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Distributions and Basic Distributional Quantities Prerequisites

Prerequisites

Prerequisites

A basic course on probability and statistics. Example - Hogg and Tanis (2009) Probability and
Statistical Inference, 8th Edition, Prentice Hall.

Basic Concepts

Experiment: observation of a given phenomena under specic conditions

Outcome: the result of an experiment

Stochastic phenomenon: phenomenon for which an associated experiment has more than one
possible outcome

Sample spapce, Ω = {ξ1, ξ2, . . . , ξk , . . .}: set of all possible outcomes (known a priori) of a
conceptual experiment

Event: set of one or more possible outcomes, i.e. a subset of the sample space

Event space, A: the class of all the events associated with a given experiment
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Prerequisites

Sigma-Algebra of events, A
Collection of events that satisfy the following properties:

(i) Ω ∈ A
(ii) If A ∈ A, then A ∈ A

(iii) If A1,A2, . . . ∈ A then
∞⋃
i=1

Ai ∈ A

Probability function

Function P(·) with domain A and counter domain the interval [0, 1], P : A −→ [0, 1], satisfying
the following axioms:

(i) P(A) > 0, ∀A ∈ A
(ii) P(Ω) = 1

(iii) If A1,A2, . . . is a sequence of mutually exclusive events in A then P

(∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai )
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Prerequisites

Probability space

Triplet (Ω,A,P(·)):

Ω : sample space

A : sigma-algebra of events

P(·) : probability function assigning to each event A ∈ A a number between 0 and 1

Conditional probability

Let A and B be two events in A of the given probability space (Ω,A,P(·)).
The conditional probability of event A given that event B has occurred is

P(A|B) =
P(A ∩ B)

P(B)
, if P(B) > 0

and it is undefined if P(B) = 0.
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Prerequisites

Conditional Probability

P (A|B) =
P (A ∩ B)

P (B)
, P (B) > 0

Conditional Probability

In a conditional problem the sample space is “reduced” to the “space” of the given outcome.
To obtain P (A|B) we now just care about the probability of A ocurring “inside” of B.

In the second figure, can we state P (A|B) > P (A|C) ?
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Prerequisites

Total probability theorem

For a given probability space (Ω,A,P(·)), if

B1,B2, . . . ,Bn is a partition of Ω (i.e. B1, . . . ,Bn are mutually exclusive and exhaustive
scenarios or events)

P(Bj ) > 0, j = 1, 2, . . . , n

then, for every A ∈ A

P(A) =
n∑

j=1

P(A|Bj )P(Bj )

P (A) = P (A ∩ B1) + P (A ∩ B2) + P (A ∩ B3) + P (A ∩ B4)

= P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3) + P (A|B4)P (B4) .
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Prerequisites

Bayes’ formula

For a given probability space (Ω,A,P(·)), if

B1,B2, . . . ,Bn is a partition of Ω (i.e. B1, . . . ,Bn are mutually exclusive and exhaustive
scenarios or events)

P(Bj ) > 0, j = 1, 2, . . . , n

then, for every A ∈ A for which P(A) > 0

P(Bk |A) =
P(A|Bk )P(Bk )∑n
j=1 P(A|Bj )P(Bj )

prior probability of event: P(Bk )

new information arrives: P(A)

posterior probability of event (the initial prob. changes given the new information): P(Bk |A)

Bayes’s formula

When we make decisions, we often start with viewpoints based on our experience and
knowledge. These viewpoints may be changed or confirmed by new knowledge and
observations.

Bayes’ formula is a rational method for adjusting our viewpoints as we confront new
information.
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Prerequisites

Multiplication rule

For a given probability space (Ω,A,P(·)), let A1,A2, . . . ,An be events such that

P(A1 ∩ A1 ∩ . . . ∩ An) > 0

Then

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (An|A1 ∩ A2 ∩ · · · ∩ An−1)

Independent events

For a given probability space (Ω,A,P(·)), let A and B be events in A.
Events A and B are defined to be independent if and only if any of the following conditions is
satisfied

(i) P (A ∩ B) = P (A)P (B)

(ii) P (A|B) = P (A) , if P(B) > 0

(iii) P (B|A) = P (B) , if P(A) > 0
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Random variable

Random variable

Given the probability space (Ω,A,P(·)), a random variable (r.v.) is a function, denoted X or X (·),
with domain Ω and counterdomain the real line R:

X : Ω −→ R

Function X (·) must be such that

Ar = {w : X (w) 6 r} ⊂ A, for all real number r

Support of a random variable

Set of its possible values.

Random variable

The expression random variable is a misnomer that has gained such widespread use that it would
be foolish to try to rename it.

Random variable

discrete r.v.: can ssume only a finite or countably infinite number of distinct values
continuous r.v.: assumes uncountably many values
mixed r.v.
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Random variable

Examples of r.v. in the actuarial world

The age at death of a randomly selected birth

The time to death of a person purchasing a life insurance contract

The time for the first claim of a motor insurance policy

The severity of the claims in a third party motor insurance portfolio

The number of bodily injured claims in one year from a policy randomly selected from an
insurance automobile portfolio

The total claim amount, in euros, paid to policy randomly selected from a motor insurer
portfolio

The value of a stock index on a specic future date

. . .
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Distribution function

Distribution function

The cumulative distribution function (cdf), also called distribution function of a r.v. X , denoted
FX (·), is defined to be that function satisfying

FX (x) = P ({w : X (w) 6 x}) = P(X 6 x), ∀x ∈ R

Properties of cdf FX

Any cdf FX (x) satisfies the following properties:

P1 0 6 FX (x) 6 1, ∀x ∈ R
P2 FX (x) is nondecreasing, i.e. FX (a) 6 FX (b) if a 6 b

P3 FX (x) is continuous from the right, i.e. lim
h→0+

FX (x + h) = FX (x)

P4 FX (−∞) = lim
x→−∞

FX (x) = 0 and FX (+∞) = lim
x→+∞

FX (x) = 1

Distribution function

Any function, F (·) with domain the real line satisfying the above properties is a distribution function.
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Distribution function

Model 1

A possible model for the age of death of a randomly selected birth is

FX (x) =

{
0, x < 0

1− exp
[
1−

(
Ax + 1

2
B x2 + C

ln D
Dx − C

ln D

)]
, x > 0

with A = 0.00005, B = 0.0000005, C = 0.0003 and D = 1.07.
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Distribution function

Model 2

A possible model for the severity of the claims in a third party motor insurance portfolio is

FX (x) =

{
Φ
(

ln x−µ
σ

)
, x > 0

0, x < 0

where Φ(·) denotes the distribution function of a N(0, 1).
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Distribution function

Model 3

A possible model for the number of bodily injured claims in one year from a policy randomly selected
from an insurance automobile portfolio is

FX (x) =



0, x < 0
0.818731, 0 6 x < 1
0.982477, 1 6 x < 2
0.998852, 2 6 x < 3
0.999943, 3 6 x < 4

1, x > 4
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Distribution function

Model 4

A possible model for the total claim amount, in euros, paid to policy randomly selected from a
motor insurer portfolio is

FX (x) =

{
0, x < 0

1− 0.2e−0.001 x , x > 0
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Discrete random variable

Discrete random variable

A random variable is called discrete if its support is countable.

Let the support be {x1, x2, . . . , xn, . . .}. Then the function fX (·) (denoted pX (x) in the
book) defined by

fX (x) =

 P(X = x), if x = xj , j = 1, 2, . . . , n, . . .

0, otherwise

is called probability function of X .

Distribution function

FX (x) =
∑
y6x

fX (y)
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Continuous random variable

Continuous random variable

A random variable is called continuous if there is a function fX (·), called density function or
probability density function (pdf), such that

FX (x) =

∫ x

−∞
fX (u) du

(FX (·) is an absolutely continuous function). We have that

fX (x) = F ′X (x)

at the points where FX (x) is differentiable (and it is almost everywhere).

Probability density function (pdf)

Any function f (·) with domain the real line and counterdomain [0,∞[ is defined to be a probability
density function, or just density function, if and only if

(i) f (x) > 0, for all x

(ii)

∫ +∞

−∞
f (x) dx = 1

We will consider that fX (x) is not defined at the points where the derivative of FX does not exist.
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Decomposition of a distribution function

Decomposition of a distribution function

Not all the random variables are either continuous or discrete.

Some are partially continuous and partially discrete.

Yet, there are continuous cumulative distribution functions, called singular continuous, whose
derivative is zero at almost all points. We will not consider such distributions.

Any cdf FX (x) may be represented in the form

FX (x) = p1F
(d)(x) + p2F

(ac)(x) + p3F
(sc)(x), where pi > 0, i = 1, 2, 3, p1 + p2 + p3 = 1

Here we will assume that p3 = 0.

A r.v. with a distribution function such that

0 < p1 < 1, 0 < p2 < 1, and p1 + p2 = 1

is called mixed.
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Mixed random variable

Example

Model 4 is an example of a mixed distribution.

FX (x) = pF (d)(x) + (1− p)F (ac)(x)

with p = 0.8,

F
(d)
X (x) =

 0, x < 0

1, x > 0

and

F
(ac)
X (x) =

 0, x < 0

1− e−0.001 x , x > 0

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2018/19 20 / 59



Distributions and Basic Distributional Quantities Some well known discrete random variables

Some well known discrete random variables

Binomial

X ∼ B(m, q), m integer, 0 < q < 1, pk = (mk ) qk (1− q)m−k , k = 0, 1, 2, . . . ,m

Bernoulli

X ∼ B(1, q), 0 < q < 1

Poisson

X ∼ Poisson(λ), λ > 0, pk =
e−λλk

k!
, k = 0, 1, 2, . . .

Negative Binomial

X ∼ NB(β, r), β, r > 0, pk =
(
r+k−1
k

) ( β

1 + β

)k ( 1

1 + β

)r

, k = 0, 1, 2, . . .

(
r+k−1
k

)
=

r(r + 1) . . . (r + k − 1)

k!
=

Γ(r + k)

Γ(r)k!
, with Γ(r) =

∫ ∞
0

tr−1e−tdt, r > 0

Geometric

X ∼ NB(β, 1), β > 0, pk =

(
β

1 + β

)k ( 1

1 + β

)
, k = 0, 1, 2, . . .
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Some well known continuous random variables

Normal

X ∼ N(µ, σ), −∞ < µ < +∞, σ > 0, fX (x) =
1

σ
√

2π
e
− (x−µ)2

2σ2 ,−∞ < x < +∞

Standard Normal

X ∼ N(0, 1), fX (x) =
1
√

2π
e−

x2

2 ,−∞ < x < +∞, FX (x) = Φ(x)

Lognormal

X ∼ Lognormal(µ, σ), −∞ < µ < +∞, σ > 0 when Z = lnX ∼ N(µ, σ)

FX (x) = Φ

(
ln x − µ

σ

)
, fx (x) =

1

xσ
√

2π
e
− (ln x−µ)2

2σ2 , x > 0

Gamma

X ∼ Gamma(α, θ), α, θ > 0, fX (x) =
1

Γ(α)

xα−1

θα
e−x/θ, x > 0

Exponential

X ∼ Exp(θ) = Gamma(1, θ), θ > 0
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Some well known continuous random variables

Pareto

X ∼ Pareto(α, θ), α, θ > 0, fX (x) =
αθα

(x + θ)α+1
, FX (x) = 1−

(
θ

x + θ

)α
, x > 0

Uniform continuous in the interval (a, b)

X ∼ Uniform(a, b), a < b, fX (x) =
1

b − a
, FX (x) =

x − a

b − a

Beta

X ∼ Beta(a, b, θ), a, b > 0, θ > 0, fX (x) =
Γ(a + b)

Γ(a)Γ(b)

( x
θ

)a (
1−

x

θ

)b−1 1

x
, 0 < x < θ

FX (x) = β(a, b; x/θ) =
Γ(a + b)

Γ(a)Γ(b)

∫ x/θ

0
tα−1(1− t)b−1dt, a, b > 0, 0 < x < 1

Uniform continuous in the interval (0, θ)

X ∼ Beta(1, 1, θ), θ > 0
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Some well known continuous random variables

Chi-square

X ∼ χ2
(n) = Gamma

(
n

2
,

1

2

)
, n > 0, fX (x) =

1

2k/2Γ(k/2)
x

k
2
−1e−x/2, x > 0

It is known that Xi ∼ N(0, 1), iid =⇒
∑n

i=1 X
2
i ∼ χ

2
(n)

t-student

X ∼ t(n), n > 0 when X =
U√
V /n

with U ∼ N(0, 1) and V ∼ χ2
(n), where U and V are ind.

lim
n→+∞

FX (x |n) = Φ (x)

F-snedcor

X ∼ F(m,n), m, n > 0, when X =
U/m

V /n
and U ∼ χ2

(m) and V ∼ χ2
(n) where U and V are ind.

X > 0, X ∼ F(m,n) =⇒
1

X
∼ F(n,m) and T ∼ t(n) =⇒ T 2 ∼ F(1,n)
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Hazard rate, force of mortality or failure rate

Survival function

The survival function, denoted SX (x), of a random variable X is the probability that X is greater
than x, i.e.

SX (x) = P(X > x) = 1− FX (x)

Hazard rate

The hazard rate, also called force of mortality or failure rate, is the ratio of the density and the
survival function, i.e.

hX (x) =
fX (x)

SX (x)

Note that

hX (x) =
−S ′X (x)

SX (x)
= −

d ln SX (x)

dx

Note that the hazard rate can be interpreted as the density at x, given that the argument will be
at least x.

SX (x) = e−
∫ x

0 hX (t)dt

This formula is only valid for nonnegative continuous random variables.
For mixed random variables the hazard rate is only defined for part of its support.
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Mode

Mode

The mode of a random variable is the value where the density function or the probability
function attains a maximum.

If there are local maxima, these points are also considered to be modes.
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Bivariate random variables

Bivariate random variables

Sometimes called random vectors: (X ,Y )

Joint cdf
FX ,Y (x , y) = P(X 6 x ,Y 6 y)

Joint survival function

SX ,Y (x , y) = P(X > x ,Y > y) 6= 1− FX ,Y (x , y)

Discrete pmf
fX ,Y (x , y) = P(X = x ,Y = y)

Continuous pdf

fX ,Y (x , y) =
∂2FX ,Y (x , y)

∂x ∂y

For any set of real numbers C and D, we have

P(X ∈ C ,Y ∈ D) =

∫ ∫
X∈C ,Y∈D

fX ,Y (x , y) dx dy
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Bivariate random variables

Marginals

Given the bivariate random variable (X ,Y )

the distributions (cfd) of X and Y , i.e. FX (x) and FY (y) are denoted the marginal
distributions

the probability functions of X and Y , i.e. fX (x) and fY (y) are denoted the marginal
probability functions

Marginal pmf for discrete r.v.

fX (x) =
∑
all yi

P(X = x ,Y = yi ) and fY (y) =
∑
all xi

P(X = xi ,Y = y)

Marginal pdf for continuous r.v.

fX (x) =

∫ +∞

−∞
fX ,Y (x , y) dy and fY (y) =

∫ +∞

−∞
fX ,Y (x , y) dx
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Bivariate random variables

Conditional probability for discrete r.v.

P(X = x |Y = a) =
P(X = x ,Y = a)

P(Y = a)
, P(Y = a) > 0

Conditional probability for continuous r.v.

fX |Y=a(x) =
fX ,Y (x , a)

fY (a)
, fY (a) > 0
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Bivariate random variables

Total Probability Rule for discrete r.v.

P (X = x) = P (X = x ,Y = y1) + P (X = x ,Y = y2) + ...

=
∑
all yi

P (X = x ,Y = yi )

= P (X = x |Y = y1)P (Y = y1) + P (X = x |Y = y2)P (Y = y2) + ...

=
∑
all yi

P (X = x |Y = yi )P (Y = yi )

Total Probability Rule for continuous r.v.

f (x) =

∫
R
f (x , y) dy =

∫
R
fX |Y=y (x)f (y) dy
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Independent random variables

Independent random variables

X and Y are said to be independent if

P(X ∈ C ,Y ∈ D) = P(X ∈ C)× P(Y ∈ D), ∀C ∈ AX and ∀D ∈ AY

We also have, for independent r.v.,

P(X = x ,Y = y) = P(X = x)P(Y = y), ∀x , y (discrete r.v.)

and
fX ,Y (x , y) = fX (x) fY (y), ∀x , y (continuous r.v.)

If X and Y are independent, then so will G(X ) and H(Y ) be.
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Moments and related quantities

Mean

Let X be a r.v.
The mean, or expected value, of X is denoted µX or E [X ] and it is defined as follows.

For discrete r.v. X with mass points x1, x2, . . . and s.t.
∑

X∈{x1,x2,...} |x |fX (x) < +∞:

E [X ] =
∑

X∈{x1,x2,...}
x fX (x) =

∑
X∈{x1,x2,...}

x P(X = x)

For continuous r.v. X with probability density function fX (x) and s.t.
∫ +∞
−∞ |x |fX (x) < +∞:

E [X ] =

∫ +∞

−∞
x fX (x) dx
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Mean

Mean

For an arbitrary r.v. we have

E [X ] = −
∫ 0

−∞
FX (x) dx +

∫ +∞

0
(1− FX (x)) dx

If X is a non-negative r.v. then

E [X ] =

∫ +∞

0
(1− FX (x)) dx =

∫ +∞

0
SX (x) dx

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2018/19 33 / 59



Distributions and Basic Distributional Quantities Moments and related quantities

Raw Moments

Raw moment

The kth raw moment of the random variable X is denoted µ′k or E [X k ] and it is the expected value
of the kth power of the random variable:

For discrete r.v. X with mass points x1, x2, . . . and s.t.
∑

X∈{x1,x2,...} |x
k |fX (x) < +∞:

E [X k ] =
∑

X∈{x1,x2,...}
xk fX (x) =

∑
X∈{x1,x2,...}

xk P(X = x)

For continuous r.v. X with probability density function fX (x) and s.t.
∫ +∞
−∞ |x

k |fX (x) < +∞:

E [X k ] =

∫ +∞

−∞
xk fX (x) dx
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Expectation of a function of a random variable

Expectation of a function of a random variable

If X is discrete:

E [g(X )] =
∑

X∈{x1,x2,...}
g(x) fX (x) =

∑
X∈{x1,x2,...}

g(x)P(X = x)

If X is continuous:

E [X ] =

∫ +∞

−∞
g(x) fX (x) dx

Central moments

The kth central moment is
µk = E [(X − µx )k ]
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Moments and related quantities

Other related quantities

Variance: σ2
X is the second central moment

Standard deviation: σX =
√
σ2
X

Coefficient of variation: CVX =
σX

µX

Skewness coefficient: γX =
µ3

σ3
X

coefficient of kurtosis:
µ4

σ4
X
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Moments - the bivariate case

Moments - the bivariate case

Discrete:
E [g(X ,Y )] =

∑
x

∑
y

g(x , y) fX ,Y (x , y)

Continuous

E [g(X ,Y )] =

∫ +∞

−∞

∫ +∞

−∞
g(x , y) fX ,Y (x , y) dx dy

Covariance of X and Y :

Cov(X ,Y ) = E [(X − µX )(Y − µY ] = E [XY ]− E [X ]E [Y ]

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )

If X and Y are independent then Cov(X ,Y ) = 0 and Var(X + Y ) = Var(X ) + Var(Y )

The converse is NOT always true: if Cov(X ,Y ) = 0, then X and Y are not necessarily
independent

Correlation coefficient bewteen X and Y :

ρ(X ,Y ) =
Cov(X ,Y )

σX σY
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Residual Life

Residual Life

Consider a non-negative random variable X , representing the lifetime
Then the residual life or future life time, at age d :

P(X > d) = SX (d) > 0

is a random variable Y P with survival function given by

Sd (x) =
SX (x + d)

SX (d)
, x > 0

Y P = X − d |X > d

When X represents payments, Y P is the so called excess loss variable.
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Residual Life

Expected Residual Life

The expected value of Y P is

eX (d) = E [X − d |X > d ] =

∫ +∞
0 SX (x + d) dx

SX (d)
=

∫ +∞
d SX (x) dx

SX (d)

=



∫ +∞
d (x − d)fX (x)dx

SX (d)
, if X is continuous

∑
x>d (x − d)fX (x)dx

SX (d)
, if X is discrete

ekX (d) = E [(X − d)k |X > d ]
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Left censored and shifted variable

Left censored and shifted variable

Given a (non-negative) random variable X , the left censored and shifted variable, Y L, is

Y L = (X − d)+ = max(0,X − d)

We have:
E [(X − d)k+] = ekX (d)SX (d)

and

E [(X − d)+] = eX (d) SX (d) =

∫ +∞

d
SX (x) dx

The main difference between Y P and Y L is that the the probability of the second to take the value
0 is SX (d) and in the first case it is zero.
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Limit loss variable

Limit loss variable

Given a (non-negative) random variable X , the limit loss variable is

Y = X ∧ u = min(X , u), u > 0

Its expectation is called limited expected value.
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Quantiles

pth quantile

The pth quantile of a random variable X or of its corresponding distribution is denoted by πp and
it is deffined as any value satisfying

FX (π−p ) 6 p 6 FX (πp)

Median

The 0.5 quantile (or 50th percentile), π0.5.
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Moment generating function

Moment generating function (mgf)

The mgf of r.v. X is

MX (r) = E
[
erX
]

=
∞∑
k=0

1

k!
E(X k )rk , for all r for which the expectation exists

The mgf generates moments so that

E [X k ] =
dk MX (r)

drk

∣∣∣∣
r=0

Cumulant generating function

The logarithm of the moment generating function

RX (t) = lnMX (t)

is called cumulant generating function.

E [X ] = R′(0)

V [X ] = R′′(0)

µ3 = R′′′(0)
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Probability generating function

Probability generating function (pgf)

For discrete random variables the probability generating function (pgf) of X is

PX (z) = E
[
zX
]
, for all z for which the expectation exists

Note:
MX (r) = PX (er ) and PX (z) = MX (ln(z))

When the support of X is on the nonnegative integers:

PX (z) =
∞∑
k=0

zk P(X = k)

and P(X = k) is obtained calculating the kth derivative of PX (z) at the point 0 and dividing
by k!

Calculating the kth derivative of PX (z) at point 1 we can obtain the kth factorial moment of
X , i.e.

E [X (X − 1) . . . (X − k + 1)]
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Sums of independent random variables

Sums of independent random variables

Sometimes referred to as convolutions.

Consider k r.v. X1,X2, . . . ,Xk . Then, its convolution is the sum

Sk = X1 + · · ·+ Xk

One can view the random variable Xi as payment on policy i , for i = 1, . . . , k, so that the
sum Sk refers to the aggregate or total payment.

To derive the distribution of sums, the assumption of independence of the Xi ’s is typically
made. In such case use the mgf (or pgf) technique:

MSk (r) =
k∏

i=1

MXi
(r)

PSk (r) =
k∏

i=1

PXi
(r)
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Central Limit Theorem

Central Limit Theorem

Let X1,X2,X3, ...,Xn be a sequence of n independent and identically distributed (iid) random
variables each having finite values of expectation µ and variance σ2 > 0.

The central limit theorem states that as the sample size n increases, the distribution of the
sample average, X n, of these random variables approaches the normal distribution with a
mean µ and variance σ2/n, irrespective of the shape of the common distribution of the
individual terms Xi

lim
n→∞

P

(
X n − µ
σ/
√
n

)
= Φ(x)

with X n =
X1 + · · ·+ Xn

n
.
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Tails of distributions

Tails of distributions

In insurance applications it is the right tail of the distribution that is of interest. The (right)
tail of a distribution is that part of the distribution corresponding to large values of the
random variable. The survival probability P(X > x) is sometimes referred to as the tail
probability.

Random variables that tend to have higher tail probabilities are said to be heavier-tailed.
However, there are other ways of classifying heavy-tailed distributions:

Based on moments
Based on limiting tail behaviour
Based on the hazard function
Based on the mean excess loss function

In general, the gamma/exponential is considered ’light-tailed’; the lognormal
’medium-tailed’; and the Pareto ’heavy-tailed’.
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Comparison of the tail based on moments

The Gamma distribution

Let X ∼ Gamma(α, θ)

fX (x) =
1

θαΓ(α)
e−x/θxα−1, x > 0, α > 0

E
[
XK
]

=
θkΓ(α+ k)

Γ(α)
, k > −α

where

Γ(α) =

∫ +∞

0
tα−1e−t dt, α > 0

Then all the moments exist.
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Comparison of the tail based on moments

The Pareto distribution

Let X ∼ Pareto(α, θ). Its distribution function is

FX (x) = 1−
(

θ

θ + x

)α
, x > 0

and the density function is

fX (x) =
α θα

(θ + x)α+1
, x > 0

The kthe raw moment is

E
[
X k
]

=

∫ ∞
0

xk
α θα

(θ + x)α+1
dx =

∫ ∞
0

α xk

θ

(
θ

θ + x

)α+1

dx

with z =
θ

θ + x
we obtain

E
[
X k
]

= αθk
∫ 1

0
zα−k−1(1− z)k dz
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Comparison of the tail based on moments

The Pareto distribution (cont.)

Considering that the Beta function is given by

B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt =

Γ(a)Γ(b)

Γ(a + b)
, a, b > 0

we have

E
[
X k
]

= θkk!
Γ(α− k)

Γ(α)
, α > k

Hence the kth moment only exists if k < α.

The moment generating function does not exist.
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Comparison based on limiting tail behaviour

Comparison based on limiting tail behaviour

A distribution has heavier tail than another if the ratio of the two survival functions diverges
to infinity:

lim
x→+∞

S1(x)

S2(x)
= lim

x→+∞

S ′1(x)

S ′2(x)
= lim

x→+∞

f1(x)

f2(x)

Show that the Pareto distribution has a heavier tail than the gamma distribution, using the
limit of the ratio of the two densities.

Heavy-tailed distributions

In probability theory, heavy-tailed distributions are probability distributions whose tails are not
exponentially bounded, that is, they have heavier tails than the exponential distribution (on the
limiting sense)

lim
x→+∞

ex/θSX (x) = +∞

This is equivalent to saying that the moment generating function MX (r) is infinite for all r > 0.
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Comparison based on the hazard rate function

Comparison based on the hazard rate function

The exponential distribution has a constant hazard rate function. For distributions with
monotone hazard rates, distributions with exponential tails divide the distributions into
heavy-tailed or light-tailed. Distributions with increasing hazard rate have light tails, while
distributions with decreasing hazard rate function are heavy tailed.

A distribution has a lighter tail than another if its hazard rate function is increasing at a
faster rate. Often only the right tail is of interest.

Example

Show that the hazard rate of a Pareto distribution is decreasing.

Example

By calculating 1/h(x), show that a gamma distribution with α < 1 has a decreasing hazard rate
function, while when α > 1 it has an increasing hazard rate function.
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Comparison based on the mean excess loss function

Comparison based on the mean excess loss function

If the mean excess loss function eX (d) = E [X − d |X > d ] is increasing in d , the distribution
is considered to have a heavy tail. If it is decreasing in d , it is considered to have a light tail.

Comparisons between distributions can be made on the basis of the rate of increase or
decrease of the mean excess loss function.
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Comparison based on the mean excess loss function

Comparison based on the mean excess loss function

The mean excess loss function is related with the hazard rate function:

eX (d) =

∫ +∞
d SX (x)dx

SX (d)
=

∫ +∞

0

SX (x + d)

SX (d)
dx

and

SX (x + d)

SX (d)
=

exp
(
−
∫ x+d

0 hX (t) dt
)

exp
(
−
∫ d

0 hX (t) dt
) = exp

(
−
∫ x+d

d
hX (t) dt

)

= exp

(
−
∫ x

0
hX (t + d) dt

)

So if the hazard rate function is decreasing, than for fixed x we have that

∫ x

0
hX (t + d) dt is

decreasing in d (the derivative of the integral is the integral of the derivative) and thus
SX (x + d)

SX (d)
is an increasing function of d .
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Comparison based on the mean excess loss function

Comparison based on the mean excess loss function

Hence, if the hazard rate function is decreasing, then the mean excess loss function is an
increasing function.

The converse is not true. See exercise 3.29.

We also have

lim
d→+∞

eX (d) = lim
d→+∞

∫ +∞
d SX (x)dx

SX (d)
= lim

d→+∞

−SX (d)

−fX (d)
= lim

d→+∞

1

hX (d)

Example

Examine the behaviour of the mean excess loss function for the Gamma distribution.
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Equilibrium distribution

Equilibrium distribution

Given a non-negative r.v. X with survival function SX (x), the pdf of the equilibrium distribution
of X is

fe(x) =
SX (x)

E [X ]
, x > 0

Se(x) =

∫ +∞

x
SX (t) dt

E [X ]
, x > 0

he(x) =
fe(x)

Se(x)
=

SX (x)∫ +∞

x
SX (t) dt

=
1

eX (x)
, x > 0

Hence, the reciprocal of the mean excess loss is itself a hazard rate.

It also implies that the mean excess loss function uniquely characterizes the original distribution.

fe(x) = he(x)Se(x) = he(x)e−
∫ x

0 he (t)dt

or equivalently, assuming that SX (0) = 1, we have E [X ] = eX (0) and

SX (x) = E [X ] he(x)e−
∫ x

0 he (t)dt =
eX (0)

eX (x)
e
−

∫ x
0

1
eX (t)

dt
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Equilibrium distribution and tail behaviour

Equilibrium distribution and tail behaviour

The equilibrium distribution provides further insight into the relationship between the hazard rate,
the mean excess loss and the heaviness of the tail.

Assuming that SX (0) = 1, we have E [X ] = eX (0) and

∫ +∞

x
SX (t)dt = eX (0)Se(x)

But by the definition of the excess loss mean we have that

∫ +∞

x
SX (t)dt = eX (x)SX (x)

Hence we must have
eX (x)

eX (0)
=

Se(x)

SX (x)
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Equilibrium distribution and tail behaviour

Equilibrium distribution and tail behaviour

If the mean excess loss is increasing, than eX (x) > eX (0), for all x , which is equivalent to
Se(x) > SX (x), for all x , which implies that∫ +∞

0
Se(x) dx >

∫ +∞

0
SX (x)dx = E [X ]

But ∫ +∞

0
Se(x) dx =

∫ +∞

0
x fe(x) dx =

∫ +∞
0 xSX (x) dx

E [X ]
=

E [X 2]

2E [X ]

Hence, if the mean excess loss is increasing, eX (x) > eX (0), then

E [X 2]

2E [X ]
> E [X ] ⇐⇒ Var [X ] > E2[X ]

which is to say that CVX is at least 1.

Similarly, if the mean excess loss is decreasing, then CVX is at most 1.
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Tail behaviour - summary
Moments

If all moments exist =⇒ light tail
If only some (or none) moments exist =⇒ heavy tail

Limiting tail behaviour

If lim
x→

S1(x)

S2(x)
= lim

x→

f1(x)

f2(x)
= +∞ =⇒ dist. 1 is considered to have heavier tail than dist. 2

Hazard rate function hX (x)

If hX (x) is increasing =⇒ light tail
If hX (x) is decreasing =⇒ heavy tail

Mean excess loss eX (x)

If eX (x) is decreasing =⇒ light tail
If eX (x) is increasing =⇒ heavy tail

Tail behaviour - summary

If hX (x) is increasing then eX (x) is decreasing and if hX (x) is decreasing then eX (x) is
increasing. The oposite does not hold.

If eX (x) is increasing then CVX > 1 and if eX (x) is decreasing then CVX 6 1.

If hX (x) is decreasing then eX (x) is increasing and then CVX > 1. Similarly if hX (x) is
increasing then eX (x) is decreasing and then CVX 6 1.
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