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How to reach me

• Gianluigi Del Magno
• Office 511 (floor 5), Quelhas Building
• Phone: 21 3925874
• email: delmagno@iseg.utl.pt
• Office hours: Thursday 16-18, and Friday 15-17
• Reference text: Shone, Economic Dynamics; Hale and Kocak,

Dynamics and Bifurcations

Warning

These notes are in a very preliminary form. Read them notes with
some caution, as they are likely to contain mistakes and typos. Cor-
rections are greatly appreciated. Each section of these notes contains
exercises. Some extra exercises can be found in the very last section.

1. Introduction

This part of the course concerns differential equations and difference
equations. These equations are used to model dynamical processes,
e.g., the evolutions of quantities changing in time. If the time is a
continuous variable, then the process is modeled by an ordinary differ-
ential equation (ODE), whereas if the time is a discrete variable, then
the process is modeled by a difference equation (DE).

Example 1.1 (Compound interest). If an amount A is compounded
annually at the interest rate r, then the payment after t = 1, 2, . . . years
is given by

Pt = A(1 + r)t.

We see immediately that Pt satisfies the equation:

Pt+1 = (1 + r)Pt.

This equation is recursive equation (or a difference equation), because
given Pt+1 can be computed given Pt.
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Now, if the same amount A is compounded continuously m times
each year, then we get

Pt = Aert.

If we think of t as a continuous variable and not just the number of
years, then Pt is a solution of the equation

dPt
dt

= rPt,

which is a differential equation, because it involves the derivative dPt/dt.

The subject of the differential equations and the difference equation
is extensive. These notes focus on a part of the theory of these equa-
tions that is called ‘qualitative analysis’. The aim is to obtain as much
as possible information about an ODE or a DE without looking for
explicit solutions.

2. Scalar ODE’s

2.1. Notation. In the following, the symbol x denotes a real-valued
differentiable function x : I → R on an open interval I = (a, b) of R
with −∞ ≤ a < b ≤ +∞, whereas the symbol f denotes a real-valued
continuous function f : R→ R. We will use often the notation ẋ(t) to
denote the derivative dx/dt.

An ordinary differential equation (ODE) is an equation relating sev-
eral quantities: i) a function t 7→ x(t), ii) some derivatives of x(t), iii)
the independent variable t, and iii) other functions of t. The general
form of a scalar ODE is the following:

(1) ẋ(t) = f(t, x(t)) for t ∈ I,
where x : I → R is an unknown function. Equation (5) is called a
scalar ordinary differential equation. The term ‘scalar’ means that x(t)
is 1-dimensional (x ∈ R). A function x that satisfies relation (5) is
called a solution of the differential equation (5).

Most of the time, we will be interested in solutions of (5) such that
x(t0) equals a specific value x0 ∈ R for a specific t0 ∈ R. The problem
consisting in finding such a solution is called an initial value problem,

ẋ = f(t, x(t)), x(t0) = x0.

Example 2.1. Here are some examples of ODE’s:

(1) dx/dt = −3x+ 4 + e−t,
(2) d2x/dt+ 4tdx/dt− 3(1− t2)x = 0,
(3) dx/dt+ 3tx = ex.

Some terminology:

• the order of a differential equation is the order of the highest
derivative appearing in the equation.
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• an nth linear differential equation is an equation of the form:

dnx

dtn
+ a1(t)

dn−1x

dtn−1
+ · · ·+ an(t)x = b(t),

where a1, . . . , an and g are continuous functions depending only
of t. If a1, . . . , an are constant, then the equation is called a
linear differential equation with constant coefficients. If g ≡ 0,
then the equation is called homogeneous, otherwise it is called
non-homogeneous.
• a differential that is not linear is called nonlinear.

Accordingly to the terminology introduced earlier, example (1) is a
first order non-homogenous linear differential equation with constant
coefficients, example (2) is a second order homogenous linear differen-
tial equation, and finally example (3) is a first order nonlinear differ-
ential equation.

2.2. First order linear differential equations. A first order linear
differential equation can be always written in the following form:

(2) ẋ(t) + a(t)x(t) = b(t).

To find the solutions of this equation, we use the method of the
integrating factor. By multiplying both sides of the equation by α(t) :=
e
∫
a(t)dt (integrating factor), we obtain

α(t)ẋ(t) + α(t)a(t)x(t) = b(t)b(t).

Because of the properties of the exponential, we have db/dt = α(t)a(t).
Then, the previous equality can be written as follows,

d

dt
(α(t)x(t)) = α(t)b(t).

Now, we integrate both sides with respect to t, and obtain

α(t)x(t) =

∫
α(s)b(s)ds+ c,

where c is the integration constant. The any solution of (2) is given by

(3) x(t) =
1

α(t)

(∫
α(s)b(s)ds+ c

)
,

for some constant c. The expression (3) is called the general solution
of (2).

2.3. First order linear equation with constant coefficients. Con-
sider a differential equation as in (2) with a(t) ≡ a and b(t) ≡ b for
some constants a and b

(4) ẋ+ ax = b.
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In this case, the integrating factor is α(t) = e
∫
adt. We can take

α(t) = eat, and so
∫
α(s)b(s)ds = eatb/a if a 6= 0, and

∫
α(s)b(s)ds = bt

otherwise. From (3), the general solution is then given by

x(t) =

{
b
a

+ ce−at if a 6= 0,

bt+ c if a = 0.

If x(0) = x0, then c = x0 − b/a if a 6= 0, and c = x0 otherwise. Hence

x(t) =

{
e−at

(
x0 − b

a

)
+ b

a
if a 6= 0,

bt+ x0 if a = 0.

is the solution with the initial condition x(0) = x0.

Example 2.2 (Price adjustment demand and supply model). Consider
the following linear model for demand-price and supply-price relations:

(1) qd = A+Bp and qs = C +Dp with B < 0 and D > 0,
(2) price adjustment equation: ṗ = E(qd − qs) with E > 0.

Putting all together, we get

ṗ = E(B −D)p+ E(A− C).

Comparing with (4), we see that a = −E(B−D) > 0 and b = E(A−C).
So

p(t) = e−at
(
x0 −

b

a

)
+
b

a
with

b

a
=
A− C
D −B

.

It follows that

lim
t→+∞

p(t) =
A− C
D −B

independently of x0.

2.4. Scalar autonomous differential equation. We are interested
in equations of the form

(5) ẋ(t) = f(x(t)) for t ∈ I,
where x : I → R is an unknown function (in particular, the interval I
is unknown). Equation (5) is called a scalar autonomous differential
equation. ‘Autonomous’ means that f does not depend explicitly on t.

As before, we are interested in the solutions of the initial value prob-
lem:

(6) ẋ = f(x), x(t0) = x0.

The equation (5) has the following mechanical interpretation: if x(t)
denotes the position of a point-particle on the real line R, then ẋ(t) is
the instantaneous speed of the particle. Thus the first part of (6) says
that the value of the speed of the particle at time t is equal to f(x(t)),
and so it depends on its position. The second part of (6) says that the
position of the particle at time t0 is equal to x0.
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Remark 2.3. Note that if x(t) is a solution of (6), then if we define
x̄(t) = x(t + t0), then x̄ is a solution of (6) with x̄(0) = x(t0) =
x0 (Check it). For this reason, we could always take t0 = 0 in (6).
From the geometrical point of view, the transformation x(t) 7→ x(t+ t0)
corresponds to translate the graph of x along the t-axis to the left by a
length t0.

2.5. Separation of variables. To solve problem (6), we can argue as
follows.

We consider separately two cases: 1) f(x0) = 0, and 2) f(x0) 6= 0.

Case 1: According to our mechanical model, f(x0) = 0 mens that
the velocity of the particle has to be zero when the particle is at x0.
But this implies that the particle cannot moves away and changes its
position. Therefore out mechanical model suggests that the function
x(t) = x0 for every t ∈ R has to be the wanted solution. To check that
this is correct is easy. In fact, ẋ(t) = 0 and x(0) = x0.

Case 2: Since f is continuous, we have f(x) 6= 0 around x0, and so
as long as t is closed to 0, we can divide both sides of (6) by f(x(t)).
Hence,

ẋ(t)

f(x(t))
= 1.

We then integrate both sides of the previous equation from 0 to t (with
t not too far from 0), ∫ t

0

ẋ(s)

f(x(s))
ds = t,

and by substitution u = x(s), we obtain

(7)

∫ x(t)

x0

du

f(u)
= t.

Since f(x0) 6= 0 and f is continuous, then f(u) > 0 for u ∈ (x0, x(t))
or f(u) < 0 for u ∈ (x0, x(t)) (we are assuming that x(t) > x0, but the
argument remains the same if x(t) < x0). It follows that the function

F (z) :=

∫ z

x0

du

f(u)

is strict monotone. But F (x(t)) is precisely the left-hand side of (7).
So if F−1 is the inverse of F , then we see that the solution x(t) of (7)
(for t close to 0) is given by x(t) = F−1(t) (verify that this is indeed a
solution of (6)).

Exercise 2.4. Solve the following initial value problem using the method
of separation of variables. Plot the solutions. Is the solution unique in
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Ix0

x0

x(t)

0 t

Figure 1. Solution x(t, x0) on the interval Ix0

exercise (c)?

a) ẋ = −x x(0) = 1.

b) ẋ = x2 x(0) = −1.

c) ẋ =
√
x x(0) = 0.

d) ẋ = x(1− x) x(0) = 1.

2.6. Existence and uniqueness of solutions.

Definition 2.5. The symbol C0 denoted the sets of all continuous func-
tions f : R → R, and the symbol C1 denotes the subset of C0 of all
differentiable functions with continuous derivatives f : R→ R.

As explained in Remark 2.3, there is no loss of generality in assuming
that t0 = 0. So, unless specified otherwise, we take t0 = 0 from now
on.

Theorem 2.6. (1) Suppose that f ∈ C0. Then for every x0, there
exist an interval (possibly infinite) Ix0 = (ax0 , bx0) containing
t0 = 0 and a solution x : Ix0 → R of the initial value prob-
lem (6).

(2) Suppose that f ∈ C1. Then in addition to (1), the solution x is
unique and differentiable with continuous derivative.

The largest possible interval Ix0 is called the maximal interval of
existence of the solution (see Fig. 1). We will use the notation x(t, x0)
to denote the solution of (6) with x(0) = x0.

2.7. Phase portrait.

Definition 2.7. Let x0 ∈ R, and let x(t, x0) be the solution with initial
condition x0. The set γ(x0) =

⋃
t∈(ax0 ,bx0 )

x(t, x0) is called the orbit of

x0. The collection of the orbits of all points x0 ∈ R is called the phase
portrait of (5).

Definition 2.8. A point x̄ ∈ R is called an equilibrium point of (5) if
f(x̄) = 0.
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Suppose that x(t, x0) = x0 for every t ∈ R. Then the orbit γ(x0)
consists of the single point {x0}. If x(t, x0) ≡ x0, then x0 has to be an
equilibrium point.

Exercise 2.9. Determine the phase portrait of the following differential
equations. Note that f ∈ C1 in each example so that the existence and
uniqueness of the initial value problem is guaranteed by Theorem 2.6.

(1) ẋ = x,
(2) ẋ = x− x3,
(3) ẋ = 1 + x,
(4) ẋ = x(1− x),
(5) ẋ = −x+ x3 + λ with λ ∈ R,
(6) ẋ = 1− sinx.

2.8. Equilibrium points and their stability.

Definition 2.10. An equilibrium point x̄ ∈ R of (5) is stable if for
every ε > 0, there exists δ > 0 such that if |x0 − x̄| < δ, then the
solution x(t, x0) of (5) satisfies |x(t, x0)− x̄| < ε for every t ≥ 0.

Definition 2.11. An equilibrium point x̄ ∈ R of (5) is asymptotically
stable if it is stable, and there exists r > 0 such that if |x0 − x̄| < r,
then limt→+∞ x(t, x0) = x̄.

Definition 2.12. An equilibrium point x̄ ∈ R of (5) is called unstable
if it is not stable.

The following theorem is a stability criterion for equilibria in terms
of the derivative of f .

Theorem 2.13. Suppose that f ∈ C1 and x̄ ∈ R is an equilibrium
point of (5).

(1) If f ′(x̄) < 0, then x̄ is asymptotically stable.
(2) If f ′(x̄) > 0, then x̄ is unstable.

An equilibrium point x̄ is called hyperbolic if f ′(x̄) 6= 0, and non-
hyperbolic if f ′(x̄) = 0.

Remark 2.14. Note that Theorem 2.13 does not say anything when
the equilibrium point x̄ is not hyperbolic. In this case, one should look
at higher order derivatives of f at x̄. For example, try to determine
the stability of the equilibrium point of ẋ = x3.

Exercise 2.15. Determine the type (hyperbolic or non-hyperbolic) and
the stability of the equilibria in Exercises 2.9.

The next lemma summarizes the main properties of the solution
x(t, x0), and can be proved by using phase portrait analysis.

Lemma 2.16. The solution x(t, x0) has the following properties:

(1) x(t, x0) is monotone in t,
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(2) x(t, x0) is increasing in x0, i.e, x(t, x0) < x(t, y0) if x0 < y0,
(3) if x(t, x0) is bounded for every t ≥ 0 (t ≤ 0), then bx0 = +∞

(ax0 = −∞) and limt→+∞ x(t, x0) = x̄ (limt→−∞ x(t, x0) = x̄)
with x̄ being an equilibrium point (i.e., f(x̄) = 0).

2.9. Linear ODE’s. Let a, b ∈ R. Consider the linear differential
equation

(8) ẋ = ax+ b.

The equation is called linear homogeneous if b = 0, and linear non-
homogeneous if b 6= 0.

To obtain the solution x(t, x0) of (8) satisfying the initial condition
x(0) = x0, one may argue as follows. If a = 0, then (8) becomes
ẋ = b, and by integrating both side of this equation from 0 to t, we
immediately obtain

x(t, x0) = x0 + bt.

Now, suppose that a 6= 0. Since f(x) = ax + b, the equation has
a unique one equilibrium point x̄ = −b/a. If we define y(t, y0) =
x(t, x0)− x̄, then ẏ = ẋ = ax+ b = a(x− x̄) = ay. The solution ẏ = ay
satisfying y(0) = y0 is equal to y(t, y0) = y0e

at. But y0 = x0 − x̄, and
so we can conclude that x(t, x0) = y(t, y0) + x̄ = (x0 − x̄)eat + x̄, i.e.,

(9) x(t, x0) =

(
x0 +

b

a

)
eat − b

a
.

(Find the same solution using the method of separation of variables
explained in Subsection 2.5)
Examples.

(1) Suppose that a = 0. The next figure depicts the solutions
x(t, 10) for b = 2 (red) and the solution x(t, 20) for b = 0
(blue).

-10 -5 5 10
t

-10

10

20

30
x

(2) Suppose that a = 2 and b = 1. Then x̄ = −1/2 is the
(unique) equilibrium point, and the solutions x(t, 1), x(t,−1)
and x(t,−1/2) computed using (9) are depicted in the figure
below.
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2.10. Additional exercises.

(1) Assume that a population p(t) grows at a constant rate k. This
means that p(t) satisfies the following differential equation:

ṗ(t) = kp(t).

Find the solution p(t, p0), determine the phase portrait of the
equation and the stability of its equilibrium point.

(2) According to a continuos version of the Harrod-Domar economy
growth model, the relation between the savings S, the income
Y and the investment I is given by

S = sY, I = νẎ , I = S,

where s and ν are constants denoting the average propensity
to save and the coefficient of the investment relationship, re-
spectively. Derive and solve the differential equation for Y (t).
Determine its phase portrait and the stability of its equilibrium
point.

(3) Prove the claim in Remark 2.3.
(4) Prove Lemma 2.16.

3. Scalar DE’s

Difference equations (DE’s) are the analog of differential equations
when the time is a discrete variable n = 0, 1, . . .. Let f : R → R be a
C1 real-valued function.

Example 3.1. The following is an example of a difference equation
arising from a financial problem.

Let pn be the price of some financial assets at time n = 0, 1, 2, . . ..
Suppose that the variation of pn in time is given by the following arbi-
trage condition:

(10) (1 + r)pn = d+ pen+1,

where r > 0 is the rate of return, d > 0 is the dividend, and pen+1 is
the expected price at time n + 1. Suppose also that the agents have
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perfect foresight, i.e., they know that the mechanism of price formation
is given by the following relation

(11) pen+1 = pn+1.

We want to determine how pn varies in time.
By combining (10) and (11), we obtain a difference equation for pn

only:

(1 + r)pn = d+ pn+1.

This equation can be written as

pn+1 = F (pn), where F (p) = (1 + r)p+ d.

This is the DE describing the evolution of pn.

3.1. General form. A scalar DE is a recursive equation of the form:

(12) xn+1 = Fn(xn) for n = 0, 1, . . . ,

where Fn is a sequence of functions from R to R. If Fn = F for every
n, then we say that the DE is autonomous. Otherwise, we say that
DE is not autonomous. Equation (12) is called a difference equation,
because it can be written in such a way that its right-hand side can be
rewritten as a difference:

xn+1 − xn = Fn(xn)− xn.

3.2. Autonomous DE’s. A DE is called autonomous if Fn = F for
every n = 0, 1, . . .. In this case, (12) becomes

(13) xn+1 = F (xn) for n = 0, 1, . . . .

If F is continuous, then we can define

F n = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
n times

,

and the solution of (13) with the initial condition x0 = z is

xn = F n(z).

When such a solution exists, it is clear that it is also unique.

Definition 3.2. The union of all elements x0, F (x0), F
2(x0), . . . is

called the positive orbit of x0, and is denoted by γ+(x0).

Remark 3.3. Although the initial value problem xn+1 = F (xn) with
x0 = z has a unique solution, it may be possible for two solutions to
coincide from some time on. This is not possible for ODE’s (why?).
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3.3. Linear DE’s. A linear difference equation is an equation of the
form:

(14) xn+1 = axn + b, a, b ∈ R.
The equation is called homogeneous if b = 0, and non-homogeneous if
b 6= 0.

Solutions of these equations can be computed explicitly. Note first
that Equation (14) has a (unique) fixed point x̄ = b/(1−a) if and only
if a 6= 1. The orbit of (14) is given by

(15) xn =

{
x0 + nb if a = 1,

an(x0 − x̄) + x̄ otherwise.

This includes the case a = 0 for which the orbit consists of the fixed
point x̄ = b.

3.4. Terminal value problem. If F : R → R is a bijection, then
F−1 : R→ R is well defined, and we can consider another DE generated
by the map F−1:

(16) xn = F−1(xn+1) for n = 0, 1, . . . .

In this case, we can consider the terminal value problem, which consists
in solving (16) with the terminal value condition xm = z for some
m ∈ N.

3.5. Examples.

(1) linear F (x) = ax+ b with a, b ∈ R,
(2) quadratic (logistic): F (x) = ax(1− x) with a > 0,
(3) power systems: F (x) = cxa with c > 0 and a > 0,
(4) piecewise linear system: F (x) = 1− 2|x− 1/2|.

3.6. Stair-step diagram. The stair-step diagram is a geometrical
method for depicting the orbits of a DE. The method is illustrated
in the following examples.

3.7. Fixed points and oscillating behavior. We saw that the as-
ymptotic behavior of solutions of an autonomous scalar ODE can be un-
derstood by studying the stability properties of the equilibrium points.
For DE’s, the analog role is played by fixed points. These points can
help understand the asymptotic behavior of some orbits but not all of
them. It is worth pointing out that autonomous scalar maps exhibit a
more complicated dynamics then ODE’s. For instance, they may have
orbits with oscillating behaviors, like periodic orbits (see examples (2)
and (4) below).

Example 3.4. (1) xn+1 = 2xn. The orbits of this map can be
computed explicitly. By iterating F , we obtain xn = 2nx0 for
x0 ∈ R. The step-stair diagram for this map is depicted in
Fig. 2(A).
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(a) (b)

Figure 2. (A) xn+1 = 2xn with x0 = 0.2. (B) xn+1 =
xn/2 with x0 = −0.8.

(a) (b)

Figure 3. (A) xn+1 = −2xn with x0 = 0.01. (B)
xn+1 = −xn/2 with x0 = 1.

(2) xn+1 = xn/2. The orbits of this maps are xn = 2−nx0 for x0 ∈ R
(see Fig. 2(B))

(3) xn+1 = −2xn. The orbits of this maps are xn = (−2)nx0 for
x0 ∈ R (see Fig. 3(A)). Compare these orbits with those of the
previous examples. Note the oscillatory behavior of the orbits
in this example and the next.

(4) xn+1 = −xn/2. The orbits of this maps are xn = (−2)−nx0 for
x0 ∈ R (see Fig. 3(B)).

Definition 3.5. A point x̄ is called a fixed point of F if F (x̄) = x̄.

Definition 3.6. A point x̄ ∈ R is called a periodic point of (14) of
period m > 0 if Fm(x̄) = x̄, i.e., if x̄ is a fixed point of the map Fm.

Remark 3.7. Note that x̄ is a fixed point of F if and only if γ+(x̄) = x̄.

3.8. Stability. As for equilibrium points of differential equations, we
can define the notions of a stability, instability and asymptotic stability
for periodic points. We will focus on fixed points. Since every periodic
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point is a fixed point of a certain iterate of F , it is easy how to extend
the definitions and results presented below to periodic points.

Definition 3.8. Let x̄ ∈ R be a fixed of the map F . Then x̄ is called

(1) stable if for every ε > 0, there exists δ > 0 such that if |x0−x̄| <
δ, then the orbit xn satisfies |xn − x̄| < ε for every n ≥ 0;

(2) asymptotically stable if it is stable and there exists r > 0 such
that if |x0 − x̄| < r, then the orbit xn satisfies limt→+∞ xn = x̄;

(3) if it is not stable.

The following theorem is a stability criterion in terms of the deriva-
tive of F .

Theorem 3.9. Suppose that F ∈ C1 and x̄ ∈ R is a fixed point of F .

(1) If |F ′(x̄)| < 1, then x̄ is asymptotically stable.
(2) If |F ′(x̄)| > 1, then x̄ is unstable.

A fixed point x̄ is called hyperbolic if |F ′(x̄)| 6= 1, and non-hyperbolic
if |F ′(x̄)| = 1.

Remark 3.10. To determine the stability of a non-hyperbolic fixed
point x̄, we need to compute derivatives of F of order ≥ 2. But we do
not get a simple criterion as Theorem 3.9.

3.9. Exercises.

(1) Some of the fixed points are non-hyperbolic, and therefore The-
orem 3.9 cannot be used. Use instead the stair-step diagram.
(a) Find the fixed points of F (x) = x+x2 and determine their

stability.
(b) Find the fixed points of F (x) = −x + 3x2 and determine

their stability. Hint: consider F 2(x)(= x − 18x3 + 27x4),
the second iterate of F .

(c) Derive Formula (15). This can be done using a method
similar to that one used to obtain the solutions of linear
differential equations in Subsection 2.9.

(2) Suppose that F : I → I is a bijection (surjective and invertible),
and consider the DE xn+1 = F (xn) for n ≥ 0. Let m be a
positive integer, and let x. Find the initial condition x0 ∈ R
such that xm = x.

(3) Pick 2 < a < 3, and consider the difference equation with
F (x) = ax(1 − x). Find the fixed points, and study their sta-
bility. Are there periodic points of period 2? What can you say
about the asymptotic behavior of the remaining orbits?

(4) Consider piecewise linear system F (x) = 1 − 2|x − 1/2|. Find
fixed points and periodic points of periodic 2. Then study their
stability. Hint: for the periodic point of period 2, compute first
F 2. To do that, consider compute F 2 on the intervals [0, 1/4],
[1/4, 1/2], [1/2, 3/4], [3/4, 1].
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(5) Let F be as the previous exercise, and suppose that x̄ is periodic
point of F , i.e., Fm(x̄) = x̄. Then what can you say about the
stability of x̄? Hint: use the derivative criterion and the product
rule for derivatives.

(6) Use a computer to plot some orbits of the logistic for several
1 < a < 4. Then try a = 4. Try to describe the behavior
of the orbits. Do they converge to fixed points or periodic or-
bits? (if you are not a computer wizard, the computation can
be performed directly by wolframalpha. Google wolframalpha
and type logistic map. The parameter a is called r there. Pick
different r’s and the initial condition x0’s and see what hap-
pens.)

4. Planar ODE’s

Let f : R2 → R2 be a function, and let x : I → R2 be a differentiable
function on the interval I = (a, b) with −∞ ≤ a < b ≤ +∞. We are
interested in the solutions of the autonomous differential equation:

(17) ẋ(t) = f(x(t)), t ∈ I.

4.1. Homogeneous linear ODE’s with constant coefficients. More
specifically, we are interested in the case f(x) = Ax with A being a
2×2 matrix with constant real coefficients, and x being a vector of R2:

(18) ẋ = Ax.

If we write

x =

(
x1
x2

)
, ẋ =

(
ẋ1
ẋ2

)
, A =

(
a11 a12
a21 a22

)
,

then Equation (18) takes the form

ẋ1 = a11x1 + a12x2,

ẋ2 = a21x1 + a22x2.

4.2. General properties of linear systems.

(1) Existence and uniqueness: the solution x(t, x0) of Equation (18)
with initial condition x(0) = x0 ∈ R2 exists and it is unique.
Its maximal interval of existence is the entire real line R.

(2) Superposition Principle: if x and y are two solutions of (18),
then every linear combination c1x + c2y with c1, c2 ∈ R is a
solution as well. This is simple to prove. Let z = c1x + c2y.
Then ż = c1ẋ + c2ẏ. Since x and y are solutions of (18), we
have ż = c1Ax+ c2Ay. But c1Ax+ c2Ay = A(c1x+ c2y) = Az,
and we can conclude that ż = Az, i.e., z is a solution.

(3) In analogy to the scalar case, the solution of (18) with initial
condition x0 ∈ R2 is given by

x(t, x0) = etAx0 ∀t ∈ R,
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where etA is a matrix (for its definition, see the next subsection).

4.3. Exponential of a matrix. It is a fact that the series
∑+∞

n=0A
n/n!

converges for every 2× 2 matrix A. This allows us to define the expo-
nential of a matrix as follows.

Definition 4.1. For every 2× 2 matrix A, we define

eA =
+∞∑
n=0

An

n!
.

Of course if A is a matrix and t is a real number, then tA is still a
matrix. The main properties of the matrix etA are the following:

(1) e(s+t)A = esAetA for s, t ∈ R,
(2) detA/dt = AetA = etAA,
(3) if AB = BA (i.e., A and B commute), then et(A+B) = etAetB.

Exercise 4.2. Show that if A = ( 0 1
0 0 ) and B = ( 0 0

−1 0 ), then et(A+B)

and etAetB do not coincide.

4.4. Exponential of Normal Jordan Forms.

Definition 4.3. Every matrix having one of the following three forms
is called a Jordan Normal Form,

(i)

(
λ1 0
0 λ2

)
, (ii)

(
λ 1
0 λ

)
, (iii)

(
α β
−β α

)
,

where λ1, λ2, λ, α, β ∈ R and β 6= 0.

We now compute etA when A is a Normal Jordan Form.

Form (i): It follows directly from the definition of etA that

etA =

∑+∞
n=0

(tλ1)
n

n!
0

0
∑+∞

n=0

(tλ2)
n

n!

 =

(
etλ1 0
0 etλ2

)
.

Form (ii): We can write A = I + λN , where I = ( 1 0
0 1 ) and N = ( 0 1

0 0 ).
Since I and N commute, it follows from Property (3) of etA that

etA = eλIetN = eλtetN .

Now, we see that N2 = 0 (i.e., N2 is the matrix with zero entries).
This implies that Nk = 0 for k ≥ 2, and so

etN = I + tN =

(
1 t
0 1

)
.

Hence,

etA = etλ
(

1 t
0 1

)
.
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Form (iii): We can write A = αI + βK, where K = ( 0 1
−1 0 ). Since I

and K commute, Property (3) of etA implies that

etA = eαteβtK .

Now, check that K2 = −I and K3 = −K. From this, we get K2n =
(−1)nI and K2n+1 = (−1)nK, and so

etK =
∞∑
n=0

1

(2n)!
(βt)2nK2n +

∞∑
n=0

1

(2n+ 1)!
(βt)2n+1K2n+1

=

(
∞∑
n=0

(−1)n

(2n)!
(βt)2n

)
I +

(
∞∑
n=0

(−1)n

(2n+ 1)!
(βt)2n+1

)
K

= cos(βt)I + sin(βt)K =

(
cos(βt) sin(βt)
− sin(βt) cos(βt)

)
.

Finally,

etA = eαt
(

cos(βt) sin(βt)
− sin(βt) cos(βt)

)
.

4.5. Phase portrait. We now draw the phase portrait of the differ-
ential equation ẋ = Ax when A is one of the Normal Jordan Forms
introduced in Subsection 4.4. Although the phase portrait is the col-
lection of all the orbits of the equation, we do not need to plot all the
of them, but only a few representative ones. Since we know that the
general solution of the equation is x(t, x0) = etAx0 with x(0) = x0, all
that we need to do is to understand the geometry of the transforma-
tion of the plane x0 7→ etAx0, sending the vector x0 into the new vector
etAx0.

Form (i): It is quite easy to understand the geometrical effect of the
transformation etA in this case. Its effect is that of multiplying the first
component of the vector x by etλ1 and the second component of x by
etλ2 . Depending on the sign of λ1 and λ2, the phase portrait is depicted
in Fig. 4 (cases: saddle, sink and source).

Form (ii): The transformation etA can be thought as the compositions
of two transformations: etλx and ( 1 t

0 1 )x. The first transformation
expands or contracts x depending on the sign of λ, whereas the second
transformation ‘slides’ the vector x = (x1, x2) along the horizontal line
y = x2. The overall effect of etA produces the phase portrait (improper
node) depicted in Fig. 5.

Form (iii): The geometry of etAx is the combination of the expansion or
contraction generated by eαt with the rotation of the plane generated

by the matrix
(

cos(βt) sin(βt)
− sin(βt) cos(βt)

)
(clockwise if β > 0 and counterclockwise

if β < 0). The phase portrait is depicted in Fig. 4 (cases: spiral sink,
spiral source and center).
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�2 < �1 < 0

Figure 4. Phase Portraits.

4.6. Change of coordinates. Suppose that x is a solution of the
differential equation ẋ = Ax. Let P be an invertible real 2× 2 matrix,
and define y = P−1x. Then, y is a solution of the differential equation:

ẏ = P−1ẋ = P−1Ax = P−1APy.

The general solution of this equation is y(t) = etP
−1APy0 for y0 ∈ R2.

This implies that x(t) = PetP
−1APP−1x0, where x0 = Py0 = x(0). But

we know that solution x(t, x0) is given by x(t, x0) = etAx0, and so we
conclude that

etA = PetP
−1APP−1.

Now, suppose that given a real matrix A, we can find an invertible
matrix P such that P−1AP is a Jordan Normal form. So in order

(a) (b)

Figure 5. Improper Node. (A) λ < 0. (B) λ > 0.
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to compute etA, we do not have to compute directly etA, but we can
simply compute PetP

−1APP−1, and we know that from Subsection 4.4
that etP

−1AP is one of the matrices:(
etλ1 0
0 etλ2

)
, etλ

(
1 t
0 1

)
, eαt

(
cos(βt) sin(βt)
− sin(βt) cos(βt)

)
.

Exercise 4.4. Consider the linear differential equation

ẋ =

(
5 −4
4 −5

)
,

and the change of coordinates y = P−1x with P = ( 2 1
1 2 ) . Find the

differential equation in the new coordinates y, compute the general so-
lution for this equation, and finally derive the general solution in the
coordinates x.

4.7. Jordan Decomposition Theorem.

Theorem 4.5. Suppose that A is a real 2×2 matrix. There exists and
invertible real 2 × 2 matrix P such that P−1AP = J , and J is one of
the following matrices:

(i)

(
λ1 0
0 λ2

)
, (ii)

(
λ 1
0 λ

)
, (iii)

(
α β
−β α

)
with λ1, λ2, λ, α, β ∈ R and β 6= 0. The matrix J is called a Normal
Jordan form.

We now explain how to compute the matrix P . The procedure con-
sists of three steps:

Step 1: Find the eigenvalues of A, which are solutions of the charac-
teristic equation:

(19) det(A− λI) = λ2 − tr(A)λ+ det(A) = 0,

where tr(A) and det(A) are the trace and determinant of A, respec-
tively. This is a quadratic equation with real coefficients, and so it has
two solutions λ1 and λ2 that can be of one of the following types:

(a): λ1, λ2 real and λ1 6= λ2,
(b): λ1 = λ2 = λ real,
(c): λ1 = α + iβ and λ2 = α − iβ with α, β real and β 6= 0, i.e.,
λ1 and λ2 are complex conjugate.

Step 2: Find the eigenvectors of A. This can be done for each case
(a), (b) and (c) as follows.

(a): Since λ1 6= λ2, the matrix A is diagonalizable. This means
that A has two linearly independent eigenvectors v1 and v2 cor-
responding to the eigenvalues λ1 and λ2, respectively. These
vectors are non-zero solutions of the equations:

(A− λiI) vi = 0, i = 1, 2.
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(b): We have two subcases. The first corresponds to the situation
when A admits two linearly independent eigenvectors v1 and
v2, that is, when two linearly independent vectors v1 and v2 are
solutions of the equation

(20) (A− λI) v = 0.

The second subcase corresponds to the situation when any two
non-zero solutions of equation (20) are linearly dependent. In
this case, let v1 be a non-zero solution of (20), and let v2 be any
non-zero vector such that

(21) (A− λI) v2 = v1.

The vector v1 is an eigenvector of A, and v2 is called a general-
ized eigenvector of A.

(c): Let v be an eigenvector of A corresponding to the eigenvalue
α + iβ. It turns out that the components of v are complex
numbers. So we can write v = v1 + iv2, where v1 and v2 are
vectors with real components.

Step 3: Let v1 and v2 be the vectors computed for each case in Step 2.
Then P = (v1|v2). This means that v1 and v2 are the first column and
the second column of P , respectively. From the construction of v1 and
v2 in Step 2, these vectors are linearly independent (can you explain
why?), and so P is invertible. The Jordan Normal form J associated
to A is given by J = P−1AP .

4.8. Stability criterion for linear ODE’s.

Theorem 4.6. Let A be a real 2× 2 matrix. Then the origin (0, 0) is
always an equilibrium point of the equation ẋ = Ax. Furthermore,

(1) if all the eigenvalues of A have negative real parts, then the
origin is asymptotically stable;

(2) if at least one of the eigenvalues of A has positive real part, then
the origin is unstable.

Exercise 4.7. Consider the linear differential equation ẋ = Ax. For
each of the cases below, find the matrix P and the Jordan Normal form
J for A. Then sketch the phase portrait of the equation in the new
coordinates y = P−1x, and determine the stability of the equilibrium
point (0, 0). Finally, compute etA = PetJP−1. How many equilibrium
points does the equation have in exercise iv)?

i)

(
0 1
1 0

)
, ii)

1

2

(
2 1
−1 0

)
, iii)

(
0 −2
8 0

)
, iv)

(
0 0
0 −1

)
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4.9. Non-homogeneous linear differential equations. Let A be a
real 2× 2 matrix, and let b : R→ R2 be a continuous functions. Also,
le x0 be a vector of R2. Consider the initial value problem for the
non-homogeneous linear equation:

(22) ẋ(t) = Ax(t) + b(t), x(0) = x0

To find the solution of this problem, we use the method of variation
of constants. We look for a solution of the form x(t) = etAZ(t), where
Z(t) is a vector of R2 depending on t ∈ R. By replacing such a solution
in (22), the two sides of that equation become ẋ = AetAZ + etAŻ, and
Ax + b = AetAZ + b. By equating and multiplying both sides by
e−tA = (etA)−1, we obtain

ż = e−tAb.

The vector z can be now computed by integrating between 0 and t. We
obtain

z(t) = z(0) +

∫ t

0

esAb(s)ds.

Since z(0) = x0. The solution x(t) is given by

x(t) = etA
(
x0 +

∫ t

0

e−sAb(s)ds

)
.

Exercise 4.8. (1) Solve the initial value problem (22) for

A =

(
1 1
0 1

)
, b(t) =

(
1
1

)
, x0 =

(
0
1

)
.

(Solution: x1(t) = 2tet and x2(t) = −1 + 2et, where x(t) =
(x1(t), x2(t)).)

(2) Suppose that the matrix A is invertible real 2 × 2 matrix, and
that b does not depend on t. Then (22) has a unique equilibrium
point given by x̄ = −A−1b (check this). Show that the solution
of (22) can be written as x(t) = x̄+ etA(x0 − x̄).

4.10. Second order scalar linear ODE’s. A general non-homogeneous
second order scalar linear differential equation with constant coeffi-
cients is an equation of the form

(23) ẍ+ aẋ+ bx = g(t),

where a and b are real constants, and g(t) is a continuous function of t.
Note that x(t) is just a real number here, and not a vector of R2. The
initial conditions for a second order differential equations are x(0) = x0
and ẋ(0) = x′0.

The general solution of this equation can be found by reducing it
to a planar non-homogeneous first order linear equation with constant
coefficients. This is how it can be done. Let y = ẋ. Then we have
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ẏ = ẍ = −aẋ − bẋ = g(t). Now, if we define the 2 × 2 matrix A, and
the vectors X(t), h(t) of R2 to be

A =

(
0 1
−b −a

)
, X(t) =

(
x(t)
y(t)

)
, h(t) =

(
0
g(t)

)
,

then we easily see that

Ẋ = AX + h(t) and X(0) =

(
x0
x′0

)
,

which is a first order planar linear ODE satisfying the initial condition
X(0) = (x0, x

′
0). The solution X(t) of this equation is given in Subsec-

tion 4.9. The first component x(t) of X(t) is the solution of (23) with
initial condition x(0) = x0 and ẋ(0) = x′0.

Exercise 4.9. Find the general solution of the following second order
differential equations:

(1) ẍ+ bx = 0 with b > 0 (harmonic oscillator without friction),
(2) ẍ+aẋ+bx = 0 with a, b > 0 (harmonic oscillator with friction).

5. Planar DE’s

Let Fn : R2 → R2 be a sequence of continuous transformation, and
let xn be a vector of R2. Then a planar difference equation is the
recursive equation given by

(24) xn+1 = Fn(xn) for n = 0, 1, 2, . . . .

As in the scalar case, we say that the equation is autonomous if there
exists a transformation f such that Fn = F for every n = 0, 1, 2, . . ..

5.1. Linear DE’s. Let F (x) = Ax+ b with A and b being a constant
2×2 matrix and a constant vector of R2, respectively. By iterating (24),
one can easily see that its solution (with initial condition x0) is given
by

xn = Anx0 + (I + A+ · · ·+ An−1)b for n ≥ 1.

If det(I − A) 6= 0, then (I − A)−1 exists, and we have

I + A+ · · ·+ An−1 = (I + A+ · · ·+ An−1)(I − A)(I − A)−1

= (I − An)(I − A).

The solution of (24) can then be written as follows:

xn = Anx0 + (I − An)(I − A)−1b.



23

5.2. Computation of An. Given a real 2 × 2 matrix A, the Jordan
Decomposition Theorem (Theorem 4.5) guarantees the existence of a
canonical Jordan form J and a real invertible matrix P such that A =
PJP−1. Then

(25) An = PJP−1PJP−1 · · ·PJP−1 = PJnJ−1.

Moreover, the matrix J takes one of the following forms:

(i)

(
λ1 0
0 λ2

)
, (ii)

(
λ 1
0 λ

)
, (iii)

(
α β
−β −α

)
with λ1, λ2, λ, α, β real numbers and β 6= 0. We now compute Jn.

Case (i): we immediately obtain

Jn =

(
λn1 0
0 λn2

)
.

Case (ii): if we write J = I +N with I = ( 1 0
0 1 ) and N = ( 0 1

0 0 ), then
the Binomial formula gives Jn =

∑n
k=0

(
n
k

)
λn−kNk = λn + nλn−1N

because N2 = 0. Hence,

Jn =

(
λn nλn−1

0 λn

)
.

Case (iii): let ρ =
√
α2 + β2. Then we can write

J = ρ

(
α/ρ β/ρ
−β/ρ α/ρ

)
.

But (α/ρ)2 + (β/ρ)2 = 1, and so there exists θ ∈ [0, 2π) such that
α/ρ = cos θ and β/ρ = sin θ. Hence,

J = ρ

(
cos θ sin θ
− sin θ cos θ

)
.

Now
(

cos θ sin θ
− sin θ cos θ

)
is the matrix of a clockwise rotation of an angle θ,

and the nth power of such a matrix is again a rotation of angle nθ. We
conclude that

Jn = ρn
(

cos(nθ) sin(nθ)
− sin(nθ) cos(nθ)

)
.

5.3. Phase portrait of homogeneous linear DE’s. We explain how
to derive the phase portrait of homogeneous (b ≡ 0) linear DE’s when A
is equal to one of the normal Jordan forms (i)-(iii) above. The general
case can the be derived by understanding the geometrical action of the
change of coordinates P .

We will only discuss the a few cases, from which though, one should
be able to deduce the phase portrait for the general case. Namely, we
suppose that λ1, λ2, λ > 0. We explain below that Jn can be written as
etJ
′
for some matrix J ′ and some t. Having written Jn as an exponential

of a matrix, the phase portrait of Jn can be obtained from that of the
exponential of Jordan canonical forms discussed in Subsection 4.5.
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(1) Case (i): we can write Jn = etJ
′

with J ′ =
(
cos log λ1 0

0 cos log λ2

)
and t = n.

(2) Case (ii): check that Jn = etJ
′

with J ′ =
(
λ log λ 1

0 λ log λ

)
and

t = n/λ.
(3) Case (iii): it is easy to see that Jn = etJ

′
with J ′ =

(
log ρ θ
−θ log ρ

)
and t = n.

5.4. Stability criterion for linear DE’s. The stability criterion for
the homogeneous linear DE

xn+1 = Axn,

is as for the corresponding homogeneous linear ODE (Theorem 4.6)

ẋ = Ax,

but with λ1 and λ2 replaced by log |Reλ1| and log |Reλ2|.

Exercise 5.1. Consider the homogenous linear DE’s

xn+1 = Axn

with A equal to

(i)

(
2 3
1 −2

)
, (ii)

(
4 −2
1 −1

)
, (iii)

(
1 −2
1 −1

)
.

For each case,

• find the fixed points of A,
• determine their stability,
• compute xn with x0 = (1, 0).

5.5. Second order scalar linear DE’s. The approach taken here to
finding a solution of a second order linear DE’s is very similar to the
one used to finding solutions of second order linear ODE’s in Subsec-
tion 4.10. We

Exercise 5.2. The Fibonacci sequence consists of the following num-
bers 1, 1, 2, 3, 5, 8, 13, . . .. Such a sequence can be generated as follows

xn = xn + xn−1 for n ≥ 2

and with x0 = 0 and x1 = 1. This is a second order scalar DE. Using
the method described in Subsection 4.10 but applied to the Fibonacci
DE, compute xn, and show that limn→+∞ xn+1/xn = (1 +

√
5)/2.

6. Extra exercises

6.1. Scalar ODE’s.
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(1) Solve the initial value problem using the method of separation
of variables.

(i) ẋ =
1

x2
, x(0) 6= 0,

(ii) ẋ = x(x− 2), x(0) = x0,

(iii) ẋ =
1

2
√
x
, x(0) = x0 ≥ 0.

(2) For each of the following differential equations find all the equi-
librium points and determine whether they are stable, asymp-
totically stable or unstable. Also, draw the phase portrait.

(i) ẋ = x3 − 3x,

(ii) ẋ = x4 − x2,
(iii) ẋ = cosx,

(iv) ẋ = sin2 x,

(v) ẋ = |1− x2|.

(3) The following differential equations depends on a parameter a.
Plot the phase portrait for a = −1, a = 0 and a = 1.

(i) ẋ = x2 − ax,
(ii) ẋ = x3 − ax.

(4) Solve the following linear non-homogeneous equations

(i) ẋ = 2x+ 3, x(0) = 10,

(ii) ẋ = −x+ 2, x(0) = −10,

(iii) ẋ = 3x+ 10, x(0) = 2.

6.2. Scalar maps.

(1) For each of the following difference equations, draw the stair-
step diagram and plot some iterations. Establish whether the
fixed point is stable, asymptotically stable or unstable. Ex-
plain why. In which of these examples does the system oscillate
around the fixed point?

(i) 10− 3xn = 2 + xn−1,

(ii) 25− xn+1 = 3 + 4xn−1,

(iii) 45− 2.5xn+1 = 5 + 7.5xn−1.

(2) For the following difference equations, draw the stair-step dia-
gram, and iterates 4 times the initial condition x0 = .4. Deter-
mine whether the fixed points are stable, asymptotically stable
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or unstable.

(i) xn+1 = 4xn(1− xn),

(ii) xn+1 = x2n − 2,

(iii) xn+1 = −2

∣∣∣∣x− 1

2

∣∣∣∣+ 1.

6.3. Planar ODE’s.

(1) Sketch the phase portrait of the equation ẋ = Ax for the follow-
ing matrices. Determine the stability of the origin, and compute
the exponential matrix etA.

a)

(
2 0
0 2

)
, b)

(
1
2

0
0 2

)
, c)

(
−2 0
0 2

)
,

d)

(
1
2

1
0 1

2

)
, e)

(
0 −1
1 0

)
, f)

(
−1 0
0 0

)
.

(2) For each of the following linear equations ẋ = Ax
(a) Find the eigenvalues and eigenvectors of A.
(b) Find the matrix P such that J = P−1AP is a Jordan

Normal form.
(c) Compute the exponential matrices etJ and etA.
(d) Find the solution x(t, x0) with initial condition x0.
(e) Sketch the phase portrait for the system ẏ = Jy.
(f) Determine the stability of the origin (0, 0).

a)

(
0 1
1 0

)
, b)

(
1 1
1 0

)
, c)

(
1 1
−1 0

)
,

d)

(
1 1
−1 3

)
, e)

(
1 1
−1 −3

)
, f)

(
1 1
1 −1

)
.

(3) Solve the initial value problem: ẋ1 = −4x2, ẋ2 = x1 with
x1(0) = 0 and x2(0) = −7.

(4) Find all the solutions of the linear non-homogeneous system:
ẋ1 = x2, ẋ2 = 2− x1.
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