LISBON
SCHOOL OF ECONOMICS \& MANAGEMENT

Master in Actuarial Sciences

Probability and Stochastic Processes

04/01/2019
1.

$$
\begin{array}{rlrl}
X \mid \Theta= & \theta \sim \operatorname{Gamma}(\theta, \alpha=3) & & E[X \mid \Theta=\theta]=3 \theta \text { and } V[X \mid \Theta=\theta]=3 \theta^{2} \\
& \Theta \sim N\left(\mu=5, \sigma^{2}=10\right) & E[\Theta]=5, V[\Theta]=10, E\left[\Theta^{2}\right]=\sigma^{2}+\mu^{2}=35 \\
& \\
E[X] & = & E[E(X \mid \Theta)]=E[3 \Theta]=3 E[\Theta]=15 \\
V[X] & =V[E(X \mid \Theta)]+E[V(X \mid \Theta)]=V[3 \Theta]+E\left[3 \Theta^{2}\right]=9 V[\Theta]+3 E\left[\Theta^{2}\right]=195 \\
\sqrt{V[X]} & =\sqrt{195}=13.9642
\end{array}
$$

2. (a) X is distributed as a Fréchet extreme value distribution.

Let $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$, where $X_{i}, i=1, \ldots, n$ are i.i.d to X and n is fixed.

$$
P\left(M_{n} \leqslant x\right)=[P(X \leqslant x)]^{n}=\left(\exp \left(-\left(\frac{x-\mu}{\theta}\right)^{-\alpha}\right)\right)^{n}=\exp \left(-n\left(\frac{x-\mu}{\theta}\right)^{-\alpha}\right)=\exp \left(-\left(\frac{x-\mu}{n^{1 / \alpha} \theta}\right)^{-\alpha}\right)
$$

The distribution of M_{n} is also a Frechét distribution with new parameter $\theta^{*}=n^{1 / \alpha} \theta$, thus this distribution is maxstable.
(b) $W \sim \operatorname{Exp}(1), \quad P(W>w)=e^{-x}$

$$
P\left(\theta W^{-1 / \alpha}+\mu \leqslant x\right)=P\left(W^{-1 / \alpha} \leqslant \frac{x-\mu}{\theta}\right)=P\left(W>\left(\frac{\theta}{x-\mu}\right)^{\alpha}\right)=P\left(W>\left(\frac{x-\mu}{\theta}\right)^{-\alpha}\right)=e^{-\left(\frac{x-\mu}{\theta}\right)^{-\alpha}}=P(X \leqslant x)
$$

(c) μ is a location parameter because the distribution of $X-\mu$ does not depended on μ :

$$
P(X-\mu \leqslant x)=P(X \leqslant x+\mu)=\exp \left(-\left(\frac{x+\mu-\mu}{\theta}\right)^{-\alpha}\right)=\exp \left(-\left(\frac{x}{\theta}\right)^{-\alpha}\right)
$$

(d) $P(X-\mu \leqslant x)=\exp \left(-\left(\frac{x}{\theta}\right)^{-\alpha}\right)$.
θ is a scale parameter for $X-\mu$, because the distribution of $\frac{X-\mu}{\theta}$ is independent of θ :

$$
P\left(\frac{X-\mu}{\theta} \leqslant x\right)=P(X-\mu \leqslant \theta x)=\exp \left(-\left(\frac{\theta x}{\theta}\right)^{-\alpha}\right)=\exp \left(-(x)^{-\alpha}\right)
$$

(e) i)

$$
q: F_{X}(q)=0.95 \quad \Leftrightarrow \quad q=\frac{4}{\sqrt{-\log (0.95)}}=17.6616
$$

ii) $Z \sim \operatorname{Pareto}(\alpha=2, \theta=5), P(Z>x)=\left(\frac{5}{5+x}\right)^{2}$

$$
\lim _{x \rightarrow \infty} \frac{S_{X}(x)}{S_{Z}(x)}=\lim _{x \rightarrow \infty} \frac{1-e^{-\left(\frac{x}{4}\right)^{-2}}}{\left(\frac{5}{5+x}\right)^{2}}=\lim _{x \rightarrow \infty} \frac{-2 \frac{4^{2}}{x^{3}} e^{-\left(\frac{x}{4}\right)^{-2}}}{-2 \frac{25}{(5+x)^{3}}}=\lim _{x \rightarrow \infty}\left(\frac{5+x}{x}\right)^{3} \frac{16}{25} e^{-\left(\frac{x}{4}\right)^{-2}}=\frac{16}{25}
$$

They have the same tail behaviour, according to the limit of the ratio of their survival functions.
iii) Defining $X^{(d)}$ such that $P\left(X^{(d)}=0\right)=1$, i.e. $F^{(d)}(x)=\left\{\begin{array}{ll}0, & x<0 \\ 1, & x \geqslant 0\end{array}\right.$, then

$$
\begin{aligned}
F_{Y}(y) & =0.9 F^{(d)}(y)+0.1 F_{X}(y) \\
& =0.9\left\{\begin{array}{ll}
0, & x<0 \\
1, & x \geqslant 0
\end{array}+0.1\left\{\begin{array}{ll}
0, & x<0 \\
e^{-\left(\frac{y}{4}\right)^{-2}}, & x \geqslant 0
\end{array}= \begin{cases}0, & x<0 \\
0.9+0.1 e^{-\left(\frac{y}{4}\right)^{-2}}, & x \geqslant 0\end{cases} \right.\right.
\end{aligned}
$$

iv) Y is a mixed random variable with discrete part $F^{(d)}(y)$ and continuous part $F_{X}(y)$.
3. Let $X_{1} \sim \operatorname{Exp}(\theta=5)$, with $f_{X_{1}}(x)=\frac{1}{5} e^{-\frac{x}{5}}$ and $X_{2} \sim \operatorname{Pareto}(\alpha=3, \theta=30)$, with $f_{X_{2}}(x)=\frac{3 \times 30^{3}}{(x+30)^{4}}$.

$$
\begin{equation*}
\int_{0}^{15} \frac{1}{5} e^{-\frac{x}{5}} d x=1-e^{-3} \quad \text { and } \quad \int_{15}^{+\infty} \frac{3 \times 30^{3}}{(x+30)^{4}} d x=\left(\frac{30}{45}\right)^{3} \tag{15}
\end{equation*}
$$

The spliced density function is:

$$
f(x)= \begin{cases}p \frac{1}{5} \times \frac{e^{-\frac{x}{5}}}{1-e^{-3}}, & 0<x<15 \\ (1-p)\left(\frac{45}{30}\right)^{3} \frac{3 \times 30^{3}}{(x+30)^{4}}, & x>15\end{cases}
$$

To obtain continuity:

$$
p \frac{1}{5} \times \frac{e^{-\frac{15}{5}}}{1-e^{-3}}=(1-p)\left(\frac{45}{30}\right)^{3} \frac{3 \times 30^{3}}{(15+30)^{4}} \quad \Longleftrightarrow \quad p=0.864164
$$

Thus

$$
f(x)= \begin{cases}0.864164 \times \frac{1}{5} \frac{e^{-\frac{x}{5}}}{1-e^{-3}}, & 0<x<15 \\ 0.135836 \times\left(\frac{45}{30}\right)^{3} \frac{3 \times 30^{3}}{(x+30)^{4}}, & x>15\end{cases}
$$

4. (a)

$$
\begin{aligned}
& P(X>x)=P(X>x, Y>0)=\left(e^{x}+1-1\right)^{-1}=e^{-x} \quad \Longrightarrow X \sim \operatorname{Exp}(1) \\
& P(Y>y)=P(X>0, Y>y)=\left(1+e^{y}-1\right)^{-1}=e^{-y} \quad \Longrightarrow Y \sim \operatorname{Exp}(1)
\end{aligned}
$$

The survival copula $\bar{C}(u, v)$ is such that $\bar{C}\left(1-F_{X}(x), 1-F_{Y}(y)\right)=P(X>x, Y>y)$.
Since $\left.P(X>x, Y>y)=\left(\left(1-F_{X}(x)\right)^{-1}+\left(1-F_{Y}(y)\right)^{-1}-1\right)\right)^{-1}$, we obtain $\bar{C}(u, v)=\left(u^{-1}+v^{-1}-1\right)^{-1}$.
(b)

$$
\lambda_{U}=\lim _{u \rightarrow 1} \frac{\bar{C}(1-u, 1-u)}{1-u}=\lim _{u \rightarrow 1} \frac{\left(\frac{1}{1-u}+\frac{1}{1-u}-1\right)^{-1}}{1-u}=\cdots=\frac{1}{2}
$$

5. (a) All states comunicate and are aperiodic, thus, being finite, the chain is regular.

$$
\begin{array}{r}
\\
\\
1 \\
2 \\
2 \\
2
\end{array}\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0.85 & 0.1 & 0.05 & 0 & 0 \\
0.85 & 0 & 0.1 & 0.05 & 0 \\
4 \\
5 \\
\hline 0.85 & 0 & 0 & 0.1 & 0.05 \\
0.85 & 0 & 0 & 0 & 0.15 \\
0.85 & 0 & 0 & 0 & 0.15
\end{array}\right)
$$

(b)

$$
\begin{aligned}
& P_{21}^{(2)}=(0.85,0,0.1,0.05,0) \cdot(0.85,0.85,0.85,0.85,0.85)=0.85 \\
& P_{25}^{(2)}=(0.85,0,0.1,0.05,0) \cdot(0 ., 0 ., 0.05,0.15,0.15)=0.0125
\end{aligned}
$$

(c) The transition probabilities from state two in one step are (second line of $P) P_{2 i}=(0.85,0,0.1,0.05,0)$, and the transition probabilities from state 2 in two steps are (second line of $\left.P^{2}\right) P_{2 i}^{(2)}=(0.85,0.085,0.0425,0.01,0125)$.
Exp. premium on the 1st renewal: $0.85 \times 240+0.1 \times 400+0.05 \times 600=274$
Exp. premium on the 2nd renewal: $0.85 \times 240+0.085 \times 320+0.0425 \times 400+0.01 \times 600+0.0125 \times 800=264.2$
(d) The liminting distribution exists because the chain is regular, since it is irreducible, finite and aperiodic. Solving $\boldsymbol{\pi} P=\boldsymbol{\pi}$ for $\boldsymbol{\pi}$, with $\pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}+\pi_{5}=1$, we obtain

$$
\boldsymbol{\pi}=(0.85,0.085,0.051,0.00935,0.00465)
$$

(e) In the long-run, the expected premium is
$(0.85,0.085,0.051,0.00935,0.00465) \cdot(240,320,400,600,800)=260.93$
(f) $m_{1}=\frac{1}{\pi_{1}}=\frac{1}{0.85}=1.1765$
(g) Let $T=\min \left\{n \geqslant 0: X_{n}=5\right\}$, the number of years a policyholder takes to visit state 5 for the first time. And let $v_{i}=E\left[T \mid X_{0}=i\right], i=1, \ldots, 5$. The quantity asked for is v_{2}. Using first step analysis, we have the following system of equations:

$$
\left\{\begin{array}{l}
v_{1}=1+0.85 v_{1}+0.1 v_{2}+0.05 v_{3} \\
v_{2}=1+0.85 v_{1}+0.1 v_{3}+0.05 v_{4} \\
v_{3}=1+0.85 v_{1}+0.1 v_{4} \\
v_{4}=1+0.85 v_{1}
\end{array}\right.
$$

Solving the system we obtain $\nu_{2}=249.46$ years.
6. (a)

$$
\begin{aligned}
Q & =\left[\begin{array}{ccc}
-\left(\mu_{01}(x)+\mu_{02}(x)\right) & \mu_{01}(x) & \mu_{02}(x) \\
0 & -\mu_{12}(x) & \mu_{12}(x) \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-0.0125-0.003 e^{0.015 x}-0.001 e^{0.01 x} & 0.005+0.003 e^{0.015 x} & 0.0075+0.001 e^{0.01 x} \\
0 & -0.0075-0.003 e^{0.04 x} & 0.0075+0.003 e^{0.04 x} \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(b) Since ${ }_{t} p_{x}^{10}={ }_{t} p_{x}^{20}=0$:

$$
\begin{aligned}
{ }_{t} p_{65}^{00} & ={ }_{t} p_{65}^{\overline{00}}=\exp \left(-\int_{65}^{65+t}\left(\mu_{01}(x)+\mu_{02}(x)\right) d x\right) \\
& =\exp \left(-\left(0.0125 t+0.2 e^{0.015 \times 65}\left(e^{0.015 t}-1\right)+0.1 e^{0.01 \times 65}\left(e^{0.01 t}-1\right)\right)\right) \\
{ }_{10} p_{65}^{00}=\exp (& \left.-\left(0.0125 \times 10+0.2 e^{0.015 \times 65}\left(e^{0.015 \times 10}-1\right)+0.1 e^{0.01 \times 65}\left(e^{0.01 \times 10}-1\right)\right)\right)=0.793775
\end{aligned}
$$

${ }_{10} p_{65}^{00}$ is the probability that an individual aged 65 that is non demented is still non demented at the age of 75.
(c)

$$
\begin{aligned}
{ }_{5} p_{75}^{12} & =1-{ }_{5} p_{75}^{11}=1-{ }_{5} p_{75}^{\overline{11}}=1-e^{-\int_{75}^{80} \mu_{12}(x) d x}=1-e^{-\int_{75}^{80}\left(0.0075+0.003 e^{0.04 x}\right) d x} \\
& =1-e^{-0.0075 \times 5-\frac{0.03}{0.04}\left(e^{0.04 \times 80}-e^{0.04 \times 75}\right)}=0.309973
\end{aligned}
$$

(d) ${ }_{10} p_{65}^{01}$ is the probability that an individual aged 65 that is non demented will become demented before the age of 75.

$$
{ }_{10} p_{65}^{01}=\int_{0}^{10}{ }_{w} p_{65}^{00} \mu_{01}(65+w)_{10-w} p_{65+w}^{11} d w
$$

where

$$
\begin{aligned}
w p_{65}^{00} & =\exp \left(-\left(0.0125 w+0.2 e^{0.015 \times 65}\left(e^{0.015 w}-1\right)+0.1 e^{0.01 \times 65}\left(e^{0.01 w}-1\right)\right)\right) \\
\mu_{01}(65+w) & =0.005+0.003 e^{0.015(65+w)} \\
{ }_{10-w} p_{65+w}^{11} & ={ }_{10-w} p_{65+w}^{\overline{11}}=\exp \left(-\int_{65+w}^{65+w+(10-w)} \mu_{12}(x) d x\right)=\exp \left(-\int_{65+w}^{75}\left(0.0075+0.003 e^{0.04 x}\right) d x\right)
\end{aligned}
$$

