MATHEMATICAL ECONOMICS 2013-2014
I METRIC SPACES
1. Metric space
Let E be a set

A metric or distance defined on E is a function
d: ExE → R such that 
1) For all the x and y of E    d(x,y)≥0

2) d(x,y) = 0 if and only if x = y

3) For all the x and y of E      d(x,y) = d(y,x)

4) For all the x, y, z of E

d(x,y)≤ d(x,z) + d(z,y)

The set E endowed with the metric d is a metric space. The elements of E are also called points.
Examples;

a) For the space Rn
d(x,y) = [∑i=1n (xi-yi)2]1/2

is a metric, the so called euclidean metric
b) Let C be the set of all the limited real functions of a real variable defined on a set B and f and g two functions of C

Then 

d(f,g) = sup B| f(x) - g(x) |

is a metric
c) A normed vector space is a metric space
From the axioms of a norm on a vector space over R 

i) ||x||≥0

ii) ||x||= 0 if and only if x is the null element of the vector space
iii) ||ax||=|a|||x|| for  all the a of R
d) ||x+y||≤||x||+||y||
Defining d(x,y) ≡ ||x-y|| 

d(x,y) is a metric (verify)

d) Let N be a network of individuals that are connected directly or indirectly with each other.

For each pair of individuals we assign a natural number such that if the individuals are directly connected that number is 1. If they are only indirectly connected the number is the minimum steps that are needed for one reaching the other. If we assign the number 0 to the communication of an individual with himself we have a distance and the network is a metric space
2. Diameter.Bounded sets. Open balls
The diameter of a subset  A  of a metric space E is 
D(A) = sup{d(x,y)} for all the x and y of A
When the diameter is a finite number the set A is a bounded set
Let E be a metric space and  r a positive number 

The open ball  of radius r > 0 centred at point a is the set 
N(a,r) = {x of E | d(x,a) < r}

3. Open and closed sets
Let A be a subset of a metric space E.

An element a of A é is an interior point of A iff there exists a real number r > 0 such that N(a,r) is a subset of A

The set of all the interior points of a set A is the Interior of A and is denoted  by Int(A)
Evidently Int(A) is a subset of A.

When Int(A) = A. The set A is an open set,  

E is an open set.By convention the empty set Ø   is also an open set
Exercise. Try to prove the following theorems
Theorem 1. Every open ball is an open set
Theorem 2 The union of any number (finite or infinite, countable or not countable)  of open sets is an open set 
Theorem 3 The intersection of a finite number of open sets is an open set
 Exercise
Verify that in R the intersection of all the open intervals  (-1/n, 1/n) n= 1, 2,… is not an open set.
 Let a be a point of E. Then a set  A is a neighbourhood of a if a belongs to A and A is an open set. 
Example:  The open balls of radius r > 0 and centred at a are a family of neighbourhoods of the point a. 
We consider from now on that the for each point x of E the family of neighbourhoods that is assigned  to x is the family of all the open  balls. We have so defined a topology on E. 
Let A be a subset of a metric space E.

The element x of E is an accumulation point of the set A iff each of the neighbourhoods of x has points of A other than x. Note that the point x is not necessarily a point of A. 

That is for each neighbourhood V of x we have 
(V- {x})∩A ≠ Ø

The set of all the points of A is denoted by  A´ and is sometimes called the derivative set of A. A´ may be an empty set.

The set A (A’ is the closure of the set  A

When A’ is a subset of A, we call A a closed set.

Theorem 4 A set A is closed iff the complement E - A is an open set
Theorem 5 The union of a finite number of closed sets is a closed set and the intersection of any number (finite or infinite, countable or non countable) of closed sets is a closed set (Verify).
Theorem 6 The closure of any set A is a closed set
An important example of a closed set is the closed ball of radius r >0 and centred at a, that is the set 

N*(a,r) = {x of E | d(x,a) ≤ r}
4. Covers. Compact sets
Let  A be a subset of E and F a family of subsets of E such that A is  a subset of the union of all the sets F of F. Then F is a cover of the set A 

A set A is compact if for every  open cover  F of A (that is a cover whose sets are open sets) there is a finite subcover of F (that is a finite number of sets of F ) that covers A.

Theorem 7  In a metric space every  compact set is closed and bounded . 

Remark The reciprocal of theorem 7 is not always true but it is true for Rn spaces, so that for that spaces a set is compact if and only if it is bounded and closed. 
5. Limits in a metric space
Limits of sequences
Let {xn} de a sequence of elements of a metric space E. A point  x of E is the limit of the sequence if for every neighbourhood V of x exists a natural number  N such that for all  n ≥N  xn belong to V. A sequence that has a limit is said to be convergent.
Theorem 8 If a limit exists is unique
Theorem 9 If A is a subset of E, x belongs to the closure of A iff there is a sequence {xn} of elements of A that converges to x

This a very important theorem. It means that in a closed set the limit of every convergent sequence of elements of that set belongs to the set.
Limits of functions 
Let f be a function  that to each point x of a set A subset of a metric space (E, d) assigns a point f(x) belonging to a metric space (F, d*)
Let a be a point of accumulation of A.

Then b is the limit of f at the point a if for each arbitrary  δ > 0  corresponds a  ε > 0 such that for all the x of A such that  ε > d(x,a) > 0 , δ > d*(f(x),b)
We write b = x→a lim f(x)
Remark As for sequences the limit if it exists is unique.
Theorem 10. If b = x→a lim f(x) exists then for every sequence  {xn} of elements of A  converging to a  the sequence{f(xn)} converges to b

A function is continuous at a point a, point of accumulation of a set A if it is defined at that point and x→a lim f(x) = f(a)

A sequence {xn} is a Cauchy sequence if for an arbitrary δ > 0 there is a natural number N such that for  n and n* ≥ N we have
d(xn , xn*) < δ
Every convergent sequence is a Cauchy sequence. But the reciprocal is not always true.
Complete spaces are metric spaces where all Cauchy sequences are convergent Example : The space Rn is complete. But the set Q of all rational numbers is not complete.
Vector normed spaces that are complete are the so-called Banach spaces. For instance the space of real functions continuous and bounded defined on a set C of  R  is a Banach space with the norm ||f|| = sup{|f(x)| for all the x of C} (verify that is a norm)
Fractal dimension

Space Rn has dimension n. A line has dimension 1, a circle dimension 2 a sphere dimension 3 etc. This is the topological dimension of a  set.

But there is also a fractal dimension defined as follows

Let A be  a non-empty compact set of a complete metric space E.
For each ε > 0 let N (A, ε) be the smallest number of closed balls of radius ε needed to cover A.

If the limit  

D = lim{log(N(A,ε)/log(1/ε)} exits when ε→0 this limit is called the fractal dimension of A
.
The fractal dimension may be a non-integer number.

Example: the Sierpinski triangle has dimension log3/log 2 =  1,584…
The usual sets as for instance a circle have fractal dimension equal to the topological dimension. The sets that have fractal dimension that is strictly greater than the topological dimension are fractals according to the definition of Mandelbrot in 1975.
The importance of this concept to Mathematical Economics is that strange attractors which are associated to chaotic behaviour of certain non-linear dynamic systems are fractals.

Let xt+1 = F(xt), where the x are real numbers, be a discrete dynamic system The set A subset of R is the attractor of the system  if it exists an open subset N of R such that for all the x of N the distance between Fn (x) and A tends to 0  as n tends to infinity and there is no proper subset of A satisfying these conditions
.
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II FIXED POINT THEORY
1. Banach and Brouwer theorems
A general fixed point theorem was discovered by the Polish mathematician Banach (1892-1945). 

Let E be a metric space and f(x) a function  f: E→ E.

The function f(x) is a contraction if there is a real number k , 0 < k < 1 such that for every x, y of E  we have
d(f(x), f(y)) ≤ kd(x,y)

Fixed point theorem  (Banach). If E is a complete metric space, S a closed subset of E and f : S→S is a contraction defined on S there exists one and only one fixed point x* in S that is a point x* such that f(x*) = x*.

Remarks.

Hu, (1967
) proves that for having the fixed point property it is necessary for E to be complete.
We can however do without the condition of f being a contraction which is  a very restrictive condition. That is the case of the Brouwer (Dutch mathematician 1881-1966) fixed point theorem for Rn  spaces.

Fixed point theorem  (Brouwer). Let A be a compact and convex set
 of Rn and f a function f: A→ A continuous on A. Then a there is at least one fixed point x* in A such that f(x*) = x* 
1 The fact that we dispense with contractions has a double cost: the set has to be a convex set and the fixed point is not unique.
2. The Brouwer theorem was generalized in 1930 by the Polish Schauder to Banach spaces. More recently in 2005, Robert Cauty proved an even more general version.
2.Using Brouwer fixed point theorem: Walras equilibrium
Consider an exchange economy where are exchanged n goods. Let p be the price vector of the n goods, Di(p) the demand function of good i, Si(p) the supply function of good i and Zi (p) =Di(p) – Si(p) the excess demand function  of good i.
It is assumed valid the so called Walras law
Σ pi Zi(p) = 0

Walras model describes the path to equilibrium and assumes the activity of an auctioneer that at each round announces prices changing the previous round prices. If there is a positive excess demand of a good i the auctioneer increases the price for that good at the following round. If there is a negative excess demand he reduces the price of the good
Assuming that prices can take values on the simplex set 
P ={p of R n such that pi ≥0 and Σi pi =1 }

And that the auctioneer uses the following rule to announce prices at each round t 
1)   pit = max[0, pit-1+ Zi (pt-1)]/Σ j max[(0,  pjt-1 + Zj(pt-1)]

We have a function  f: P→ P

pt = f(pt-1) 

that satisfies the Brouwer conditions. Therefore there is a fixed point that is an equilibrium price vector 

p* = f(p*)

.

Remarks 

1- The justification of taking the values on the simplex is that only relative prices matter so that if we divide each price by the sum  Σ pi we obtain new prices p* that belong to the simplex and preserve the relative prices, that is for every i anf j pi/pj= p*i/p*j .

2-.If Walras law applies the denominator of 1) is always positive 
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III  CORRESPONDENCES. THE KAKUTANI FIXED-POINT THEOREM
A generalization of the Brouwer fixed.point theorem to correspondences was obtained by Kakutani (Japanese mathematician,1911-2004).

.

1.Definition of correspondence. Correspondences and economic theory
Let A e B be two sets subsets respectively of spaces Rm and Rn. Let 2B be the family of all the subsets of B.

A correspondence F from A to 2B (usually, but incorrectly said from A to B) is a rule that associates each element x of A to a set F(x) subset of B.

Correspondences are used for example in consumer theory.

Suppose that there are m goods that can be bought by each consumer that has to choose between alternative baskets of that goods. That is between vectors x,y,z,…where the i-th component of each vector is a non-negative quantity of good i 
Assume also that the consumer has a preference scale such that for all the pairs x and y of baskets he knows if he prefers y to x (situation denoted by que y > x), or if he prefers x to y (x > y) or if and y are indifferent (x ≈ y).Similarly it is easily understood the symbol ≥.
Preferences are strictly convex if for each non-identical baskets x and x*, where 
x ≥ x*  and for all the real numbers λ such that 0 < λ <1 se we have λx + (1-λ)x* > x*. 

If preferences are strictly convex, given the budget constraint p.x ≤ M, where p is the price vector of the m goods, x the vector of goods quantities that the consumer buys  and M the money quantity that he can spend there is one and only basket x* such that for any other z that meets the budget constraint we have  x*  >  z . 

Therefore there is a demand function for each consumer I, that is Di(p, M) that to each p and each M assigns the preferred basket x .
However, strictly convex preferences are a very unrealistic assumption.

If this is not the case we have not a demand function but a demand correspondence that to each p and each M assigns a set of  baskets. 
That set is the demand set of the consumer i and is denoted by φi( p M) 
φi(s,p) = {z of C(p,M) |  there is no x of C(p,M) such that x > z}

where C (p, M) is the set of all the x such that p.x ≤ M

An example is the case of convex preferences. A preference relation  ≥ is convex if, for each basket z the set of all the baskets such that x ≥ z is a convex set. 

This illustrates the use of correspondences in Economic Theory. 
2 Upper semicontinuity
Let A and B be two closed subsets respectively of Rm and Rn  and let  φ be a correspondence from  A to B..
The correspondence φ is upper semicontinuous (u.s.c.) at x of A if for every sequence {xn}n =1,2,… of elements of A converging to x and every sequence {yn} of elements of B (with yn belonging to φ(xn) for all the n) converging to y we have y belonging to φ(x). 

An example of a u.s.c at all the elements of A with 

Rm =Rn = R and A=[-1 0] and B = [-6 9] is
-1 ≤ x < 0 φ(x) ={y : x-5≤y≤x+7}

x = 0         φ(0) = {y: -6≤y≤9}

An example of a non u.s.c. at point 0 is the previous example but with B =[-6 7]([8 9] and φ(0) = {y: 8≤y≤9}

(Represent the graph of the correspondence)

Kakutani Fixed-Point theorem
Theorem. Let S be a compact and convex subset of Rn. Let φ be a u.s.c. correspondence from  S to S, such that for every x the set φ(x) is a closed, convex set. Then there is x* of S such that que x* belongs to φ(x*).

Example (on R1)

Let  S be the interval [0,1] and  φ the correspondence 

φ(x) = {1- x /4} 

for 0 ≤ x < 0,8

φ(0,8) = [0,2 0,9]

φ(x) = {x/4} 

for  1 ≥ x > 0,8

It is easily seen that the conditions of theorem are met and that there is one fixed-point only x* = 0,8.

Suppose now that the correspondence was the same except 

φ(0,8) = [0,2 0,7]

Is there a fixed point? Why?
Nash equilibrium

Consider a n players game. Each player i chooses a mixed strategy sj from a given set Si of possible mixed strategies The utility of the player i depends on the mixed strategy chosen by i and on the mixed strategies chosen by all the other players, that is ui(si,s-i) where s-i denotes the n-1 vector of the respective mixed strategies chosen by all the other players.

A mixed strategy vector (s*1,…s*n) is a Nash equilibrium if for all the players i

ui(s*i, s*-i) ≥ ui(si ,s*-i) for all the si of Si.
For each vector s-i there is a set φi(s-i) of strategies that maximize the utility of i. 

Denote  by φ(s) the cartesian product of all the φi(s-i)
Using the Kakutani theorem we prove the existence of a vector s belonging to φ(s) (so that for each si , si belongs to φi(s-i)) and so we have a Nash equilibrium.   
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IV SEPARATION THEORY
The theory of separation is used to prove some theorems in Welfare Economics
.Separating hyperplane thory
Definition (hyperplane)

Consider Rn and p a non-zero vector of that space . Hyperplane H with normal p and constant real k is the set 

H= {x of Rn such that p.x = k}  

A  hyperplane H divides Rn in two halfs:

- the half “above” H that is, the set S ={x of Rn such p.x ≥ k} and the half “below” H  which is the set  I = {x of Rn such that p.x ≤ k}

If K is a subset of S or of  I then the hyperplane is said to be bounding for K
Definition (Separating Hyperplane).

Let A and B be two sets of Rn. If for every x of A and y of B there is a hyperplane with normal p such that  p.x ≥ p.y  H is said to separate A and  B.

Two Lemma are needed to prove the separating hyperplane theorem

Lemma 1. Let  K be a non-empty, closed, convex set of Rn and let w be an element of Rn not belonging to K. Then there is  y of K and a non-zero p of Rn such that
p.w < k = p.y ≤ p.z for all the z of K.

Lemma 2. If K is convex and if z is not an element of Int(K), then there  is a  hyperplane through z and bounding for K.
Theorem (Separating hyperplane) Let A and B be non-empty, convex and disjoint subsets of Rn. Then there is a non-zero p of Rn such that 
p.x ≥ p.y for all the x of A and all  y of B.

This hyperplane with normal p is the separating hyperplane of  A and B.

Exercise
Show, using a figure that the separating hyperplane theorem does not apply to non-convex sets 
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V EXERCISES
1, Compute the diameter of the following sets
Note that (a b) is the open interval of endpoints a and b
a) [1 3]((2 8)      A: 7

b) (1 5) ∩ (4 7)    A: 1

c) (12 30)({4}    A: 26

d) {(x,y,z) of R3 such that: x2 + y2 +z2 < 5}  A : 2√5

2, True or false?
a) ∩ [4 -2/n  4+2/n] for all the integers n > 1 is an open set A:F

b) O The same set is compact A:T
c) The set {x of R such that x ≥5} is compact A:F

d) For a given z of Rn, the set A = {x of Rn such that d(x,z)<3is compact A:F

e)The set  R -[R-{1}∩R-{2}] is compact A:T
3, Verify if the following sequences are Cauchy sequences.
Un = (1+ 1/n)  A :T
Un = 2n            A: F

4.Say if we can be sure of the existence of a fixed point for the following
 F : R2 → R2 functions 

a) F(x,y) = (2x2y ,5y) on the set {(x,y) de R2 such that x < y} A: No, the set is not compact 
b) F(x,y) = ((y2+1)/x, x+y) on the set {(x,y) de R2 such that x2+y2≤4} A: No the function is not continuous at all the points of the set. 

c) The function  a) on the set {(x,y) de R2 such that x2+y2=1}A: No. the set is not convex.

5, Verify if the following correspondences  R→R are u.s.c
a) -1≤x < 0 φ(x) = {y: x-7≤y≤ x-5 }

    x = 0       φ(x) = {y: 6<y < 9 }

    0<x≤ 10  φ (x) = {y:7+x<y≤8+x}

A: No
b)  0≤x<3      φ(x) = {3x2 +1≤y≤ 5x2+2}

     3≤x≤5       φ(x) = {y: 27 < y < 150}

     5< x ≤ 8    φ(x) = {y: 6x2 ≤y<6x2+1}

A:No 

6. Say if it is possible  to state  the existence of a hyperplane separating the two sets A and B of R2 
a)  A = {(x,y): x2+y2 < 1}and B = {(x,y); x+y=2}

A: Yes. A possible hyperplane is x+y = 1,5

b) A = {(x,y): x2+y2<3}and B ={(x,y): x+y=1 and x,y≥0}

R: No
c) A = C∩D with
C={(x,y): x2+y2=2}and D =[-6 6] x [-5 5] where x denotes the cartesian product
and B = [-1 1] x [-1 1]

R: No
7. Consider the following correspondence and verify if the conditions of the Kakutani theorem are met 
a)  0 ≤ x < 7 φ(x) = {10-x}

b)  x = 7 φ(x) = [3  20]

c)  7< x ≤ 20 φ(x) = {x-4}

A. Yes two fixed-points are  x=7,and  x=5.

And for the correspondence: 
a) -6 ≤x <7 φ(x) = {1+x }
b) x =7      φ(x) = [-6 10]

c) 7< x ≤ 20 φ(x) = {(x+5)/2}

 A: Yes. It has one fixed-point only, x=7

And if for this correspondence a) and c) are the same but b) is:

b) x = 7 φ(x) =[-6 6]([8 10]

A: No.
� There are several types of fractal dimensions. We consider  one of theses types only.


� See Barnsley (1988) págs 173-179.


� Definition of Drazin (1994) pág.75. There are other definitions The distance of a point x to a set A is defined as  inf {d(y,x)} for all the y of A


� Em TheAmerican Mathematical Journal, vol 74, nº4


� A set C of a vector space on R is convex iff for every X and Y belonging to C the vectors Z such that


Z = λX + (1-λ)Y for 0 < λ <1 belong to C 
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