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Severity models (continuous models)

Severity models

Given that a claim occurs, the (individual) claim size X is typically referred to as claim
severity.

While typically this may be a continuous random variables, sometimes claim sizes can be
considered discrete.

When modelling claims severity, insurers are usually concerned with the tail of the
distribution, specially for some contracts.

In actuarial applications (to describe the severity distribution) we are mainly interested in
distributions that have only positive support, i.e. FX (0) = 0.
Examples include the exponential; gamma; lognormal; Pareto, Burr and Inverse Gaussian.
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Creating new distributions

Creating new distributions

There are many methods to generate new distributions; some of these methods allow us to give
in-depth interpretation to the distributions.
The methods used can be sub-divided into:

Addition of several random variables
For example, sums of (independent) Exponentials give a Gamma. This method will not be further
explored.

Transformation of random variables
Scalar multiplication.
Power operations.
Exponentiation (or logarithmic transformation).

Mixing of distributions (we have already explored)
Frailty models

Spliced distributions
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Transformation of random variables

Multiplication by a constant or scalar transformation

Let X be a continuous r.v. with pdf fX (x) and cdf FX (x)

Let Y = aX with a > 0

FY (y) = FX

( y
a

)
and fY (y) =

1

a
fX

( y
a

)
Multiplication by a constant or scalar transformation

Insurance interpretation: if X denotes claims, then scalar transformation can be interpreted
as applying an inflation factor across all levels of claims.

A family of distributions that is closed under scalar multiplication (i.e. after scalar
transformation, the new r.v. remains in the same family) is called a scale family of
distributions.

Some scale families are: Normal; Exponential; Pareto

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2018/19 5 / 55



Severity models (continuous models) Creating new distributions

Transformation of random variables

Power transformations

A power transformation involves raising the random variable by a power such as

Y = X 1/τ or Y = X−1/τ , τ > 0

In the first case, we have a transformed X distribution;

In the second case, we have an inverse transformed X distribution.

In the special case where Y = X−1, we have the inverse random variable.

Remarks

It is easy to show the following results, for τ > 0:

Y = X 1/τ =⇒ FY (y) = FX (yτ ) and fY (y) = τyτ−1fX (yτ )

Y = X−1/τ =⇒ FY (y) = 1− FX (y−τ ) and fY (y) = τy−τ−1fX (y−τ )

Y = X−1 =⇒ FY (y) = 1− FX (y−1) and fY (y) = y−2fX (y−1)

To retain θ as a scale parameter, the base distribution should be raised to a power before being
multiplied by θ.
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Transformation of random variables

Power transformations: Examples

Let X ∼ Exp(1)

Y = θX−1 is the inverse exponential distribution, with FY (y) = e−θ/y , y > 0

Y = θX 1/τ is the Weibull distribution, with FY (y) = 1− e−(y/θ)τ , y > 0

Y = θX−1/τ is the inverse Weibull distribution, with FY (y) = e−(θ/y)τ , y > 0
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Transformation of random variables

Exponentiation

Let X be a continuous r.v. with pdf fX (x) and cdf FX (x), and let Y = exp(X ). Then

FY (y) = FX (ln y) and fY (y) =
1

y
fX (ln y)

Example

Let X ∼ N(µ, σ). Derive the density of Y = exp(X ) (lognormal distribution).
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Transformation of random variables

General theory of transformation

Let X be a continuous r.v. with pdf fX (x) and cdf FX (x).
Let Y = g(X ) and assume tha g is a one-to-one transformation (i.e. invertible)

If g is increasing, then
FY (y) = FX (g−1(y))

If g is decreasing, then
FY (y) = 1− FX (g−1(y))

The density of Y is

fY (y) = fX (g−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣
If g is not monotone, we have to split g into monotone parts
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Frailty Models

Frailty Models

A frailty model is a random effect model where the random effect (the frailty) has a multiplica-
tive effect on the hazard It can be used to describe the influence of unobserved covariates in a
proportional hazards model.

Frailty models are particular type of mixture distributions

Originally from the analysis of lifetime distributions in survival analysis

May be viewed as a useful way to generate new distributions by mixing

Frailty Models

Consider a frailty r.v. Λ > 0

Define the conditional (given Λ = λ) hazard rate of X to be hX |Λ=λ(x) = λa(x), where a(x)
is a specified known function of x

The frailty is meant to quantify uncertainty associated with the hazard rate, acting in this
case in a multiplicative manner
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Frailty Models

Frailty Models

From hX |Λ=λ(x) = λa(x), we have

SX |Λ=λ(x) = e−
∫ x

0 hX|Λ=λ(t)dt = e−
∫ x

0 λa(t)dt = e−λA(x)

where A(X ) =

∫ x

0
a(t)dt.

Frailty Models

The mixture distribution, i.e. the distribution of X , is defined by means of the mgf of Λ, MΛ(·),
assuming it exists:

SX (x) =

∫ ∞
0

SX |Λ=λ(x)fΛ(λ)dλ =

∫ ∞
0

e−λA(x)fΛ(λ)dλ = MΛ(−A(x))
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Frailty Models

Frailty Models: Example

Let X |Λ = λ ∼Weibull
(
λ−1/τ , τ

)
, i.e. conditional on Λ = λ, X has a Weibull distribution,

with survival function
SX |Λ=λ(x) = e−λ xτ

that is, A(x) =

∫ x

0
a(t)dt = xτ and hX |Λ=λ(x) = λa(x).

Let Λ ∼ Gamma(α, θ)

Then
SX (x) = MΛ(−A(x)) = MΛ(−xτ ) = (1 + θxτ )−α

Hence X ∼ Burr
(
α, θ−1/τ , τ

)
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Spliced distributions

Spliced distributions

A spliced distribution is one whose form of distribution is different in different portions of the
domain of the random variable.

An interpretation in insurance claims is that the distributions vary by size of claims.

To illustrate, consider a two-spliced distribution:

fX (x) =

 p f1(x), for 0 < x < c

(1− p) f2(x), for c < x < +∞

where f1 and f2 are both legitimate density functions on the corresponding intervals.

This concept can be extended to a k-component spliced distributions.

Example

Create a two component spliced model using an exponential with parameter θ from 0 to c and a
Pareto(α, γ) from c to ∞.
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Normal distribution

X ∼ N(µ, σ), −∞ < µ < +∞, σ > 0

µ is a location parameter and σ is a shape parameter (not a scale parameter unless µ = 0)

fX (x) 1
σ
√

2π
e
− (x−µ)2

2σ2 , −∞ < x < +∞

FX (x)
∫ x
−∞

1
σ
√

2π
e
− (t−µ)2

2σ2 dt, −∞ < x < +∞

MX (t) etµ+ t2σ2

2

E [X ] µ

V [X ] σ2

µk

{
0, if k is odd

k!
(k/2)!

σk

2k/2 if k is even

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2018/19 14 / 55



Severity models (continuous models) Review of some distributions

Normal distribution

X ∼ N(µ, σ), −∞ < µ < +∞, σ > 0
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Normal distribution

X ∼ N(µ, σ), −∞ < µ < +∞, σ > 0

Standard Normal: when µ = 0 and σ = 1; X ∼ N(µ, σ) =⇒ Z =
X − µ
σ

∼ N(0, 1)

Sum of Normal random variables is Normal

X ∼ N(µ, σ) =⇒ cX ∼ N(cµ, cσ)

Careful about using the Normal
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Gamma distribution

X ∼ Gamma(α, θ), α, θ > 0

θ is a scale parameter and α is a shape parameter

fX (x) 1
Γ(α)

xα−1

θα
e−x/θ, x > 0

FX (x)

∫ x

0

1

Γ(α)

tα−1

θα
e−t/θdt, x > 0

MX (t) (1− tθ)−α, t < 1/θ

E [X k ]
θkΓ(α+ k)

Γ(α)

V [X ] αθ2

Mode[X ] θ(α− 1), α > 1
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Gamma distribution

X ∼ Gamma(α, θ), α, θ > 0

Use it if the tail of the distribution is considered light (the mgf exists)

Applicable, e.g., to damage to automobiles

X ∼ Gamma(α, θ) =⇒ Y = λX ∼ Gamma(α, λθ)

Xi ∼ Gamma(αi , θ) indep. =⇒ S =
∑n

i=1 Xi ∼ Gamma
(∑n

i=1 αi , θ
)

Special cases

Exponential: α = 1 =⇒ X ∼ Exp(θ)

Chi-square α = n/2 and θ = 2 =⇒ X ∼ χ2
(n)

X ∼ Gamma(n/2, θ) =⇒ Y = 2X/θ ∼ Gamma(n/2, 2) = χ2
(n)
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Gamma distribution

X ∼ Gamma(α, θ), α, θ > 0
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Lognormal distribution

X ∼ Lognormal(µ, σ), −∞ < µ < +∞, σ > 0

fX (x) 1
xσ
√

2π
e
− (ln x−µ)2

2σ2 , x > 0

FX (x) Φ
(

ln x−µ
σ

)
, x > 0

MX (t) Does not exist for t > 0

E [X k ] ekµ+ 1
2
k2σ2

V [X ] e2µ+σ2
(
eσ

2 − 1
)

Mode[X ] eµ−σ
2

Med[X ] eµ
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Lognormal distribution

X ∼ Lognormal(µ, σ), −∞ < µ < +∞, σ > 0

Havier tailed than the Gamma (although all moments exist, the mgf does not exist)

Applicable for example to fire insurance

Y ∼ Normal(µ, σ) =⇒ X = exp(Y ) ∼ Lognormal(µ, σ)

X ∼ Lognormal(µ, σ) =⇒ Y = lnX ∼ N(µ, σ)

The product of independent Lognormals is also Lognormal

A lognormal distribution is not uniquely determined by its moments E [X k ] for k > 1, that is,
there exists some other distribution with the same moments for all k.
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Lognormal distribution

X ∼ LogNormal(µ, σ), −∞ < µ < +∞, σ > 0
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Pareto distribution

X ∼ Pareto(α, θ), α, θ > 0

θ is a scale parameter and α is a shape parameter

Used for heavy tailed business, such as liability insurance

It is a continuous mixture of exponentials with Gamma mixing weights

X ∼ Pareto(α, θ), and c > 0 =⇒ cX ∼ Pareto(α, cθ)

We can calculate eX (d) as the expected value of a pareto with parameters α and d + θ:

X ∼ Pareto(α, θ) =⇒ Y P ∼ Pareto(α, d + θ)

(
remind that Sd (x) =

SX (x + d)

SX (d)

)
X ∼ Pareto(α, θ) and Y = X + θ, then

fY (y) =
αθα

yα+1
, y > θ

Y is called, in Loss Models book, the single-parameter Pareto, assuming the value of θ is
known
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Pareto distributionX ∼ Pareto(α, θ), α, θ > 0

fX (x) αθα

(x+θ)α+1 , x > 0

FX (x) 1−
(

θ
x+θ

)α
, x > 0

MX (t) Does not exist

E [X k ] θkk! Γ(α−k)
Γ(α)

, k < α

V [X ] αθ2

(α−2)(α−1)2 , α > 2

hX (x) α
x+θ

, x > 0

eX (x) x+θ
α−1

, x > 1

E [X ∧ x]


θ

α−1

(
1−

(
θ

x+θ

)α−1
)
, if α 6= 1

−θ ln
(

θ
x+θ

)
if α > 1
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Pareto distribution

X ∼ Pareto(α, θ), α, θ > 0
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Burr distribution

X ∼ Burr(α, θ, γ), α, θ, γ > 0

The Burr Type XII distribution or simply the Burr distribution is a continuous probability
distribution for a non-negative random variable.

It is also known as the Singh-Maddala distribution and is one of a number of different
distributions sometimes called the “generalized log-logistic distribution”.

In insurance it is used for heavy-tailed business, such as liability insurance.
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Burr distribution

X ∼ Burr(α, θ, γ), α, θ, γ > 0

When γ = 1 we obtain a Pareto

fX (x) αγ(x/θ)γ

x(1+(x/θ)γ )α+1 , x > 0

FX (x) 1−
(

1
1+(x/θ)γ

)α
, x > 0

MX (t) Does not exist

E [X k ] θk
Γ(1+k/γ)Γ(α−k/γ)

Γ(α)
, −γ < k < αγ

Mode[X ]

{
θ
(
γ−1
αγ+1

)1/γ
if γ > 1

0 if γ 6 1
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Burr distribution

X ∼ Burr(α, θ, γ), α, θ, γ > 0
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Beta distribution

X ∼ Beta(α, β)

fX (x) Γ(α+β)
Γ(α)Γ(β)

xα(1− x)β−1 1
x
, 0 < x < 1

E [X k ] Γ(α+β)Γ(α+k)
Γ(α)Γ(α+β+k)

, k > −α

X ∼ Beta(α, β)

Derive the density function of Y = θX to obtain a Beta(α, β, θ)
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Beta distribution

X ∼ Beta(α, β)
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Extreme Value Theory

Extreme Value Theory (Loss Models)

Sometimes actuaries are only interested in the distribution of large losses, e.g., for the
per-claim reinsurance arrangements.

Extreme Value Theory (EVT): supports the choice of the models to be used in these
situations.

EVT is concerned with two types of loss:
The largest loss over a period of time (less relevant for actuarial applications; more important for
operational risk assessment)
Distribution of losses in excess of a threshold (directly relevant to actuarial work, e.g. reinsurance).

Key results in EVT
The limiting distribution of the largest observation must be one of a very small number of
distributions
The limiting distribution of the excess over a threshold mus be one of a small number of distributions
The shape of the distribution from which the sample is drawn determines which one of the
distributions is appropriate

This convenient theory allows us to rationally extrapolate to loss amounts that are well in
excess of any historic loss and thus gives an idea of the magnitude of probabilities of large
losses, even when those losses have never before occurred.
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Extreme Value Distributions

Extreme Value Distributions

There are three related distributions in the familly known as extreme value distributions:

Gumbel

Fréchet

Weibull
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Extreme Value Distributions

Gumbel distribution

The standardized Gumbel distribution has cdf

FX (x) = G0(x) = e−e−x
, −∞ < x < +∞

With location parameter µ and scale parameter θ, it becomes

FX (x) = G0,µ,θ(x) = e−e
−
(
x−µ
θ

)
, −∞ < x < +∞, θ > 0
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Extreme Value Distributions

Fréchet distribution

The standardized Fréchet distribution has cdf

FX (x) = G1,α(x) = e−x−α , x > 0, α > 0

with shape parameter α.
With location parameter µ and scale parameter θ, it becomes

FX (x) = G1,α,µ,θ(x) = e
−
(

x−µ
θ

)−α
, x > µ, α, θ > 0

Remarks

This distribution has support only for values of x greater than the location parameter µ

When µ is set to zero it is a two-parameter distribution: G1,α,0,θ(x)

The two-parameter Fréchet distribution is the inverse Weibull distribution
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Extreme Value Distributions

Weibull distribution

The standardized Weibull distribution has cdf

FX (x) = G2,α(x) = e−(−x)−α , x 6 0, α < 0

with shape parameter α.
With location parameter µ and scale parameter θ, it becomes

FX (x) = G2,α,µ,θ(x) = e
−
(
− x−µ

θ

)−α
, x 6 µ, α < 0

Remarks

This Weibull distribution is not the one we have seen before

It has support only for values of x smaller than the location parameter µ

It is often associated with the distribution of the minimum values of distributions and with
distributions that have a finite righthand endpoint of the support of the distribution.

Because insurance losses rarely have these characteristics, this model is not discussed further
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Extreme Value Distributions

Generalized extreme value distribution

Family of distributions incorporating the Gumbel, the Fréchet and the Weibull distributions as
special cases.

FX (x) = Gγ(x) = exp
[
− (1 + γx)−1/γ

]
Remarks

lim
γ→0

Gγ = exp
(
−e−x

)
= G0(x) (Gumbel standardized distribution)

When γ > 0, the cdf of Gγ(x) takes the form of a Fréchet distribution

When γ < 0, the cdf of Gγ(x) takes the form of a Weibull distribution
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Distribution of the maximum

Distribution of the maximum: from a fixed number of losses n

Consider a set of n (fixed) observations of iid non-negative r.v. with distribution FX (x).

Let Mn denote the maximum value of the n observations, with corresponding cdf and pdf
Fn(x) and fn(x). Then

Fn(x) = [FX (x)]n

Remarks

In this case the cdf of the maximum is a simple function of the common distribution of the
original random variables.

The limiting distribution of the maximum in this case is degenerate: as n→∞, Fn(x)
approaches either 0 or 1, depending on whether FX (x) < 1 or Fx (x) = 1.

To avoid the effect of degeneracy in the limit, the study of the behaviour of the maximum
requires appropriate normalization

For distributions with no upper limit of support, this maximum continues to increase without
limit as n→∞
For distributions with a right-hand endpoint, the maximum approaches that right-hand
endpoint as n→∞
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Distribution of the maximum

Mean of the maximum: from a fixed number of losses n

For nonnegative random variables, the mean (if it exists) of the maximum is

E [Mn] =

∫ ∞
0

Sn(x) dx =

∫ ∞
0

(1− [FX (x)]n) dx

Second raw moment of the maximum: from a fixed number of losses n

E [M2
n ] = 2

∫ ∞
0

xSn(x) dx = 2

∫ ∞
0

x (1− [FX (x)]n) dx
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Distribution of the maximum

Example

Suppose that we have carried out studies of the largest losses over many months

Determine the distribution of the annual maximum assuming that the cdf of the monthly
maximum follows a Gumbel distribution G0,µ,θ(x)

Determine the distribution of the annual maximum supposing now that the monthly
maximum follows a Fréchet distribution G1,α,µ,θ(x)
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Distribution of the maximum

Distribution of the maximum: from a random number N of losses

In most cases, the number of losses in a period will fluctuate and thus it is a random variable

Denote the random number of losses by N and its pgf by PN(z)

Using the law of total probability:

FN(x) = P(MN 6 x) =
∞∑
n=0

P(MN 6 x |N = n)P(N = n) =
∞∑
n=0

[FX (x)]n P(N = n)

= PN(FX (x))

Remarks

If we can specify the distribution of the frequency and severity of losses, we can easily obtain
the exact distribution of the maximum loss

This distribution has a jump at x = 0 with value PN(FX (0)), the probability of no loss cost
(either no loss event occurs, or all loss events have no cost)

If FX (0) = 0 then PN(FX (0)) = PN(0) = P(N = 0): the jump at zero is the probability that
no loss occurs
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Distribution of the maximum

Example

Consider that the number of claims per year follows a Poisson process with a rate of λ losses
per year.

What is the general cdf of the maximum loss per year?

What is the general cdf of the maximum loss in a period of k years?

If the individual claim severity is exponentially distributed, what is the cdf of the maximum
loss? (Gumbel)

If the individual losses are Pareto, what is the cdf of the maximum loss? (Fréchet)

The Gumbel and Fréchet distributions are distributions of extreme statistics, in this case maxima.
The Weibull plays the corresponding role for minima.

Example

Suppose that the number of losses in one year follows a negative binomial distribution with
parameters r and β.

What is the general cdf of the maximum loss?

Supposing that losses are exponentially distributed, what is the cdf of the maxium loss?

Supposing that losses are Pareto distributed, what is the cdf of the maximum loss?
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Stability of the maximum of the extreme value distribution

Stability of the maximum of the extreme value distribution

The extreme value distributions have the property of the stability of the maximum or max-stability,
that is very useful in extreme value theory:

If losses follow an extreme value distribution, then the maximum of n (fixed) observations
has the same extreme value distribution, after a location or scale normalization.
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Stability of the maximum of the extreme value distribution

Gumbel distribution

The distribution of the maximum of n observations from the standardized Gumbel distribution has
itself a Gumbel distribution, after a shift of location:

[G0(x + ln n)]n = G0(x) and equivalently [G0(x)]n = G0(x − ln n)

Including location and scale parameters yields:[
G0,µ,θ(x)

]n
= G0,µ∗,θ(x), with µ∗ = µ+ θ ln n
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Stability of the maximum of the extreme value distribution

Fréchet distribution

The distribution of the maximum of n observations from the standardized Fréchet distribution has
itself a Fréchet distribution, after a scale change:[

G1,α(n1/αx)
]n

= G1,α(x) and equivalently [G1,α(x)]n = G1,α

(
x

n1/α

)
Including location and scale parameters yields:

[
G1,α,µ,θ(x)

]n
= G1,α,µ∗,θ

(
x − µ
θ n1/α

)
= G1,α,µ,θ∗ (x), with θ∗ = θ n1/α
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Fisher-Tippett Theorem

Distribution of the maximum of n fixed observations, as n→∞

The extreme value distributions are the limiting distributions (as n→∞) of extreme
statistics for any distribution.

Namely, they approximate distributions of the maximum (of n fixed observations) for
(almost) any distribution

As n→∞, the distribution of the maximum of n fixed observations is degenerate

Hence, to understand the shape of the distribution for large values of n we need to normalize
the r.v. representing the maximum

We require linear transformations, i.e. sequences an and bn, s.t.
Mn − bn

an
has

(non-degenerate) limiting distribution:
(we control for the growth of Mn)

lim
n→∞

Fn (an x + bn) = lim
n→∞

P (Mn 6 an x + bn) = G(x)

where G(x) is a nondegenerate distribution

If such transformation exists, the Fisher-Tippett theorem provides a powerful result
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Fisher-Tippett Theorem

Fisher-Tippett Theorem

If [FX (am x + bn)]n has a nondegenerate limiting distribution as n→∞ for some constants an and
bn that depend on n, then

lim
n→∞

[FX (an x + bn)]n = G(x), ∀x

where G is an extreme value distribution which is one of G0, G1,α or G2, α for some location and
scale parameters.

Remarks

If we are interested in understanding how large losses behave, we only need to look at three
(two, since Weibull has an upper limit) choices for a model for the extreme right-hand tail

The Fisher-Tippett theorem requires normalization using appropriate norming constants an
and bn that dependen on n. For specific distributions, these norming constants can be
identified.

The FisherTippett theorem is a limiting result that can be applied to any distribution FX (x).
Because of this, it can be used as a general approximation to the true distribution of a
maximum without having to completely specify the form of the underlying distribution FX (x).
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Fisher-Tippett Theorem

Example: maximum of exponentials

Let X ∼ Exp(1). Considering the norming constants an = 1 and bn = ln n, the distribution of the
maximum is

P(Mn 6 an x + bn) = [P(X 6 an x + bn)]n = [P(X 6 x + ln n)]n

=
[
1− e−x−ln n

]n
=

[
1−

e−x

n

]n
−→ e−e−x

as n→∞

Having chosen the right norming constants, we see that the limiting distribution of the maximum
of exponential random variables is the Gumbel distribution.
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Fisher-Tippett Theorem

Example: maximum of Paretos

Let X ∼ Pareto(α, θ), i.e. with survival function S(x) =
(

1 +
x

θ

)−α
, x > 0 and α, θ > 0.

Considering the norming constants an = θn1/α

α
and bn = θn1/α − θ, the distribution of the

maximum is

P(Mn 6 an x + bn) = [P(X 6 an x + bn)]n =

[
P

(
X 6

θn1/α

α
x + θn1/α − θ

)]n

=

1−

1 +
θn1/α

α
x + θn1/α − θ

θ

−αn

=

[
1−

1

n

(
1 +

x

α

)−α]n
−→ e−(1+ x

α )−α as n→∞

The limit as n → ∞ of the maximum of Pareto random variables has a Frchet distribution with
µ = −α and θ = α.
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Generalized Pareto Distributions

Generalized Pareto (GP) Distributions

The GP distributions here introduzed are closely related to EV distributions

They are mainly used when studying excesses over a threshold

The GP distribution W (x) is given by

W (x) = 1 + lnG(x)

where
G(x) is an EV distribution

0 6 W (x) 6 1, thus we require that G(x) > e−1

In the same way the EV distributions G(x) may be of three types, there are three related
distributions in the family of GP distributions:

Exponential
Pareto
Beta

Remark (Loss Models)

The GP distribution referred here differs from the distribution with the same name given in
Appendix A
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Generalized Pareto Distributions

Exponential distribution

The standardized exponential distribution has cdf

F (x) = W0(x) = 1 + lnG0(x) = 1− e−x , x > 0

With location and scale parameters µ and θ included, it has cdf

F (x) = W0,µ,θ(x) = 1 + lnG0,µθ(x) = 1− e−
x−µ
θ , x > µ

Remarks

The exponential distribution has support only for values of x greater than µ

Commonly µ = 0, making it a one-parameter distribution:

F (X ) = W0,θ(x) = 1− e−x/θ, x > 0
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Generalized Pareto Distributions

Pareto distribution

The standardized Pareto distribution has cdf

F (x) = W1,α(x) = 1− lnG1,α(x) = 1− x−α, x > 1, α > 0

With location and scale parameters µ and θ included, it has cdf

F (x) = W1,α,µ,θ(x) = 1 + lnG1,α,µ,θ(x) = 1−
(
x − µ
θ

)−α
, x > µ+ θ, α, θ > 0

Remarks

The Pareto distribution has support only for values of x greater than µ+ θ

Commonly µ = −θ, making it a two-parameter distribution:

F (x) = W1,α,θ = 1−
(

θ

x + θ

)α
, x > 0, α, θ > 0

The case µ = 0 is denoted single-parameter Pareto distribution in the appendix
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Generalized Pareto Distributions

Beta distribution

The standardized Beta distribution has cdf

F (x) = W2,α(x) = 1 + lnG2,α(x) = 1− (−x)−α, −1 6 x 6 0, α < 0

With location and scale parameters µ and θ included, it has cdf

F (x) = 1−
(
−
x − µ
θ

)−α
, µ− θ 6 x 6 µ, α < 0, θ > 0

Remarks

The Beta distribution has support only for values of x ∈ [µ− θ, µ]

It is a (shifted) subclass of the usual beta distribution on the interval (0, 1), with an
additional location parameter, and where shape parameters are positive
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Generalized Pareto Distributions

Generalized Pareto Distributions

The GP distribution is the family of distributions incorporating, in a single expression, the
preceding three distributions as special cases.

The general expression for the cdf of the GP distribution is

F (x) = Wγ,θ(x) = 1−
(

1 + γ
x

θ

)−1/γ

W0,θ(x) = lim
γ→0

Wγ,θ(x) = lim
γ→0

1−
(

1 + γ
x

θ

)−1/γ
= 1− e−x/θ: exponential distribution.

When γ > 0, the cdf Wγ,θ(x) is the Pareto distribution
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Stability of excesses of the generalized Pareto

Stability of excesses of the generalized Pareto distributions

The exponential, Pareto and beta distributions have the property of stability of excesses

The conditional distribution of the excess over a threshold of a generalized Pareto is of the
same form as the underlying distribution

Let Y = X − d |X > d denote the excess loss r.v.

If X ∼Wγ,θ(x) then

FY (y) = P(Y 6 y) = P(X 6 d + y |X > d) = 1−
SX (d + y)

SX (d)

= 1−

1 + γ
(

d+y
θ

)
1 + γ

(
d
θ

)
−1/γ

= 1−
(

1 + γ
y

θ + γ d

)−1/γ

= Wγ,θ+γd (y), y > 0
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Stability of excesses of the generalized Pareto

Stability of excesses of the exponential

If X ∼ Exp(θ), FX (x) = W0,θ(x) = 1− e−x/θ, x > 0, then

FY (y) = 1− e−y/θ = W0,θ(y), y > 0

“memoryless property” the exponential: the excess of the loss over the threshold has the
same distribution as the original loss r.v.

Stability of excesses of the Pareto

If X ∼ Pareto(α, θ), FX (x) = W1,α,θ(x) = 1−
(
x + θ

θ

)−α
, x > 0, α, θ > 0, then

FY (y) = 1−
(
y + (d + θ)

θ

)−α
= W1,α,d+θ(y), y > 0

The excess over the threshold of a Pareto distribution has iftself a Pareto distribution that is
the same as the original loss random variable, but with a change of scale from θ to d + θ.
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