49)
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Proof. Define value function at time 7

VT T xT Zﬁt Tf utaxt - maX Zﬁt Tf utwrt

t"t‘r

Then, for time 7 = 0 we have

Vr(wg) = max Zﬁf (e, ) =

{ut}t 0 ¢+=0
= {max (f(xo,u0) + Bf (w1, wr) + B2 f(w9,u9) +...) =
T
— {m&FX <f(x0,u0) + 625t_1f(xt, ut)> -
Utit=0 t=1

uttltl

— max (f(xo,u(]) + max Zﬂt LE( xt,ut)>
U
by the principle of dynamic programming. Then
Vr(zo) = %%X {f(zo,uo) + BVr_1(z1)}

We can apply the same idea for the value function for any time 0 < t < T to get the equation

(49)) which holds for feasible solutions, i.e., verifying z;11 = g(z¢, u;) and given . m

Intuition: we transform the maximization of a functional into a recursive two-period
problem. We solve the control problem by solving the HIJB equation. To do this we have to
find {Vr,...,Vy}, through the recursion

Viga (z) = max {f(z, u) + BV (g(z,u))} (50)

Exercise: cake eating In order to solve the cake eating problem by using dynamic pro-
gramming we have to determine a particular version of the Hamilton-Jacobi-Bellman equa-

tion . In this case, we get

VTft(Wt) = Il’lCaX { hl(Ct) + /BVTftfl(Wt+l)} y t= O, 1, . ,T — 1,
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To solve it, we should take into account the restriction Wy, = W, — C; and the initial and
terminal conditions.
We get the optimal policy function for consumption by deriving the right hand side for

C; and setting it to zero

ac, {In(Cy) + BVr_t 1 (W)} =0

From this, we get the optimal policy function for consumption
Ot = (Wi (W) = CulWWisa).
Then the HJB equation becomes
Vr—:(Wy) = In(Cy(Wigr)) + BVr—p1(Wisa), t=0,1,..., T — 1 (51)

which is a partial difference equation.

In order to solve it we make the conjecture that the solution is of the type

1— pT-t
1-p

where Ar_; is arbitrary. We apply the method of the undetermined coefficients in order to

VTft(Wt):ATft—i— < )hl(Wt)? t:0>1a7T_1

determine Ap_;.

With that trial function we have

% / -1 1 — 5
Cy = <5VT—t—1(Wt+1)> = (W) Wip, t=0,1,...., 7 =1
which implies. As the optimal cake size evolves according to W1 = W, — Cf then
B—pr

which implies

. 1-6
Ct - <1_—6T_t>wt7 t:O,]_,,T—]_
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This is the same optimal policy for consumption as the one we got when we solve the problem
by the calculus of variations technique. If we substitute back into the equation we get

an equivalent HJB equation

1— T—t
Ar_y + (%) In W, =

B _ aT—t—1 _ ATt
In (11_—55_75) +InW,+ 6 {ATtl + (%) {hl (f_—g’l“—t) +1n Wt} }

As the terms in In W, cancel out, this indicates (partially) that our conjecture was right.

Then, the HJB equation reduces to the difference equation on A;, the unknown term:

1-5 BB\, (B=8"
Aﬁﬁﬁ%w4+mGtﬁﬁ>+(1—5)m(vﬂTJ

which can be written as a non-homogeneous difference equation, after some algebra,

Ap_y = BAp_1—1 + 204 (53)

where
T—t B— T—t

1-3 8
(=8 T (s T
Ar—t = 1— BTt 1-8

In order to solve equation , we perform the change of coordinates 7 =T — ¢ and oberve

that Ap_r = Ag = 0 because the terminal value of the cake should be zero. Then, operating

by recursion, we have

AT = ﬂAr—l_l'ZT:

= 6 (BAT—Q + ZT—l) + 2 = /82AT—2 + 2r + /BZT—I =

= BTAo+ 2z + B2+ ...+ 82

-
= Z B2 _s.
s=0
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Then

T—t 1-8 _ﬁlT:gFS B— 6T7tfs B_ﬁf:;;is
=L (=) T (55
s=0

If we use terminal condition Ay = 0, then the solution of the HJB equation is, finally,

s_gT—t s+1_ T —t

T—t 1-3 L B — gr-t=s =
VT7t<Wt) = In g (1 — BT_t_S) ( 1-0 ) *
I _
+(W) In(W,), t=0,1,...,7 — 1 (54)

We already determined the optimal policy for consumption (we really do not need to deter-
mine the term Ar_, if we only need to determine the optimal consumption)

[ 1-8 (=B N,
i (F ) (1) oo,

because, in equation we get

1— ﬂTft
Wt = 6 (W) Wtfl =

1— ﬂT_t 1 — ﬁT—(t—l) 1— BT_t
-7 (W) & (W) Wi—s = 57 (W) Wig =
.. o
- Bt (%) W

and WO = qb

4.2 The infinite horizon problem

For the infinite horizon discounted optimal control problem, the limit function V' = lim;_, ., V;

is independent of j so the Hamilton Jacobi Bellman equation becomes

V(w) = ma { (o) + BVlg(o, w)]} = max H(z, )



Paulo Brito Mathematical Economics, 2013/1) 42

Properties of the value function: it usually hard to get the properties of V(.). In
general continuity is assured but not differentiability (this is a subject for advanced courses

on DP, see Stokey and Lucas| (1989)).

If some regularity conditions hold, we may determine the optimal control through the

optimality condition
OH (z,u)
ou

if H(.) is C? then we get the policy function

=0

which gives an optimal rule for changing the optimal control, given the state of the economy.
If we can determine (or prove that there exists such a relationship) then we say that our

problem is recursive.

In this case the HJB equation becomes a non-linear functional equation

V() = f(x,h(z)) + BV g(z, h(x))].

Solving the HJB: means finding the value function V(). Methods: analytical (in some

cases exact) and mostly numerical (value function iteration).

Exercise: the cake eating problem with infinite horizon Now the HJB equation is
V(W) = max {m (C) + ﬁV(W)} ,

where W = W — C. We say we solve the problem if we can find the unknown function
V(W).
In order to do this, first, we find the policy function C* = C(W), from the optimality

condition
O{In (C) + V(W - C)} _l_ p B B
50 = gV (W —=C) =0.
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Then
1

SV W= (O)
which, if V' is differentiable, yields C* = C'(W)).

Then W =W — C'(W) = W(W) and the HJB becomes a functional equation

O*

V(W) = In (C*(W)) + BV W (W)].
Next, we try to solve the HJB equation by introducing a trial solution
V(W) =a+bln(W)

where the coefficients a and b are unknown, but we try to find them by using the method
of the undetermined coefficients.

First, observe that

1
¢ = 1508
b
W= 1+b8

Substituting in the HJB equation, we get

a+bln (W) —ln(W)—ln(l—l—bﬁ)—i—B<a+bln(1f_ﬁbﬁ) —i—bln(W)),

which is equivalent to

b(1=p6)—1)In(W)=a(f—1)—In(1+b8)+ Sbln (1 iﬁﬁ)

We can eliminate the coefficients of In(W) if we set

Then the HJB equation becomes

o:aw—w)—m<1i5>+1_6hwm
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then

Then the value function is

1

VW) = =

In (W), where x = (8°(1 — B)l_ﬁ)l/(l_ﬁ) .

and C* = (1 — B)W, that is
C: = (1 o ﬁ)th

which yields the optimal cake size dynamics as
Wia =W, = Cf = Wy

which has the solution, again, W;* = ¢(".

5 Bibliographic references

(Ljungqvist and Sargent| 2004, ch. 3, 4) (de la Fuente, 2000, ch. 12, 13)
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A Second order linear difference equations
A.1 Autonomous problem
Consider the homogeneous linear second order difference equation
Tip2 = Q12441 + Ao,

where ag and a; are real constants and ag # 0.

The solution is

A —ay,  ar— A (M —a)Da—ar) v
— A Ao ke — A=)k
B ()\1 — X! - A=A 2 ' ao(A1 — A2) ( ' 2) ’

where k; and ky are arbitrary constants and

a a2 1/2
b= 3o |(5)

v gl

46

(55)

(58)

Proof: We can transform equation into an equivalent linear planar difference equation

of the first order, If we set y; + = 2+ and yo+ = 2441, and observe that y; ;11 = 2, and equation

(55) can be written as ys ;11 = agy1s + a1Y2..-
Setting
Y1t 0 1
Yot ap a1

we have, equivalently the autonomous first order system

which has the unique solution
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where P and A are the eigenvector and Jordan form associated to A, k = (ki, k)" is a
vector of arbitrary constants.

The eigenvalue matrix is
A0

0 A

and, because ag # 0 implies that there are no zero eigenvalues,

(A1 —a1)/ag (A2 —a1)/ag
1 1

P

As x; = y1; then we get equation (56)).

A.2 Non-autonomous problem

Now consider the homogeneous linear second order difference equation
Ty = A1 X441 + apxs + b (59)

where ag, a; and b are real constants and ag # 0.

Case: 1 —a; —ag#0 If 1 —a; —ag # 0 the general solution is

_ )\1 — aq t ap — AQ t _ ()\1 — al)()\Q — a1> . . ~
SR v wee el v wiocl NGl R M= X)) (ky — 7) (60
T x+(/\1_>\2 1‘i‘>\1_)\2 5 | (k1 —7) 00 — ) (AL =) (k2 —Z) (60)

where

_ b
I=——
1—ag—ag
is the steady state of equation (59)).

Proof: If we define z; = x; — = then we get an equivalent system y, 11 —y = Ay, — ¥),

where y = (Z,7)" which has solution y; — y = PA'P~!(k — y).
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Case: 1 —a; —ag=0 If 1 —a; —ag=0 then the general solution of equation

2= ki + ha(ag = 1)" b (%)

48
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