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Abstract

In this paper we calibrate the Vasicek interest rate model under the risk
neutral measure by learning the model parameters using Gaussian processes for
machine learning regression. The calibration is done by maximizing the likeli-
hood of zero coupon bond log prices, using zero coupon bond log prices mean
and covariance functions computed analytically, as well as likelihood derivatives
with respect to the parameters. The maximization method used is the con-
jugate gradients. The only prices needed for calibration are zero coupon bond
prices and the parameters are directly obtained in the arbitrage free risk neutral
measure.

Key words: Vasicek interest rate model, Arbitrage free risk neutral measure,
Calibration, Gaussian processes for machine learning, Zero coupon bond prices

1. Introduction

Calibration of interest rate models typically entails the availability of some
derivatives such as swaps, caps or swaptions.

In this paper we present an alternative method for calibrating Gaussian
models, namely, the Vasicek interest rate model (Vasicek, 1977), which requires
zero coupon bond prices only.

The presented method has the following features:

• The only prices needed for calibration are zero coupon bond prices.

• All the model parameters are directly obtained in the risk neutral measure.
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Esqúıvel), rmgaspar@iseg.utl.pt (R. M. Gaspar)

Preprint submitted to Elsevier February 8, 2010



• The calibration method does not require a discrete model approximation
nor the establishment of an objective measure dynamics.

The method is based on Gaussian processes for Machine Learning, and its
main drawback is his applicability to Gaussian models only.

One key issue in using Gaussian processes for machine learning is to have
enough prior information on the data, in order to specify mean and covariance
functions. Under the Vasicek interest rate model, the risk neutral zero coupon
bond prices follow a log normal distribution, which can easily be transformed
into a Gaussian process by taking the logarithm of the zero coupon prices. The
mean and covariance functions of this Gaussian process can be computed analyt-
ically making it suitable for Gaussian processes for machine learning regression.

2. Vasicek interest rate model

Under the Vasicek model, the interest rate follows an Ornstein-Uhlenbeck
mean-reverting process defined by the stochastic differential equation

dr(t) = k(θ − r(t))dt + σdW (t) (1)

where k is the mean reversion velocity, θ is the mean interest rate level, σ is the
volatility and W (t) the Wiener process, and k and σ are positive.

Let s ≤ t. The solution of equation 1 is (Brigo & Mercurio, 2006)

r(t) = r(s)e−k(t−s) + θ
(

1 − e−k(t−s)
)

+ σe−kt

∫ t

s

ekudW (u). (2)

The interest rate r(t), conditioned on Fs, is normally distributed with mean

E {r(t)|Fs} = r(s)e−k(t−s) + θ
(

1 − e−k(t−s)
)

(3)

and variance

V ar {r(t)|Fs} =
σ2

2k

(

1 − e−2k(t−s)
)

.

The model as an affine term structure, which means that the zero coupon
bond prices p(t, T ), with maturity T are given by (Björk, 2004)

p(t, T ) = eA(t,T )−B(t,T )r(t) (4)

where

A(t, T ) =

(

θ −
σ2

2k2

)

(B(t, T ) − T + t) −
σ2

4k
B(t, T )

and

B(t, T ) =
1

k

(

1 − e−k(T−t)
)

.

Equation 4 shows that the zero coupon bond prices p(t, T ) are log normal
and consequently log(p(t, T )) are normal.
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2.1. Zero coupon bond log prices mean function

Since
log(p(t, T )) = A(t, T ) − B(t, T )r(t) (5)

the mean function µ(t, T ) of log(p(t, T )) is given by

µ(t, T ) = E {log(p(t, T ))|Fs}

= E {A(t, T ) − B(t, T )r(t)|Fs}

= A(t, T ) − B(t, T )E {r(t)|Fs}

Considering the initial instant s = 0, and using equation 3 for E {r(t)|Fs}
we get

µ(t, T ) = A(t, T ) − B(t, T )
(

r0e
−kt + θ

(

1 − e−kt
))

=
1

4k3
e−kT

(

−4
(

ek(−t+T ) − 1
)

k2(r0 − θ)

−4ekT k3(T − t)θ + 2(ekt − ekT )σ2

+k
(

ekt + ekT (2T − 2t − 1)
)

σ2
)

(6)

where r0 stands for the initial interest rate value, the value of the interest rate
r(t), at t = 0.

2.2. Zero coupon bond log prices covariance function

The covariance function cov(t1, t2, T ) of log(p(t, T )) is given by

cov(t1, t2, T ) = E {(log(p(t1, T )) − µ(t1, T ))

(log(p(t2, T )) − µ(t2, T )) |Fs}

= E {log(p(t1, T )) log(p(t2, T ))|Fs} − µ(t1, T )µ(t2, T ) (7)

Using equation 5, the term E {log(p(t1, T )) log(p(t2, T ))|Fs}, is given by

E {log(p(t1, T )) log(p(t2, T ))|Fs}

= E {(A(t1, T ) − B(t1, T )r(t1))

(A(t2, T ) − B(t2, T )r(t2))|Fs}

= A(t1, T )A(t2, T )

−A(t1, T )B(t2, T )E {r(t2)|Fs}

−B(t1, T )A(t2, T )E {r(t1)|Fs}

+B(t1, T )B(t2, T )E {r(t1)r(t2)|Fs}

= A(t1, T )A(t2, T )

−A(t1, T )B(t2, T )µ(t2, T )

−B(t1, T )A(t2, T )µ(t1, T )

+B(t1, T )B(t2, T )E {r(t1)r(t2)|Fs} (8)
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Using the Vasicek SDE solution equation 2, the term E {r(t1)r(t2)|Fs} is
given by

E {r(t1)r(t2)|Fs}

= E

{(

r0e
−kt1 + θ

(

1 − e−kt1
)

+ σe−kt1

∫ t1

0

ekudW (u)

)

(

r0e
−kt2 + θ

(

1 − e−kt2
)

+ σe−kt2

∫ t2

0

ekudW (u)

)

|Fs

}

= r2
0e

−k(t1+t2) + r0e
−kt1θ

(

1 − e−kt2
)

+θ
(

1 − e−kt1
)

r0e
−kt2 + θ2

(

1 − e−kt1
) (

1 − e−kt2
)

+σ2e−k(t1+t2)E

{
∫ t1

0

ekudW (u)

∫ t2

0

ekudW (u)|Fs

}

(9)

In order to compute E
{

∫ t1

0 ekudW (u)
∫ t2

0 ekudW (u)|Fs

}

, we first consider

t1 < t2. In this case, we have

E

{
∫ t1

0

ekudW (u)

∫ t2

0

ekudW (u)|Fs

}

= E

{(
∫ t1

0

ekudW (u)

)(
∫ t1

0

ekudW (u) +

∫ t2

t1

ekudW (u)

)

|Fs

}

= E

{

(
∫ t1

0

ekudW (u)

)2

|Fs

}

. (10)

In case t2 < t1, we have

E

{
∫ t1

0

ekudW (u)

∫ t2

0

ekudW (u)|Fs

}

= E

{(
∫ t2

0

ekudW (u) +

∫ t1

t2

ekudW (u)

)(
∫ t2

0

ekudW (u)

)

|Fs

}

= E

{

(
∫ t2

0

ekudW (u)

)2

|Fs

}

. (11)

Given equations 10 and 11, we get

E

{
∫ t1

0

ekudW (u)

∫ t2

0

ekudW (u)|Fs

}

= E







(

∫ min(t1,t2)

0

ekudW (u)

)2

|Fs






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Finally, using Itô isometry

E

{
∫ t1

0

ekudW (u)

∫ t2

0

ekudW (u)|Fs

}

= E







(

∫ min(t1,t2)

0

ekudW (u)

)2

|Fs







=

∫ min(t1,t2)

0

E
{

(

eku
)2
}

du

=

∫ min(t1,t2)

0

e2kudu

=
1

2k

(

e2kmin(t1,t2) − 1
)

. (12)

Using equations 6, 7, 8, 9 and 12, the covariance function cov(t1, t2, T ) of
log(p(t, T )) is given by

cov(t1, t2, T ) =
1

2k3
e−k(2T+t1+t2)

(

e2kmin(t1,t2) − 1
)

(

ekT − ekt1
) (

ekT − ekt2
)

σ2 (13)

3. Gaussian processes for machine learning

The goal of Gaussian processes for machine learning is to find the non linear
unknown mapping y = f(x), from data (X,y), using Gaussian distributions
over functions (Rasmussen & Williams, 2005)

GP ∼ N (µ(x), cov(x1,x2)).

The pair (X,y) is the training set. The matrix X collects a set of n vectors
x where the value y = f(x) was observed. The corresponding y values are
collected in vector y.

The set of vectors x⋆ where the values y⋆ = f(x⋆) were not observed, is
collected in matrix X⋆. The matrix X⋆ is the test set.

Under the Vasicek interest rate model the zero coupon bonds log prices
log(p(t, T )) are normal

GP ∼ N (µ(t, T ), cov(t1, t2, T ))

where µ(t, T ) is given by equation 6 and cov(t1, t2, T ) is given by equation 13.
Since T , the bond maturity, is a bond feature, in this case the mapping we

are interested in is the scalar mapping

y = f(t)

where y stands for the zero coupon bonds log prices. This reduces the training
set to the pair of vectors (t,y), and the test set to vector t⋆.
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Since the process is Gaussian (Rasmussen & Williams, 2005)
[

y

y⋆

]

∼ N

([

µ

µ
⋆

]

,

[

K K⋆

KT
⋆ K⋆⋆

])

and

p(y⋆|t⋆, t,y) ∼ N
(

µ
⋆ + KT

⋆ K−1(y − µ),K⋆⋆ − KT
⋆ K−1K⋆

)

where µ and µ
⋆ are mean vectors of train and test sets, K is the train set

covariance matrix, K⋆ the train-test covariance matrix and K⋆⋆ the test set
covariance matrix.

The conditional distribution

p(y⋆|t⋆, t,y)

corresponds to the posterior process on the data

GPD ∼ N (mD(t), covD(t1, t2))

where
mD(t) = m(t) + KT

t,tK
−1(y − µ) (14)

and
covD(t1, t2) = cov(t1, t2) − KT

t,t1
K−1Kt,t2 (15)

where Kt,t is a correlation vector between every training instant and t.
Equation 14 is the regression function while equation 15 is the regression

confidence. Equations 14 and 15 are the central equations of Gaussian processes
for machine learning regression.

In order to learn the model parameters Θ = {r0, k, θ, σ} from data, the
likelihood of the training data given the parameters (closed form) (Rasmussen,
2004)

L = log p(y|t, Θ)

= −
1

2
log |K| −

1

2
(y − µ)T

K−1 (y − µ) −
n

2
log(2π)

is maximized, based on the derivatives of L with respect to each of the param-
eters (closed forms).

Note that, since we want to learn the parameters in the arbitrage free risk
neutral measure, the initial interest rate value r0, is considered a parameter,
like k, θ and σ, to be learned from the zero coupon bond log prices.

Since

∂

∂Θ
log |K| = tr

(

K−1 ∂K

∂Θ

)

and

∂

∂Θ
K−1 = −K−1 ∂K

∂Θ
K−1
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the derivatives ∂L
∂Θ are given by

∂L

∂Θ
= −

1

2
tr

(

K−1 ∂K

∂Θ

)

+
1

2
(y − µ)T

K−1 ∂K

∂Θ
K−1 (y − µ)

+ (y − µ)T
K−1 ∂µ

∂Θ
.

In order to compute the vector of derivatives, ∂µ

∂Θ , and the matrix of deriva-

tives ∂K

∂Θ , the derivatives of the mean function µ(t, T ) (equation 6), and the
derivatives of the covariance function cov(t1, t2, T ) (equation 13) with respect
to the parameters are used, namely:

∂µ(t, T )

∂r0
=

e−kT − e−kt

k
;

∂µ(t, T )

∂k
=

1

4k4
e−kT

(

4k3(ek(T−t)t − T )(r0 − θ)

−6(ekt − ekT )σ2

+2k(ekT (2t − 2T + 1) + ekt(t − T − 1))σ2

+k2(−4r0 + 4ek(T−t)(r0 − θ) + 4θ + ekttσ2 − ektTσ2)
)

;

∂µ(t, T )

∂θ
=

e−kt − e−kT + kt − kT

k
;

∂µ(t, T )

∂σ
=

(

ek(t−T )(k + 2) + 2kT − 2kt − k − 2
)

σ

2k3
;

∂cov(t1, t2, T )

∂r0
= 0;

∂cov(t1, t2, T )

∂k
=

1

2k4
e−k(t1+t2+2T )

(

ek(t1+t2)(3 + 2kT ) + e2kT (3 + k(t1 + t2))

−ek(t1+T )(3 + k(t2 + T )) − ek(t2+T )(3 + k(t1 + T ))

+ek(t1+2min(t1,t2)+T )(3 + k(t2 − 2min(t1, t2) + T ))

+ek(t2+2min(t1,t2)+T )(3 + k(t1 − 2min(t1, t2) + T ))

+ek(t1+t2+2min(t1,t2))(−3 + 2k(min(t1, t2)− T ))

+e2k(min(t1,t2)+T )(−3 − k(t1 + t2 − 2min(t1, t2)))
)

σ2;

∂cov(t1, t2, T )

∂θ
= 0;

∂cov(t1, t2, T )

∂σ
=

1

k3
e−k(t1+t2+2T )

(

ekT − ekt1
) (

ekT − ekt2
)

(

e2kmin(t1,t2) − 1
)

σ.
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Figure 1: Zero coupon bond log prices simulated sequence (solid black), mean (dashed black)
and two standard deviations interval (light gray).

Parameter Value Mean StdDev. 95% CI
r0 0.5 0.527 0.482 -0.418 to 1.472
k 2.0 2.098 0.855 0.419 to 3.776
θ 0.1 0.083 0.443 -0.786 to 0.952
σ 0.2 0.203 0.039 0.126 to 0.280

Table 1: Parameters r0, k, θ and σ, 1000 calibrations mean, standard deviation and 95%
confidence interval.

4. Simulation results

In order to test the proposed calibration method we used equations 2 and 5,
with fixed parameters values, to simulate 1000 sequences of zero coupon bond
log prices.

The parameters values used were: initial interest rate r0 = 0.5; mean interest
rate level θ = 0.1; mean reversion velocity k = 2; and volatility σ = 0.2.

We considered the zero coupon bond maturity of one year, T = 1, and
simulated one year daily prices sequences by considering 260 prices per sequence
(5 working days prices per week, 52 weeks per year).

Figure 1 illustrates a simulated sequence of zero coupon bond log prices, as
well as the mean and variance functions.

We applied the calibration procedure by maximizing the likelihood of each
one of the zero coupon bond log prices sequences, using Wolfram Mathematica
7 (Wolfram Research, 2009) conjugate gradients implementation with default
configuration parameters.

Figure 2 illustrates the 50 bins parameters histograms obtained from the
1000 calibrations performed, and table 1 shows the corresponding mean, stan-
dard deviation and 95% confidence intervals.

As it can be observed, all parameters 95% confidence intervals contain the
fixed parameter value used.
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Figure 2: Learned parameters 50 bins histograms.

r0 k θ σ

0.212 2.925 0.025 0.195

Table 2: Learned parameters r0, k, θ and σ, for a real, two year maturity, zero coupon bond
reference price, calibrated with approximately one year of available prices.

5. Calibration to real data

The great majority of the zero coupon bonds market is over the counter
(OTC). This means that zero coupon bonds are traded between two market
players instead of being traded in an exchange. This makes the access to zero
coupon bond prices very difficult. To overcome this difficulty we used a theo-
retical price, supplied by one of the reference quote vendors, that stands as a
reference price for the market.

At the time we got the data, the two year maturity zero coupon was live
for approximately one year. Table 2 shows the parameters learned and figure
3 illustrates the corresponding mean and variance functions, along with the log
prices sequence itself.

As it can be observed in figure 3, the mean and variance functions adjust
quite well to the particular price sequence used.

6. Conclusions

In this paper we presented a calibration procedure of the Vasicek interest
rate model under the risk neutral measure by learning the model parameters
using Gaussian processes for machine learning regression with zero coupon bond
log prices mean and covariance functions computed analytically.

Compared with other calibration procedures, in this one all the parame-
ters are obtained in the arbitrage free risk neutral measure and the only prices
needed for calibration are zero coupon bond prices. On the other hand, this
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Figure 3: Real, two year maturity, zero coupon bond log reference prices sequence (solid black),
learned mean (dashed black) and learned two standard deviations interval (light gray).

calibration procedure makes no discrete model approximation, makes no ap-
proximations that possibly allow arbitrage opportunities and does not require
the establishment of an objective measure dynamics for the interest rate.
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