Probability and Stochastic Processes

Master in Actuarial Sciences

Alexandra Bugalho de Moura

2018/2019

General Notions of Stochastic Processes

General Notions of Stochastic Processes

Stochastic Process

Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving some randomness.

Examples are

- the length of a queue
- the temperature outside
- the number of students passing Statistics I at ISEG along time
- the number of claims in a portfolio along time

Some definitions

Definition: stochastic process

Given a probability space (Ω, \mathcal{F}, P) and an arbitrary set T, a **stochastic process** is a real and finite function $X(t,\omega)$ defined in $T\times\Omega$, and that for each fixed t $X(t,\omega)$ is a measurable function of $\omega \in \Omega$

$$\{X(t,\omega):t\in\mathcal{T}\}$$

Thus

- A stochastic process $\{X_t\}_{t\in\mathcal{T}}$ is a family of random variables $X_t:\Omega\to\mathbb{R}$ indexed by a parameter t (usually the time).
- \bullet For each fixed t, X_t is a random variable

Common notation:

$$\{X(t); t \in T\}, \{X(t)\}_{t \in T}, \{X_t; t \in T\}, \{X_t\}_{t \in T}.$$

$$\{X(t); t \ge 0\}, \{X(t)\}_{t \ge 0}, \{X_t; t = 0, 1, \dots\}, \{X_t\}_{t=0}^{\infty}.$$

Some definitions

Definition: parameter space

T is called the parameter space.

Definition: state space

The set pf all possible values of X_t is the state space S.

Definition: trajectory or sample path

Joint realization of the random variables X_t for all $t \in T$. It is a function from T to S.

Examples

- sample path of the number of claims
- sample path of the aggregate claim amount

Specification

Joint distribution function

For an arbitrary finite set t_1,t_2,\ldots,t_n of values $t\in \mathcal{T}$, the corresponding r.v.'s $X(t_1),X(t_2),\ldots,X(t_n)$ have joint distribution function

$$F(x_1, x_2, \dots, x_n; t_1, t_2, \dots, t_n) = P(X(t_1) \leqslant x_1, \dots, X(t_n) \leqslant x_n)$$
 (1)

Definition: temporal law

The temporal law $\{X(t); t \in T\}$ is a family of functions (1) for n = 1, 2, ... and all possible values $t_j, j = 1, 2, ..., n$

Alternatively, a stochastic process can be specified by the joint characteristic function given by

$$\varphi_{X(t_1),X(t_2),\ldots,X(t_n)}(s_1,s_2,\ldots,s_n) = E\left[\exp\left(i\sum_{k=1}^n s_k X(t_k)\right)\right]$$

Classification of a stochastic process

The classification of a stochastic process can be based on:

- the parametric space T
- the state space S
- ullet the dependence relations betwen the random variables X(t)

Definition

- ullet If T is countable, we say $\{X(t)\}_{t\in T}$ is a **discrete-time** stochastic process
- if T is a continuum, we say $\{X(t)\}_{t\in T}$ is a **continuous-time** stochastic process

Definition

- If S is countable, we say $\{X(t)\}_{t\in\mathcal{T}}$ is a **discrete** stochastic process
- if S is a continuum, we say $\{X(t)\}_{t\in\mathcal{T}}$ is a **continuous** stochastic process

Definition: independent increments

A continuous-time stochastic process $\{X(t): t \in T\}$ is said to have **independent increments** if, for all $t_0 < t_1 < \cdots < t_n < t$, the random variables

$$X(t_1) - X(t_0), \ X(t_2) - X(t_1), \ \ldots, \ X(t_n) - X(t_{n-1})$$

are independent.

Independent increments

For a process with independent increments, the probability law of X(t) and X(t) - X(s), for all t and s, specifies the process.

Definition: stationary increments

The stochastic process $\{X(t):t\in\mathcal{T}\}$ has **stationary increments** if the random variable

$$X(t_2+h)-X(t_1+h)$$

has the same distribution of

$$X(t_2)-X(t_1)$$

for all t_1 , t_2 and $h \leq 0$.

Independent and stationary increments

If a process has independent and stationary increments, the probability law of X(t) specifies the process.

Definition: counting process

A counting process is a stochastic process, in discrete or continuous time, whose state space is

$$\mathcal{S} = \{0,1,2,\ldots\}$$

with the property that X(t) is a non-decreasing function of t.

Definition: random walk

Stochastic process such that

- the initial value is X_0
- the process is observed at t = 1, 2, ...
- at time t = 1 the process jumps to $X_1 = X_0 + Z_1$, where the size of the jump Z_1 is a r.v. with a given distribution
- at time t = 2 the process jumps to $X_2 = X_1 + Z_2$, with Z_2 independent of Z_1 , but with the same distribution

After t jumps

$$X_t = X_0 + Z_1 + \cdots + Z_t = X_{t-1} + Z_t$$

where Z_t , t = 1, 2, ... is a sequence pf i.i.d. random variables.

Definition: simple random walk

Random walk where the r.v.'s Z_t take only the values -1,0 and 1 with probabilities p, 1-p-q and q.

Definition: symmetric random walk

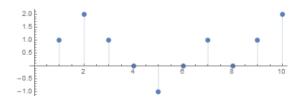
Random walk where the r.v.'s Z_t take only the values -1 and 1 with probabilities 1/2.

Definition: white noise

A white noise is a stochastic process that consists of a set of independent and identically distributed random variables. The random variables can be either discrete or continuous and the time set can be either discrete or continuous.

Example: white noise

 $\{Z_t: t=1,2,\ldots\}$ in the random walk is a white noise.



Definition: stationary stochastic process

A stochastic process $\{X(t): t \in T\}$ is said to be stationary or strictly stationary, if the joint distribution of

$$(X(t_1),X(t_2),\ldots,X(t_n))$$

and

$$(X(t_1+h),X(t_2+h),\ldots,X(t_n+h))$$

are identical for all h and for all $t_1, t_2, \ldots, t_n \in T$, and for all integer n.

Markov property

The future, given the present, does not depend on the past.

Definition: Markov process

Stochastic process satisfying the Markov property:

$$P(a < X(t_{n+1}) \le b | X(t_1) = x_1, X(t_2) = x_2, \dots, X(t_n) = x_n) = P(a < X(t_{n+1}) \le b | X(t_n) = x_n)$$

for all $t_1 < t_2 < \cdots < t_n < t_{n+1}, x_1, \dots, x_n$, a and b.

Or, in continuous time,

$$P(a < X(t+h) \leqslant b|\mathcal{F}_t) = P(a < X(t+h) \leqslant b|X_t)$$

where \mathcal{F}_t is a natural filtration of the process (σ -algebra generated by the process up to time t).

Markov processes

- A stochastic process with independent increments is a Markov process.
- A random walk is a Markov process.

Definition: Poisson process

Counting process, with X(0) = 0, with independent and stationary increments and such that

$$P(X(t) = k) = \frac{e^{-\lambda t} (\lambda t)^k}{k!}, \quad k = 0, 1, 2, ...$$

where $\lambda > 0$ is denoted the intensity of the process.

Poisson process

• The Poisson process is a Markov process.