LISBON
SCHOOL OF ECONOMICS \& MANAGEMENT

Master in Actuarial Sciences

Probability and Stochastic Processes

31/01/2019

1. N : number of claims per year, $E[N]=V[N]=0.18$.

$$
P(\bar{X}>0.218)=P\left(\frac{\bar{X}-0.18}{\sqrt{0.18 / 1000}}>\frac{0.218-0.18-\frac{0.5}{1000}}{\sqrt{0.18 / 1000}}\right) \underbrace{\approx}_{\text {C.L.T. }} 1-\Phi(2.795)=1-0.9974=0.0026
$$

Thus, it is unlikely to observe more than 218 claims in one year, in a portfolio of 1000 policies, with these assumptions for the mean and variance of the number of claims. With these observations, these assumptions should be revised.
2. $f_{X}(x)=\frac{x^{\alpha-1} e^{-x / \theta}}{\theta^{\alpha} \Gamma(\alpha)}$

$$
\begin{aligned}
M_{X}(t) & =E\left[e^{t X}\right]=\int_{0}^{+\infty} e^{t x} \frac{x^{\alpha-1} e^{-x / \theta}}{\theta^{\alpha} \Gamma(\alpha)} d x=\int_{0}^{+\infty} \frac{x^{\alpha-1} e^{-x(1 / \theta-t)}}{\theta^{\alpha} \Gamma(\alpha)} d x \\
& =\theta^{-\alpha}\left(\frac{1-\theta t}{\theta}\right)^{-\alpha} \int_{0}^{+\infty} \frac{x^{\alpha-1} e^{-x\left(\frac{1-\theta t}{\theta}\right)}}{\left(\frac{\theta}{1-\theta t}\right)^{\alpha} \Gamma(\alpha)} d x=(1-\theta t)^{-\alpha}
\end{aligned}
$$

3. (a) X is the mixture of $X_{1} \sim \operatorname{Gamma}\left(\frac{1}{4}, 2\right)$ and $X_{2} \sim \operatorname{Gamma}\left(\frac{1}{2}, 2\right)$ as follows

$$
f_{X}(x)=\frac{3}{4} f_{X_{1}}(x)+\frac{1}{4} f_{X_{2}}(x)=\frac{3}{4} \frac{4^{2} x e^{-4 x}}{\Gamma(2)}+\frac{1}{4} \frac{2^{2} x e^{-2 x}}{\Gamma(2)}=12 x e^{-4 x}+x e^{-2 x}
$$

(b)

$$
M_{X}(t)=\frac{3}{4} M_{X_{1}}(t)+\frac{1}{4} M_{X_{2}}(t)=\frac{3}{4}\left(1-\frac{t}{4}\right)^{-2}+\frac{1}{4}\left(1-\frac{t}{2}\right)^{-2}
$$

(c)

$$
\begin{aligned}
S_{X}(x) & =\int_{x}^{+\infty} f_{X}(t) d t=\int_{x}^{+\infty}\left(12 x e^{-4 x}+x e^{-2 x}\right) d t \\
& =12\left(\left[t \frac{e^{-4 t}}{-4 t}\right]_{x}^{+\infty}-\left[\frac{e^{-4 t}}{4^{2}}\right]_{x}^{+\infty}\right)+\left[t \frac{e^{-2 t}}{-2}\right]_{x}^{+\infty}-\left[\frac{e^{-2 t}}{2^{2}}\right]_{x}^{+\infty} \\
& =\frac{12}{4} x e^{-4 x}+\frac{12 e^{-4 x}}{16}+\frac{x e^{-2 x}}{2}+\frac{e^{-2 x}}{4}=3\left(x+\frac{1}{4}\right) e^{-4 x}+\frac{1}{2}\left(x+\frac{1}{2}\right) e^{-2 x}
\end{aligned}
$$

(d) $f_{X}(x)=\frac{3}{4} f_{X_{1}}(x)+\frac{1}{4} f_{X_{2}}(x)$, with
$X_{1} \sim \operatorname{Gamma}\left(\frac{1}{4}, 2\right), E\left[X_{1}\right]=\frac{1}{4} \times 2=\frac{1}{2}$, and $X_{2} \sim \operatorname{Gamma}\left(\frac{1}{2}, 2\right), E\left[X_{2}\right]=\frac{1}{2} \times 2=1$

$$
\begin{gathered}
E[X]=\int_{0}^{+\infty} x f_{X}(x) d x=\frac{3}{4} \int_{0}^{+\infty} x f_{X_{1}}(x) d x+\frac{1}{4} \int_{0}^{+\infty} x f_{X_{2}}(x) d x=\frac{3}{4} E\left[X_{1}\right]+\frac{1}{4} E\left[X_{2}\right]=\frac{3}{4} \times \frac{1}{2}+\frac{1}{4}=\frac{5}{8} \\
f_{e}(x)=\frac{S_{X}(x)}{E[X]}=\frac{8}{5} S_{X}(x)=\frac{24}{5}\left(x+\frac{1}{4}\right) e^{-4 x}+\frac{4}{5}\left(x+\frac{1}{2}\right) e^{-2 x}
\end{gathered}
$$

(e) Let $X_{3} \sim \operatorname{Gamma}\left(\alpha=2, \lambda=\frac{1}{\theta}\right), f_{X_{3}}(x)=\theta^{2} x e^{-\theta x}$

$$
\lim _{x \rightarrow \infty} \frac{S_{X}(x)}{S_{X_{3}}(x)}=\lim _{x \rightarrow \infty} \frac{f_{X}(x)}{f_{X_{3}}(x)}=\lim _{x \rightarrow \infty} \frac{12 x e^{-4 x}+x e^{-2 x}}{\theta^{2} x e^{-\theta x}}= \begin{cases}+\infty, & \theta>2 \Leftrightarrow \lambda<\frac{1}{2} \\ \theta^{-2}, & \theta=2 \Leftrightarrow \lambda=\frac{1}{2} \\ 0, & \theta<2 \Leftrightarrow \lambda>\frac{1}{2}\end{cases}
$$

If $\lambda<\frac{1}{2}, X$ is heavier tailed than X_{3}, if $\lambda=\frac{1}{2}, X$ and X_{3} have the same tail behaviour, if $\lambda>\frac{1}{2}, X$ is lighter tailed than X_{3}.
(f)

$$
Y=\left\{\begin{array}{ll}
0, & X<0.15 \\
X-0.15, & X \geqslant 0.15
\end{array}=\max (0, X-15)\right.
$$

$$
P(X<0.15)=1-S_{X}(0.15)=0.10066, \text { and } P(X-0.15 \leqslant y)=P(X \leqslant y+0.15)=1-S_{X}(y+0.15), \text { thus }
$$

$$
F_{Y}(y)=P(y \leqslant y)=\left\{\begin{array}{ll}
0, & y<0 \\
P(X \leqslant 0.15), & y=0 \\
P(X-0.15 \leqslant y), & y>0
\end{array}= \begin{cases}0, & y<0 \\
0.10066, & y=0 \\
1-3\left(y+0.15+\frac{1}{4}\right) e^{-4(y+0.15)}-\frac{1}{2}\left(y+0.15+\frac{1}{2}\right) e^{-2(y+0.15)}, & y>0\end{cases}\right.
$$

4. We have that

$$
f_{Z}(z)=\frac{d}{d z} F_{Z}(z) \quad \text { and } \quad P(Z \leqslant z)=P\left(\frac{Y}{X} \leqslant z\right)=\int_{0}^{+\infty} P(Y \leqslant z x \mid X=x) f_{X}(x) d x
$$

Hence

$$
\begin{aligned}
f_{Z}(z) & =\frac{d}{d z} \int_{0}^{+\infty} P(Y \leqslant z x \mid X=x) f_{X}(x) d x=\int_{0}^{+\infty} \frac{d}{d z} P(Y \leqslant z x \mid X=x) f_{X}(x) d x \\
& =\int_{0}^{+\infty} x f_{Y \mid X=x}(x, z x) f_{X}(x) d x
\end{aligned}
$$

where $f_{Y \mid X=x}(x, y)=\frac{f(x, y)}{f_{X}(x)}$, thus $f_{Y \mid X=x}(x, x z)=\frac{f(x, x z)}{f_{X}(x)}$ and hence $f_{Y \mid X=x}(x, z x) f_{X}(x)=f(x, z x)$:

$$
\begin{aligned}
f_{Z}(z) & =\int_{0}^{+\infty} x f(x, z x) d x=\int_{0}^{+\infty} x 2 e^{-(x+z x)} d x \\
& =2 \int_{0}^{+\infty} x e^{-x(1+z)} d x=2\left[\frac{x}{-(1+z)} e^{-x(1+z)}\right]_{0}^{+\infty}-2 \int_{0}^{+\infty} \frac{e^{-x(1+z)}}{-(1+z)} d x \\
& =2 \times 0+2\left[-\frac{e^{-x(1+z)}}{(1+z)^{2}}\right]_{0}^{+\infty}=\frac{2}{(1+z)^{2}}
\end{aligned}
$$

Thus

$$
f_{Z}(z)= \begin{cases}\frac{2}{(1+z)^{2}}, & \frac{1}{3}<z<3 \\ 0, & \text { otherwise }\end{cases}
$$

5. (a) $F_{X}(x)=P(X \leqslant x, Y \leqslant+\infty)=e^{-\left(e^{-\alpha x}\right)^{1 / \alpha}}=e^{-e^{-x}}$ and $F_{Y}(y)=P(X \leqslant+\infty, Y \leqslant y)=e^{-\left(e^{-\alpha y}\right)^{1 / \alpha}}=e^{-e^{-y}}$, thus $F_{X}(x)$ and $F_{Y}(y)$ are standard Gumbel extreme value distributions.
(b)

$$
\begin{aligned}
C\left(u_{1}, u_{2}\right) & =C\left(F_{X}(x), F_{Y}(y)\right)=C\left(e^{-e^{-x}}, e^{-e^{-y}}\right)=\exp \left(-\left[\left(-\ln e^{-e^{-x}}\right)^{\alpha}+\left(-\ln e^{-e^{-y}}\right)^{\alpha}\right]^{1 / \alpha}\right) \\
& =\exp \left(-\left[\left(e^{-x}\right)^{\alpha}+\left(e^{-y}\right)^{\alpha}\right]^{1 / \alpha}\right)=\exp \left[-\left(e^{-\alpha x}+e^{-\alpha y}\right)^{1 / \alpha}\right]=P(X \leqslant x, Y \leqslant y)
\end{aligned}
$$

(c) A copula C, between X and Y, is max-stable if the copula associating the maximum of X and the maximum of Y belongs to the same copula family of C.
Let $M_{n, X}=\max \left(X_{1}, \ldots, X_{n}\right)$ and $M_{n, Y}=\max \left(Y_{1}, \ldots, Y_{n}\right)$, where X_{1}, \ldots, X_{n} are i.i.d. to X and Y_{1}, \ldots, Y_{n} are i.i.d. to Y, with n fixed. Then, $F_{M_{n, X}}(x)=\left[F_{X}(x)\right]^{n}, F_{M_{n, Y}}(y)=\left[F_{Y}(y)\right]^{n}$, and $P\left(M_{n, X} \leqslant x, M_{n, Y} \leqslant y\right)=[P(X \leqslant x, Y \leqslant y)]^{n}=$ $\left[C\left(F_{X}(x), F_{Y}(y)\right)\right]^{n}$.
Thus, the copula is max-stable if $C\left(F_{M_{n, X}}(x), F_{M_{n, Y}}(y)\right)=\left[C\left(F_{X}(x), F_{Y}(y)\right)\right]^{n}$, i.e if $C\left(\left[F_{X}(x)\right]^{n},\left[F_{Y}(y)\right]^{n}\right)=\left[C\left(F_{X}(x), F_{Y}(y)\right)\right]^{n}$.

$$
\begin{aligned}
{\left[C\left(u_{1}, u_{2}\right)\right]^{n} } & =\left[\exp \left(-\left[\left(-\ln u_{1}\right)^{\alpha}+\left(-\ln u_{2}\right)^{\alpha}\right]^{1 / \alpha}\right)\right]^{n}=\exp \left(-n\left[\left(-\ln u_{1}\right)^{\alpha}+\left(-\ln u_{2}\right)^{\alpha}\right]^{1 / \alpha}\right) \\
& =\exp \left(-\left[\left(-n \ln u_{1}\right)^{\alpha}+\left(-n \ln u_{2}\right)^{\alpha}\right]^{1 / \alpha}\right)=\exp \left(-\left[\left(-\ln u_{1}^{n}\right)^{\alpha}+\left(-\ln u_{2}^{n}\right)^{\alpha}\right]^{1 / \alpha}\right)=C\left(u_{1}^{n}, u_{2}^{n}\right)
\end{aligned}
$$

6. (a) The chain is finite, irreducible and aperiodic, so it is regular.
(b) $P_{A D}^{(2)}=(0.7,0.2,0.1,0) \cdot(0,0.1,0.1,0.9)=0.03$
(c) The chain is finite and irreducible, so all states are recurrent. Hence, the probability that a bond currently rate A, that is being downgrade to C , will ever be rated A again is $1, f_{A A}=1$.
(d) Let w_{i}, with $i=A, B, C, D$, be the expected number of years a bond will visit rate A before defaulting, starting at state i. The quantity asked for is w_{A}. Using first step analysis, we obtain w_{A} as the solution of the following system:

$$
\left\{\begin{array}{l}
w_{A}=1+0.7 w_{A}+0.2 w_{B}+0.1 w_{C} \\
w_{B}=0.1 w_{A}+0.7 w_{B}+0.1 w_{C} \\
w_{C}=0.2 w_{B}+0.7 w_{C}
\end{array}\right.
$$

(e) The chain is regular, so there exists the limit distribution which can be obtained by solving the system $\boldsymbol{\pi} P=\boldsymbol{\pi}$ for $\boldsymbol{\pi}$, with $\pi_{A}+\pi_{B}+\pi_{C}+\pi_{D}=1$:

$$
\boldsymbol{\pi} P=\boldsymbol{\pi} \Longleftrightarrow\left\{\begin{array} { l }
{ \pi _ { A } = 0 . 7 \pi _ { A } + 0 . 1 \pi _ { B } } \\
{ \pi _ { B } = 0 . 2 \pi _ { A } + 0 . 7 \pi _ { B } + 0 . 2 \pi _ { C } } \\
{ \pi _ { C } = 0 . 1 \pi _ { A } + 0 . 1 \pi _ { B } + 0 . 7 \pi _ { C } + 0 . 1 \pi _ { D } } \\
{ \pi _ { D } = 0 . 1 \pi _ { B } + 0 . 1 \pi _ { C } + 0 . 9 \pi _ { D } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\pi_{A}=\frac{2}{28}=0.07143 \\
\pi_{B}=\frac{6}{28}=0.2143 \\
\pi_{C}=\frac{7}{28}=0.25 \\
\pi_{D}=\frac{13}{28}=0.4643
\end{array}\right.\right.
$$

In the long-run, the percentage of bonds rated A is $7,14 \%$ and the percentage of bonds in default is $46,43 \%$.
7. (a)

$$
Q=\left[\begin{array}{cc}
-\frac{1}{300} & \frac{1}{300} \tag{05}\\
4 & -4
\end{array}\right]
$$

(b) The probability that a car with a currently functional fuel pump, will have the fuel pump broken at time t is $p_{12}(t)$.

From the Kolmogorov's forward differential equations and since $p_{11}(t)+p_{12}(t)=1$, we have:

$$
\begin{array}{ll}
& \frac{d}{d t} p_{12}(t)=p_{12}(t) q_{22}+p_{11}(t) q_{12} \quad \Longleftrightarrow \\
\Longleftrightarrow \quad & \frac{d}{d t} p_{12}(t)=-4 p_{12}(t)+\frac{1}{300} p_{11}(t) \\
\Longleftrightarrow \quad & \frac{d}{d t} p_{12}(t)=-4 p_{12}(t)+\frac{1}{300}\left(1-p_{12}(t)\right) \\
\Longleftrightarrow \quad & \frac{d}{d t} p_{12}(t)+\left(4+\frac{1}{300}\right) p_{12}(t)=\frac{1}{300} \\
\Longleftrightarrow \quad & e^{\left(4+\frac{1}{300}\right) t} \frac{d}{d t} p_{12}(t)+e^{\left(4+\frac{1}{300}\right) t}\left(4+\frac{1}{300}\right) p_{12}(t)=e^{\left(4+\frac{1}{300}\right) t} \frac{1}{300} \\
\Longleftrightarrow \quad & \frac{d}{d t}\left(e^{\left(4+\frac{1}{300}\right) t} p_{12}(t)\right)=e^{\left(4+\frac{1}{300}\right) t} \frac{1}{300} \\
\Longleftrightarrow \quad e^{\left(4+\frac{1}{300}\right) t} p_{12}(t)=e^{\left(4+\frac{1}{300}\right) t} \frac{1}{300} \frac{1}{4+\frac{1}{300}}+C \\
\Longleftrightarrow \quad p_{12}(t)=\frac{1}{300} \frac{1}{4+\frac{1}{300}}+C e^{-\left(4+\frac{1}{300}\right) t} \\
& p_{12}(t)=\frac{1}{1201}+C e^{-\left(4+\frac{1}{300}\right) t}
\end{array}
$$

Using the initial condition $p_{12}(0)=0$, we obtain $C=-\frac{1}{1201}$. Thus $p_{12}(t)=\frac{1}{1201}-\frac{1}{1201} e^{-\left(4+\frac{1}{300}\right) t}$.
(c) The limiting distribution is given by the solution of $\boldsymbol{\pi} Q=\mathbf{0}$:

$$
\left[\begin{array}{ll}
\pi_{1} & \pi_{2}
\end{array}\right]\left[\begin{array}{cc}
-\frac{1}{300} & \frac{1}{300} \\
4 & -4
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \Longleftrightarrow-\frac{1}{300} \pi_{1}+4 \pi_{2}=0 \quad \Longleftrightarrow \quad \pi_{2}=\frac{1}{1200} \pi_{1}
$$

Since $\pi_{1}+\pi_{2}=1$, we obtain $\left[\begin{array}{ll}\pi_{1} & \pi_{2}\end{array}\right]=\left[\begin{array}{ll}\frac{1200}{1201} & \frac{1}{1201}\end{array}\right]$. For a fleet of 1000 cars, the expected number of cars with a broken fuel pump in the long run is $1000 / 1201=0.8326395$.
8. (a)

$$
\left.\begin{array}{rl}
& \\
Q(x)= & E \\
U \\
D
\end{array} \begin{array}{ccc}
-\mu_{E U}(x)-\mu_{E D}(x) & U & D \\
\mu_{U E}(x) & \mu_{E U}(x) & \mu_{E D}(x) \\
0 & -\mu_{U E}(x)-\mu_{U D}(x) & \mu_{E D}(x) \\
& \\
E & 0 & 0
\end{array}\right)
$$

(b)

$$
\begin{gathered}
p_{\overline{U U}}(x, t)=\exp \left(-\int_{x}^{t}\left(\mu_{U E}(x)+\mu_{U D}\right) d x\right)=e^{-\left(0.0055(t-x)+5\left(e^{-0.01 t}-e^{-0.01 x}\right)\right.} \\
p_{\overline{U U}}(50,65)=e^{-\left(0.0055 \times 15+5\left(e^{-0.01 \times 65}-e^{-0.01 \times 50}\right)\right.}=e^{-0.5049244}=0.6035512
\end{gathered}
$$

(c)

The probability is $\frac{\mu_{E D}(x)}{\mu_{E U}(x)+\mu_{E D}(x)}=\frac{0.0005}{0.0105+0.001 e^{0.025 x}}$.
For a person aged 60 , this probability is $\frac{0.0005}{0.0105+0.001 e^{0.025 \times 60}}=0.0334$.
(d)

$$
\begin{aligned}
& P(X(T)=U \text { and has been unemployed for less than a quarter of a year } \mid X(x)=E)= \\
& \quad=\int_{T-0.25}^{T} p_{E E}(x, w) \mu_{E U}(w) p_{\overline{U U}}(w, T) d w \\
& \quad=\int_{T-0.25}^{T} p_{E E}(x, w)\left(0.01+0.01 e^{0.025 x}\right) e^{-\left(0.0055(T-w)+5\left(e^{0.01 T}-e^{0.01 w}\right)\right)} d w
\end{aligned}
$$

