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Introduction to Copulas

Multivariate Models

We will now adress the issue of possible dependencies between risks

All information about the relationship between random variables is captured by the
multivariate distribution

We are interested in building bivariate or multivariate models from (possibly different) known
marginal distributions and a dependence between risks

Tail dependence

We are particularly interested in understanding dependencies between r.v. in the tail, i.e. when
very large losses occur

“ If one risk has a large loss, is it more likely that another risk will also have a large loss?”

“What are the odds of having several large losses from different risk types?”
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Multivariate Models

Historically, many multivariate distributions have been developed as immediate extensions of
univariate distributions (e.g. multivariate normal distribution; bivariate Pareto).

The drawbacks of these types of distributions are that

1. one needs a different family for each marginal distribution

2. extensions to more than just the bivariate case are not clear

3. measures of association often appear in the marginal distributions

A construction of multivariate distributions not suffering from these drawbacks is based on
the Copula function
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Example: bivariate Pareto distribution

Consider two r.v. such that X1|Λ = λ ∼ Exp(1/λ) and X2|Λ = λ ∼ Exp(1/λ),
with Λ ∼ Gamma(α, 1/θ).

We known that X1 ∼ Pareto(α, θ) and X2 ∼ Pareto(α, θ)

Since X1 and X2 share the same random effect, they are not independent

What is the joint cdf of (X1,X2)?

Remembering that

FX1,X2
(x1, x2) = P(X1 6 x1,X2 6 x2) = F1(x1) + F2(x2)− 1 + P(X1 > x1,X2 > x2)

and

P(X1 > x1,X2 > x2) =

∫ +∞

0
P(X1 > x1,X2 > x2|Λ = λ) fΛ(λ) dλ =

∫ +∞

0
e−λ(x1+x2) fΛ(λ) dλ

(given Λ = λ, X1 and X2 are independent, as the random effect of Λ does not exist anymore)

Then

FX1,X2
(x1, x2) = F1(x1) + F2(x2)− 1 +

[
(1− F1(x1))−1/α + (1− F2(x2))−1/α − 1

]−α
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History

1951 Fréchet problem: given the marginal distribution functions, what can be said about the
multivariate distribution?

Maurice Fréchet (1878 − 1973)
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History

1959 Sklar introduces the notion and name Copula

In his paper he introduces the most important result in this respect: multivariate cumulative
distribution functions can be expressed in terms of copulas

Abe Sklar
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History

1981 Schweizer & Wolff paper relating copulas to the study of dependence amongst r.v.

“Quite by accident, reread a paper by A. Rényi, entitled On measures of dependence, and realized
that one could easily construct such measures by using copulas” (Berthold Schweizer)

“After the publication of these articles and of the book (Probabilistic Metric Spaces, Schweizer &
Sklar, 1974) the pace quickened, as more students and colleagues became involved”

History

1990’s Books from Joe (1997), Multivariate Models and Nelsen (1999), Introduction to
Copulas

The notion of copulas is discovered by researchers in several applied fields

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2018/19 8 / 58



Introduction to Copulas Introduction

Introduction to Copulas

History

Nowadays Widely used in many fields of applications, namely (but not only) finance, risk
management and actuarial sciences

“The notion of copula is both natural as well as easy for looking at multivariate df’s. But why
do we witness such an incredible growth in papers published starting the end of the 1990’s (recall,
the concept goes back to the 1950’s and even earlier, but not under that name)? Here I can give
three reasons: finance, finance, finance. In the 1980’s and 1990’s we experienced an explosive
development of quantitave risk management methodology within finance and insurance, a lot of
which was driven by either new regulatory guidelines or the development of new products.” (Paul
Embrechts)

“The era of i.i.d. is over: and when dependence is taken seriously, copulas naturally come into
play.” (Carlo Sempi)
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Copulas

When two risks are assumed not to be independent, an infinite range of possible
dependencies between them can be at stake.

The first question is, if they are dependent, what is the best model to explain the existing
dependencies

Copulas constitute a convenient and elegant way of describing dependencies between two or
more random variables

Copulas

The joint distribution function is expressed as a parametric function of the marginal
distribution functions.

The joint probability function is decomposed into the marginal probability functions and a
dependence structure component.

Not only the joint distribution is known through the margins, as the dependence structure is
decoupled from them.

Being parametric functions of the margins, the copula offers a natural procedure for the
estimation of the multivariate distribution simply by plugging in the evaluation of each
marginal.
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Sklar’s theorem and copulas

The bivariate case

Let X1 and X2 be r.v. with distribution functions F1(x1) and F1(x2)

A copula, C(u1, u2), is a function that maps (u1, u2) = (F1(x1),F2(x2)), i.e. the unit square
[0, 1]× [0, 1], into [0, 1] which will be the value of the joint distribution function:

C : [0, 1]× [0, 1] → [0, 1]

(F1(x1),F2(x2)) 7→ FX (x1, x2) = P(X1 6 x1,X2 6 x2) = C(F1(x2),F2(x2))

Equivalently, a copula is a restriction to the unit square [0, 1]2 of a bivariate distribution
function whose margins are uniform in [0, 1]:

U1 = F1(X1) ∼ U(0, 1) and U2 = F2(X2) ∼ U(0, 1)

and the distribution function of (U1,U2) is a copula:

C(u1, u2) = P(U1 6 u1,U2 6 u2) = P(X1 6 F−1
1 (u1),X2 6 F−1

2 (u2))

= FX (F−1
1 (u1),F−1

2 (u2)) = FX (x1, x2)
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Sklar’s theorem and copulas

Definition: bivariate copula

A bivariate copula, C , is a non-decreasing and right-continuous function,
mapping [0, 1]× [0, 1] into [0, 1] such that, for all (u1, u2)

i) lim
u1→0

C(u1, u2) = 0 and lim
u2→0

C(u1, u2) = 0 (C is grounded)

ii) lim
u1→1

C(u1, u2) = u2 and lim
u2→1

C(u1, u2) = u1 (C has margins)

ii) C is supermodular or 2-increasing:

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) > 0, for u1 6 u2 and v1 6 v2

Remarks

ui = Fi (xi )

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) is the so-called C -volume of [u1, v1]× [u2, v2]

These 3 properties ensure that the copula correctly capture the properties one would expect
of a joint distribution of X1 and X2 in all circumstances:

1. C(F1(x1),F2(x2)) is a legitimate multivariate distribution function

2. The marginal distributions match those of X1 and X2
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Sklar’s theorem and copulas

The multivariate case

The definition of copula can be extended to the multivariate case.

Let X1,X2, . . . ,Xd be r.v. with distribution functions F1(x1),F2(x2), . . . ,Fd (xd )

A multivariate copula, C , is a non-decreasing and right-continuous function, mapping [0, 1]d into
[0, 1] such that, for all (u1, u2, . . . , ud )

i) C(u1, . . . , ui−1, 0, ui+1, . . . , ud ) = 0, i = 1, 2, . . . , d (C is grounded)

ii) C(1, . . . , 1, ui , 1, . . . , 1) = ui , i = 1, 2, . . . , d (C has margins)

ii) C -volume([u, v ]) > 0, for [u, v ] = [u1, v1]× · · · × [ud , vd ] (C is d-increasing)

Here we will focus on bivariate copulas, or, equivalently, on dependency structures between pairs
of random variables.
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Sklar’s theorem and copulas

The Sklar’s theorem clarifies the role of copulas in associating multivariate and marginal
distribution functions

Sklar’s theorem

Let X1 and X2 be random variables with distribution functions F1(x1) and F2(x2), respectively.
Then, there exists a copula C such that, for all (x1, x2) ∈ R2

FX (x1, x2) = C(F1(x1),F2(x2)) (1)

Conversely, if C is a copula and F1 and F2 are distributions of X1 and X2, respectively, then the
function FX (x1, x2) defined by (1) is a bivariate distribution function with margins F1 and F2.

In the case of continuous random variables, the copula is unique.

C couples the marginal distributions, entirely describing the dependence structure between
them, separately from the margins themselves.
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Example: Pareto’s copula

Consider the bivariate Pareto previously discussed

FX1,X2
(x1, x2) = F1(x1) + F2(x2)− 1 +

[
(1− F1(x1))−1/α + (1− F2(x2))−1/α − 1

]−α
We see that the underlying copula function is

C(u1, u2) = u1 + u2 − 1 +
[
(1− u1)−1/α + (1− u2)−1/α − 1

]−α
, (u1, u2) ∈ [0, 1]2

α > 0 is the dependence parameter

The copula construction does not constrain the choice of the marginal models!

Example: Clayton’s copula

C(u1, u2) =
[
u−α1 + u−α2 − 1

]−1/α
, (u1, u2) ∈ [0, 1]2

α > 0 is the dependence parameter
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Sklar’s theorem and copulas

Partial derivarives

The partial derivatives of C exist almost everywhere, the functions

u1 7→
∂

∂u2
C(u1, u2) and u2 7→

∂

∂u1
C(u1, u2)

being defined and non-decreasing almost everywhere and verifying, for i = 1, 2

0 6
∂

∂ui
C(u1, u2) 6 1, uj ∈ [0, 1], j 6= i

Conditional probabilities

The copula partial derivatives are strictly related with the conditional probabilities of X1 and X2:

Given a random vector (X1,X2) with joint distribution given by copula C then we have

P(X2 6 x2|X1 = x1) =
∂

∂u1
C(u1, u2)

∣∣∣
(u1,u2)=(F1(x1),F2(x2))

P(X1 6 x1|X2 = x2) =
∂

∂u2
C(u1, u2)

∣∣∣
(u1,u2)=(F1(x1),F2(x2))
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Sklar’s theorem and copulas

Joint density function

Let X1 and X2 be continuous.
To obtain the joint density function, we resort to the second order crossed partial derivate of the
copula, which exists almost everywhere, and is denoted the copula density c:

c(u1, u2) =
∂2

∂u1∂u2
C(u1, u2), (u1, u2) ∈ [0, 1]× [0, 1]

If the marginal distributions F1 and F2 are continuous functions with respective marginal densities
f1 and f2, then the joint density function of (X1,X2) is given by

fX (x1, x2) = f1(x1)f2(x2)︸ ︷︷ ︸
independence

joint pdf

× c (F1(x1),F2(x2))︸ ︷︷ ︸
dependence structure

Remark

It is evident that the joint density function can be decoupled in two parts, the part
corresponding to independence and the part enclosing the dependence structure.

The dependence structure is fully described by the copula density, which is, for that reason,
also known as dependence function.
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Sklar’s theorem and copulas

Invariance under increasing transformations

Let C be a copula associating the random variables (X1,X2) and h1 and h2 non-decreasing functions.
Then the random vector (h1(X1), h2(X2)) also possesses copula C .

Remark

It is due to this property that copula-based dependence measures, such as the Kendall’s and
Spearman’s rank correlations, are invariant to strictly increasing functions.

Because the copula links the ranks of random variables, transformations that preserve the
ranks of random variables will also preserve the copula

For example, regarding the multivariate distribution linking r.v., it makes no difference
whether one models the random variables or their logarithms. The resulting copulas for the
multivariate distributions are identical.
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Sklar’s theorem and copulas

Survival copula

The survival copula associated to a copula C is

C(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2) (2)

Remarks

The survival copula is a copula itself, fulfilling all conditions in definition of copula when
evaluated at (1− u1, 1− u2) ∈ [0, 1]× [0, 1].

We have that
C(1− u1, 1− u2) = C(u1, u2) + 1− u1 − u2

which results in
C(1− u1, 1− u2) = P(X1 > x1,X2 > x2)

i.e. SX (x1, x2) = P(X1 > x1,X2 > x2) = C(S1(x1), S2(x2))

Thus, survival copulas can be used to express the joint survival probability function.

Notice that P(X1 > x1,X2 > x2) = C(S1(x1),S2(x2)) 6= C(F1(x1),F2(x2))
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Sklar’s theorem and copulas

Example: survival copula of Pareto’s copula

The survival copula of Pareto’s copula is

C(u1, u2) =
[
u
−1/α
1 + u

−1/α
2 − 1

]−α
This is Clayton’s copula with dependence parameter 1/α
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Measures of dependence

Dependence measures

There are many ways of describing dependence or association between random variables

Linear correlations

Kendall’s tau, τK

Spearman’s rho, ρS

Dependence

In elliptical distribution context linear correlation is a natural summary of dependence

In the non-elliptical distribution context intuition about correlation breaks and deeper
understanding of dependence is needed to model risks

Using copulas, measures of non-linear dependence can be explored, e.g. the Spearman’s or
Kendall’s rank correlations.

These dependence measures are copula-based (not moment based)

Linear-correlation is not copula-based and can often be misleading when analysing
dependencies.
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Measures of dependence

Image from: Embrechts, Macneil and Straumann, Correlation and dependence in risk
management: properties and pitfalls, 1999
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Measures of dependency

Three important copulas: Fréchet-Hoeffding bounds

Independence copula, where the dependence structure is non-existent:

CI (u1, u2) = u1u2, (u1, u2) ∈ [0, 1]× [0, 1]

Fréchet upper bound copula, which bounds all copulas, from above:

Cu(u1, u2) = min(u1, u2), (u1, u2) ∈ [0, 1]× [0, 1]

also known as co-monotonic or minimum copula;
captures the relationship between two r.v. whose values are directly dependent
on each other.

Fréchet lower bound copula, which bounds all copulas, from below:

Cl (u1, u2) = max(0, u1 + u2 − 1), (u1, u2) ∈ [0, 1]× [0, 1]

also known as counter-monotonic or maximum copula;
captures the corresponding inverse relationship.
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Measures of dependency

Remarks

Thus, given a copula C , the following inequalities always hold:

Cl (u1, u2) 6 C(u1, u2) 6 Cu(u1, u2), (u1, u2) ∈ [0, 1]× [0, 1]

The Fréchet-Hoeffding lower bound Cd
l (u) = max(u1 + . . .+ ud − d + 1, 0) is not a copula

for d > 3

This is beacuse it is not possible to have three or more variables where each pair has a direct
inverse relationship

Cl (u1, u2) = max(u1 + u2 − 1, 0) C(u1, u2) = u1u2 Cu(u1, u2) = min(u1, u2)
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Measures of dependency

Measures of dependency

In the bivariate case, Cl and Cu are themselves copulas, since if U ∼ Unif (0, 1):

Cl (u1, u2) = P(U 6 u1, 1− U 6 u2) and Cu(u1, u2) = P(U 6 u1,U 6 u2)

so that Cl and Cu are the bivariate distribution functions of vectors (U, 1− U) and (U,U),
respectively.

Cl : the cdf of (U, 1 − U) has its mass on the diagonal between (0, 1) and (1, 0)
Cu : the cdf of (U,U) has its mass on the diagonal between (0, 0) and (1, 1)

In these cases we say that Cl and Cu describe perfect negative and perfect positive
dependence, respectively

Cl (u1, u2) = max(u1 + u2− 1, 0) C(u1, u2) = u1u2 Cu(u1, u2) = min(u1, u2)
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Measures of dependency

Theorem

Let (X1,X2) have one of the follwoing copulas:

Cl (F1(x1),F2(x2)) = max(F1(x1) + F2(x2)− 1, 0) or Cu(F1(x1),F2(x2)) = min(F1(x1),F2(x2))

Then there exist two monotonic functions u, v : R→ R and a real-valued r.v. Z such that

(X1,X2) =d (u(Z), v(Z))

with

u increasing and v decreasing in case of Cl

u and v increasing in case of Cu

The converse of this result is also true.

Cl (u1, u2) = max(u1 + u2 − 1, 0) C(u1, u2) = u1u2 Cu (u1, u2) = min(u1, u2)
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Measures of dependency

Definition

If (X1,X2) has the copula Cl , then X1 and X2 are said to be countermonotonic

If (X1,X2) has the copula Cu , then X1 and X2 are said to be comonotonic

Cl (u1, u2) = max(u1 + u2− 1, 0) C(u1, u2) = u1u2 Cu(u1, u2) = min(u1, u2)
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Measures of dependency

Concordance

Let (x1, x2) and (x̃1, x̃2) be two observations from a vector (X1,X2).
Then (x1, x2) and (x̃1, x̃2) are said to be

concordant if (x1 − x̃1)(x2 − x̃2) > 0
(if the line segment connecting (x1, x2) and (x̃1, x̃2) has positive slope)

discordant if (x1 − x̃1)(x2 − x̃2) < 0
(if the line segment connecting (x1, x2) and (x̃1, x̃2) has negative slope)

Intuitive idea:

Two r.v.’s X1 and X2 are concordant when large values of X1 go together with large values
of X2.
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Measures of dependency

Probabilities of concordance and discordance

Let (X1,X2) and (X̃1, X̃2) be two independent pairs of r.v.’s with the same margins,
F1 for X1 and X̃1, and F2 for X2 and X̃2. Then

P((X1 − X̃1)(X2 − X̃2) > 0) is the probability of concordance

P((X1 − X̃1)(X2 − X̃2) < 0) is the probability of discordance

Difference between the probabilities of concordance and discordance

If, furthermore, the joint distribution of (X1,X2) is given by copula C and the joint distribution of
(X̃1, X̃2) is given by copula C̃ , and X1 and X2 are continuous r.v.’s, then

P((X1 − X̃1)(X2 − X̃2) > 0)− P((X1 − X̃1)(X2 − X̃2) < 0) = 4

∫ 1

0

∫ 1

0
C̃(u1, u2)dC(u1, u2)− 1

Where

dC(u1, u2) =

c(u1,u2)︷ ︸︸ ︷
∂2C(u1, u2)

∂u1∂u2
f1(F−1(u1))f2(F−1(u2))du1du2

= c(F1(x1),F1(x2))f1(x1)f2(x2)dx1dx2 = fX (x1, x2)dx1dx2
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Measures of dependency

Desired properties of depedence measures: concordance measures (Denuit et.al. 2005)

The function r(·, ·) assigning a real number to any (bivariate cdf of a) pair of real valued r.v.’s
(X1,X2) is a concordance measure if it fulfills the following properties:

P1 r(X1,X2) = r(X2,X1) (symmetry)

P2 −1 6 r(X1,X2) 6 1 (normalization)

P3 r(X1,X2) = 1 if and only if X1 and X2 are comontonic

P4 r(X1,X2) = −1 if and only if X1 and X2 are countermontonic

P5 t : R→ R strictly monotonic, then

r(t(X1),X2) =

{
r(X1,X2), if t is increasing
−r(X1,X2), if t is decreasing

Remarks

Linear correlation fulfills properties P1 and P2 only

One might think of other desirable properties. These are however incompatible with P1-P5

E.g., another interesting property could be

r(X1,X2) = 0⇐⇒ X1 independent from X2

Unfortunately, this contradicts P5.

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2018/19 30 / 58



Introduction to Copulas Measures of dependency

Measures of dependency

Kendall’s tau τK rank correlation coefficient

Difference between the probabilities of concordance and discordance:

τK = P((X1 − X̃1)(X2 − X̃2) > 0)− P((X1 − X̃1)(X2 − X̃2) < 0)

For (X1,X2) and (X̃1, X̃2), independent and identically distributed continuous bivariate r.v.’s

with marginals F1 for X1 and X̃1, and F2 for X2 and X̃2

It is easy to sea that
τK = E [sign(X1 − X̃1)(X2 − X̃2)]

If the vector of continuous r.v.’s (X1,X2) has copula C , then

τK = 4

∫ 1

0

∫ 1

0
C(u1, u2) dC(u1, u2)− 1 = 4E [C(U,V )]− 1
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Measures of dependency

Spearman’s rho ρS rank correlation coefficient

Proportional to the difference between the probabilities of concordance and discordance
between vectors (X1,X2) and (X̃1,X∗2 ), where (X1,X2), (X̃1, X̃2) and (X∗1 ,X

∗
2 ) are

independent copies:

τK = 3
(
P((X1 − X̃1)(X2 − X∗2 ) > 0)− P((X1 − X̃1)(X2 − X∗2 ) < 0)

)
Note that X̃1 and X∗2 are independent

It is proportional to the probability of concordance minus the probability of discordance for a
pair of random vectors with the same marginals, where one of the pairs has independent
components

If the vector of continuous r.v.’s (X1,X2) has copula C , then

ρS = 12

∫ 1

0

∫ 1

0
C(u1, u2) du1du2 − 3 = 12

∫ 1

0

∫ 1

0
(C(u1, u2)− u1u2) du1du2

We have that

ρS (X1,X2) = ρ(F1(X1),F2(X2)) =
Cov(F1(X1),F2(X2))√

Var(F1(X1))
√

Var(F2(X2))
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Measures of dependency

Properties of Kendall’s and Spearman’s rank correlations: concordance measures

Let rC (X1,X2) = τK or rC (X1,X2) = ρS , for copula C

1. They are defined for every pair (X1,X2) of continuous r.v.’s

2. −1 6 rC (X1,X2) 6 1, rC (X1,X1) = 1 and rC (X1,−X1) = −1

3. rC (X1,X2) = rC (X2,X1)

4. X1 and X2 independent, then rC (X1,X2) = 0

5. rC (−X1,X2) = rC (X1,−X2) = −rC (X1,X2)

6. If C and C̃ are copulas such that C(u1, u2) 6 C̃(u1, u2) and

C(1− u1, 1− u2) 6 C̃(1− u1, 1− u2), for all (u1, u2) ∈ [0, 1]2 (C is smaller than C̃ , C ≺ C̃),
then

rC (X1,X2) 6 rC̃ (X1,X2)

7. If (X n
1 ,X

n
2 ) is a sequence of continuous r.v. with copulas Cn and if Cn converges pointwise to

C , then
lim

n→∞
rCn (X1,X2) = rC (X1,X2)

Furthermore

rC (X1,X2) = 1⇐⇒ C = Cu

rC (X1,X2) = −1⇐⇒ C = Cl
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Measures of dependency

Remarks

Kendall’s tau and Spearman’s rho are rank correlations in that, when the marginals are
continuous, they depend only on the bivariate copula and not on the marginals.

Kendall’s tau and Spearman’s rho for the r.v. (X1,X2) are invariant under strictly increasing
componentwise transformations. This is not true for Pearson’s linear correlation.

The linear correlation coefficient, based on the covariance of two r.v.’s, is not preserved by
copulas: two pairs of correlated variables with the same copula can have different
correlations.

Kendall’s correlation is constant for the copula: any correlated variates with the same copula
will have the τK of that copula
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Tail dependency

Tail dependency

Amount of dependence in the upper-right-quadrant tail, or lower-left-quadrant tail, of a
bivariate distribution

Relevant for the study of dependence between extreme outcomes

(from Loss Models) “although in ’normal times’ there may be little correlation, in ’bad times’
there may be signifficant correlation between risks. (’Everything seems to go wrong at
once.’)”

Tail dependency

Measures of tail dependence have been developed to evaluate how strong the correlation is in
the upper (or lower) tails.

It turns out that tail dependence between two continuous r.v.’s X1 and X2 is a copula
property

Hence, the amount of tail dependence is invariant under strictly increasing transformations of
X1 and X2
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Tail dependency

Index of upper tail dependence

Consider two continuous r.v.’s X1 and X2 with marginal distributions F1(x1) and F2(x2).

The index of upper tail dependence, λU , is defined as

λU = lim
u→1

P(X1 > F−1
1 (u)|X2 > F−1

2 (u))

provided the limit λU ∈ [0, 1] exists.

Obviously 0 6 λU 6 1

If λU ∈ (0, 1], X1 and X2 are said to be asymptotically dependent (in the upper tail)

If λU = 0, they are asymptotically independent (upper tail independent)
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Tail dependency

Remarks

The index of upper tail dependence measures the chances that X1 is very large if it is known
that X2 is very large, where “very large” is measured in terms of equivalent quantiles.

If (X1,X2) has joint distribution given by copula C , then

λU = lim
u→1

1− 2u + C(u, u)

1− u
= lim

u→1

C(1− u, 1− u)

1− u

i.e., tail dependence can be measured by looking at the copula rather than the original
distribution.
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Tail dependency

Index of lower tail dependence

Consider two continuous r.v.’s X1 and X2 with marginal distributions F1(x1) and F2(x2).

The index of lower tail dependence, λL, is defined as

λL = lim
u→0

P(X1 6 F−1
1 (u)|X2 6 F−1

2 (u))

If (X1,X2) has joint distribution given by copula C , then

λL = lim
u→0

C(u, u)

u
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Tail dependency

Index of tail dependence

We will focus in the upper tail dependence (upper-right-quadrant tail)

The index of tail dependence is a very useful measure in describing and comparing copulas.

Examples

The tail indices of the independence copula are λU = λL = 0 (tail independence)

For the comonotonic copula Cu(u1, u2) = min(u1, u2) we have that λU = λL = 1 (perfet tail
dependence)
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Tail dependency

Example: Pareto’s copula

λU = lim
u→1

[
2(1− u)−1/α − 1

]−α
1− u

= 2−α

and

λL = lim
u→0

2u − 1 +
[
2(1− u)−1/α − 1

]−α
u

= 0

Pareto’s copula has upper tail dependence and no lower tail dependence.

Example: Clayton’s copula

λU = lim
u→1

1− 2u +
(
2u−α − 1

)−1/α

1− u
= 0

and

λL = lim
u→0

(
2u−α − 1

)−1/α

u
= 2−1/α

Clayton’s copula (for α > 0) has lower tail dependence and no upper tail dependence.
(Recall that Clayton’s copula is Pareto’s survival copula with dependence parameter 1/α)

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2018/19 40 / 58



Introduction to Copulas Archimedean copulas

Archimedean copulas

The generator function

φ : [0, 1]→ R+, such that

possibly infinite, with continuous first and second derivatives on (0, 1)

φ(1) = 0

φ′(t) < 0 (strictly decreasing), for all t ∈ [0, 1]

φ′′(t) > 0 (convex), for all t ∈ [0, 1]

the inverse generator φ−1(t) is completely monotonic on [0,∞]:

(−1)n
dn

dtn
φ−1(t) > 0, n = 1, 2, 3 . . .

Archimedean copula

C(u1, u2) = φ−1 [φ(u1) + φ(u2)]

The support is the area in the unit square where φ(u1) + φ(u2) 6 φ(0)

If φ(0) =∞ (φ is a strict generator), then the support is the entire unit square and the
copula is said to be a strict Archimedean copula
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Archimedean copulas

Remark

The class of Archimedean copulas allow for a great variety of different dependence structures

Kendall’s tau for Archimedean copulas (see e.g. Nelsen, 2013)

τK = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt

This formula allows very easy comparisons of Archimedean copulas based solely on their generators.
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Archimedean copulas

Upper tail dependence for Archimedean copulas

λU = 2− 2 lim
t→0

d
dt
φ−1(2t)

d
dt
φ−1(t)

provided that limt→0
d
dt
φ−1(t) = −∞

If limt→0
d
dt
φ−1(t) 6= −∞, there is no upper tail dependence

Lower tail dependence for Archimedean copulas

λL = 2 lim
t→+∞

d
dt
φ−1(2t)

d
dt
φ−1(t)

provided that limt→+∞
d
dt
φ−1(t) = 0

If limt→+∞
d
dt
φ−1(t) 6= 0, there is no lower tail dependence
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Archimedean copulas

Independence copula

φ(u) = − ln u

C(u1, u2) = u1u2

τK = 0

λU = λL = 0

Countermonotonic copula (Fréchet-Hoeffding lower bound)

φ(u) = 1− u

C(u1, u2) = max(u1 + u2 − 1, 0)

τK = −1
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Archimedean copulas

Clayton copula

φ(u) =
t−α − 1

α
, α ∈ [−1,+∞) \ {0}

Cα(u1, u2) = max((u−α1 + u−α2 − 1)−1/α, 0)

Cα(u1, u2) = (u−α1 + u−α2 − 1)−1/α, for α > 0 (sctrict Archimedean copula)

τK =
α

α+ 2

λU = 0 (no upper tail dependence)

λL = 2−1/α (lower tail dependence for α > 0)

lim
α→−1

C(u1, u2) = Cl (u1, u2) = max(u1 + u2 − 1, 0)

lim
α→0

C(u1, u2) = u1u2

lim
α→+∞

C(u1, u2) = Cu(u1, u2) = min(u1, u2)
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Archimedean copulas

Frank copula

φ(u) = − ln

[
e−αu − 1

e−α − 1

]
, α ∈ (−∞,+∞) \ {0}

Cα(u1, u2) = −
1

α
log

(
1 +

(e−α u1 − 1)(e−α u2 − 1)

e−α − 1

)
(sctrict Archimedean copula)

τK = 1− 4
1− D1(α)

α
where Dk (x) is the Debye function: Dk (x) =

k

xk

∫ x

0

tk

et − 1
dt

λU = 0 (no upper tail dependence)

no lower tail dependence

lim
α→−∞

C(u1, u2) = Cl (u1, u2) = max(u1 + u2 − 1, 0)

lim
α→0

C(u1, u2) = u1u2

lim
α→+∞

C(u1, u2) = Cu(u1, u2) = min(u1, u2)
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Archimedean copulas

Gumbel copula (Gumbel-Hougaard)

φ(u) = (− ln u)α, α > 1

Cα(u1, u2) = exp
(
− [(− ln u1)α + (− ln u2)α]1/α

)
(sctrict Archimedean copula)

τK = 1−
1

α

λU = 2− 21/α (upper tail dependence for α 6= 1)

no lower tail dependence

lim
α→1

C(u1, u2) = u1u2

lim
α→+∞

C(u1, u2) = Cu(u1, u2) = min(u1, u2)
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Archimedean copulas

Joe copula

φ(u) = − ln [1− (1− u)α] , α > 1

Cα(u1, u2) = 1− [(1− u1)α + (1− u2)α − (1− u1)α(1− u2)α]1/α (sctrict Arch. copula)

τK has no (convenient) closed form

λU = 2− 21/α (upper tail dependence for α 6= 1)

no lower tail dependence
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Archimedean copulas

BB1 copula

φ(u) = (u−δ − 1)α, δ > 0, α > 1

Cα(u1, u2) =

[
1 +

(
(u−δ1 − 1)α + (u−δ2 − 1)α

)1/α
]−1/δ

λU = 2− 21/α (upper tail dependence for α 6= 1)

has lower tail dependence

BB3 copula

φ(u) = eδ(− ln u)α − 1, δ > 0, α > 1

Cα(u1, u2) = exp

[
−

1

δ

(
ln
(
eδ(− ln u1)α + eδ(− ln u2)α − 1

))]1/α

λU = 2− 21/α (upper tail dependence for α 6= 1)

has lower tail dependence
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Elliptical copulas

Elliptical copulas

Copulas of elliptical distributions

The two main models are the Gaussian copula, associated with the multivariate normal
distribution, and the student t copula, associated with the multivariate t distribution

Elliptical copulas

Let FX be the multivariate cdf of an elliptical distribution and let F1 and F2 be the marginal cdf’s.
The elliptical copula determined by FX is

C(u1, u2) = FX (F−1
1 (u1),F−1

2 (u2))

The extension to d dimensions is obvious
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Gaussian copula

Gaussian copula

C(u1, u2) = ΦP(Φ−1(u1),Φ1(u2))

where φ(x) is the standard univariate normal cdf and ΦP is the joint cdf of the standard multivariate
normal r.v., with mean 0 and variance 1 in each component and correlation mattrix P

The extension to d dimensions is obvious

Because the correlation matrix contains d/(d − 1)/2 pairwise correlations, this is the number
of parameters in the copula

There is no simple closed form for the copula

C(u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2
e
−

x2
1 −2ρx1x2+x2

2
2(1−ρ2) dx1 dx2
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Gaussian copula

Remarks

If all correlations in P are zero, the Gaussian copula reduces to the independence copula

It is easy to simulate observations from this copula

Gaussian copula

τK = 2
π

arcsin(ρ)

ρS = 6
π

arcsin ρ
2{

λU = λL = 0, if ρ 6= 1
λU = λL = 1, if ρ = 1
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Student t copula

Student t copula

C(u1, u2) = tν,P(t−1
ν (u1), t1

ν(u2))

where tν(x) is the standard univariate t cdf with ν degrees of freedom and tν,P is the joint cdf of
the standard multivariate t r.v. with ν degrees of freedom, with correlation mattrix P

The extension to d dimensions is obvious

There is no simple closed form for the copula

C(u1, u2) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1

2π
√

1− ρ2

[
1 +

x2
1 − 2ρx1x2 + x2

2

ν(1− ρ2)

]−1− ν
2

dx1 dx2
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Student t copula

Student t copula

τK = 2
π

arcsin(ρ)

λU = 2tν+1

(
−
√

1−ρ
1+ρ

(ν + 1)
)

has lower tail dependence

Remarks

If all correlations in P are zero, the t copula does not reduces to the independence copula

ρ = 0 ; λU = 0

For fixed correlation coefficient ρ, the degree of upper tail dependence can be tuned tgrough
the single parameter ν
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Elliptical copulas

Remarks (Embrechts et.al., 2002)

The Gaussian copula has the property of asymptotic independence. Regardless of how high a
correlation we choose, if we go far enough into the tail, extreme events appear to occur
independently in each margin.

In contrast, the t-copula displays asymptotic upper tail dependence even for negative and
zero correlations, with dependence rising as the degrees of freedom parameter decreases and
the marginal distributions become heavy-tailed
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Extreme value copulas

Extreme value copulas

Important class of copulas associated with the extreme value distributions

Defined in terms of the scaling property of extreme value distributions

Extreme value copulas

An extreme value (EV) copula is given by

C(un1 , . . . , u
n
d ) = Cn(u1, . . . , ud ), ∀(u1, . . . , ud ) ∈ [0, 1]d , n > 0

Extreme value copulas

The scale property results in the EV copula having the stability of the maximum (or
max-stable) property:

Cmax(un1 , u
n
2 ) = Cn(u1, u2)

If the copula is an EV copula, than the copula for the maxima is also an EV copula

EV copulas are those with max-stable property: the copula associated with (MX1
,MX2

) is
also C
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Extreme value copulas

Extreme value copulas

In the bivariate case, EV copulas can be represented as

C(u1, u2) = exp

[
ln(u1u2)A

(
ln u1

ln(u1u2)

)]
where A is a dependence function

A(w) =

∫ 1

0
max(x(1− w),w(1− x))dH(x), ∀w ∈ [0, 1]

and H is a distribution function.
A(w) must be convex verifying

max(w , 1− w) 6 A(w) 6 1, 0 < w < 1

Extreme value copulas

A(w) = 1 leads to the independence copula

A(w) = max(w , 1−w) leads to perfect correlation, i.e., perfect dependency with C(u, u) = u
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Extreme value copulas

Extreme value copulas

λU = 2− 2A(1/2)

There are several well-known copulas in this class

Gumbel copula

A(w) = [wα + (1− w)α]1/α , α > 0

λU = 2− 2A(1/2) = 2− 21/α

Galambos copula

A(w) = 1−
[
w−α + (1− w)−α

]−1/α
, α > 0

It is not an Archimedean copula

C(u1, u2) = u1u2 exp
[(

(− ln u1)−α + (− ln u2)−α
)−1/α

]
λU = 2− 2A(1/2) = 2−1/α
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